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Abstract—In recent years, researchers in the fields of bioinfor-
matics and cheminformatics have attempted to utilize machine
learning methods for molecule modeling, bioactivity prediction,
chemical property prediction, biology analysis, etc. In this paper,
we present a system that merges the merits of various techniques
such as long short-term memory (LSTM) recurrent neural
networks, and is designed for learning atoms and solving the
classic problems such as single task classification in the field
of drug discovery. We have implemented our approach and
conducted extensive experiments based on several widely used
datasets such as SIDER and Tox21. The experimental results
consistently demonstrate the feasibility and superiority of our
proposed approach.

Index Terms—machine learning, drug discovery, neural net-
works, molecule data.

I. INTRODUCTION

Data-driven analysis plays a crucial part in many biological
and chemical applications, including molecule modeling [1],
chemical property prediction [2] and pharmacogenomics [3].
With the rapid development of machine learning [4]–[6], in
recent years researchers in the fields of bioinformatics and
cheminformatics have attempted to utilize machine learning
methods for molecule modeling, bioactivity prediction, chem-
ical property prediction, biology analysis, and so on [5], [7]–
[9].

As we know, SMILES [10] (simplified molecular input
line entry system) strings are usually used to represent and
store molecule datasets, and they are in form of a single
line text consisting of molecular notations. In realistic world,
a molecule of arbitrary size and shape could be hard to
be represented and used for machine learning tasks. Users
usually need to transform them into other formats that are
easy to be handled by machine learning algorithms. A widely
adopted proposal is to use hand-crafted feature like ECFP [11],
Coulomb Matrix [12], Graph-like structure [9], and so on.
Such a process is usually called featurization. The transformed
data (or featurization data) is usually as input and feed it into
the interface of machine learning methods, such as classifier

like random forest and multilayer perception, and so on [13]–
[16].

Owing to the success of solving a wide range of machine
learning problems by the Artificial Neural Networks(ANNs)
[6], recently, long short-term memory (LSTM) recurrent neu-
ral networks [17] have emerged as powerful generative models
in various domains including natural language understanding
[18], images [19] , and video [20]. This lines of models
regard the input data as sequential lists, and they are very
suitable for solving time-dependent tasks like natural language
understanding [21]. On the other hand, as shown in [22], the
unsupervised machine, Atom2Vec [23], can learn the basic
properties of atoms, and is used to discover the periodic table
of the elements.

Inspired by the remarkable achievements mentioned above,
in this paper we present a system that merges the merits
of various techniques and is designed for solving the classic
problems such as single-task classification and multi-task clas-
sification in the field of drug discovery. Generally, our system
first transforms the molecule data in the SMILES format
into a set of sample vectors via a component named format
transformer (FT). The FT divides by spaces the molecule in
SMILES format into atoms, which may consists of symbols
and numbers. These atoms are then encoded by one-hot
encoding, which allows us to transform atoms into a specific
vectors with some certain dimensions. Then it uses a manner
similar to word2vec [23] to extract the sample vectors by
training the specific vectors previously obtained. These vectors
are then as the input and fed into the embedding layer, which
is used to extract high dimensional features. Meanwhile, in
this layer a large matrix is constructed, which is convenient
for model training at the upper layer (i.e., LSTM layer).
The extracted features are then trained at the LSTM layer,
and finally the trained samples are sent to a classifier (e.g.,
sigmoid) for single or multiple task classification.

In summary, the contributions of this paper are twofold:
(i) we present an approach to learn atoms and solve the
classic problems including single- and multi-task classification



in the field of drug discovery; and (ii) we conduct extensive
experiments based on several widely used molecule datasets
and demonstrate the feasibility and superiority of our proposed
approach. (The codes of our implementation are to be shared
at the open-source code repository, GitHub, after the paper
is accepted.) The rest of the paper is organized as follows.
Section II reviews prior works most related to ours. Section
III presents our approach. Section IV analyzes and discusses
the performance results of our approach. Section V concludes
this paper.

II. RELATED WORK

In the past decade, deep neural networks (DNN) has gained
remarkable achievements in various areas of machine learning
research. Deep neural networks can learn the potential regular
pattern with access of training a large number of datasets to
obtain better performance analysis and prediction. Different
from other domains, DNN in drug discovery depends heavily
on molecular featurization. The main molucular representation
methods at present are ECFP [11] [24], Coulomb Matrix [12],
and Graph-like structure [9], and so on. Recently, deep neural
models have opened up new avenues for modeling SMILES
strings as a language model. The unsupervised machines
(Atom2Vec) shown by [22] can learn the basic properties of
atoms. Our work is inspired by theirs, yet it is different from
theirs. In that paper the methods and experiments are used
to discover the periodic table of the elements. In addition,
they mainly focused on the principle explanation of atom
representation, while related model designs are not covered.
Another unsupervised approach named conditional diversity
networks [25] also transform SMILES string into vector, while
the detailed steps are not covered, and they paid more attention
on the generation of molecule and drug, instead of the tasks
mentioned in this paper.

On the other hand, there are some researches concentrated
on drug predictions including adverse drug events (ADEs),
adverse drug reactions (ADRs), adverse drug-drug interactions
(DDIs), activity prediction, and so on. For example, Page
et al. [26] identified the adverse drug events by relational
learning. In addition, several methods proposed by [27] are
for extracting ADRs from forum posts and tweets. Xiao et al.
[28] provided the efficient solutions for the real world ADR
prediction, and cast the ADR-drug relation structure into a
three-layer hierarchical Bayesian model. As for adverse drug-
drug interactions (DDIs), most of methods focused on binary
prediction (with or without DDI). Jin et al. [29] formulated
such a problem as a multitask dynadic regression problem.
Dietterich [30] introduced the dynamic reposing technique
that iteratively learns a neural network, and then focused on
maximizing the predicted output values. Warmuth et al. [31]
used the active learning techniques for selecting the successive
batches, and adopted three selection strategies in the drug
discovery process. Ma et al. [32] made better trade-off between
accuracy and interpretability. Our work shares a common
feature with this line of works, since both discussed the issues
related to drug discovery. Nevertheless, our work is different
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Fig. 1. The overall architecture of our approach

from their in two points at least: (i) they mainly focused on
developing techniques for other tasks instead of single- and
multi-task classification; and (ii) the LSTM recurrent neural
networks (RNNs) are not covered in their works.

III. APPROACH

In this section, we first give an overview of our approach,
and then present each part of our approach in detail.

A. Overview

Figure 1 shows the overall architecture of our approach.
Briefly, the molecule data in the format of SMILES is first
processed by a component named format transformer (FT),
which transforms the molecule data into a set of sample
vectors. These vectors are then as the input and fed into the
embedding layer, which is used to extract high dimensional
features. The extracted features are then trained at the LSTM
layer using the long short-term memory (LSTM) recurrent
neural networks. The output of the LSTM layer shall be
processed by the classifier, which is used to generate the output
label for task classification.

B. Representation

Choosing a proper molecular representation is at the heart
of computer-based chemical analysis, and it is also very
importance for drug discovery and prediction, since one may
need to analyze and predict properties of drug with the same
or similar molecule representation.

In the real world, most biological and chemical datasets
are in the format of SMILES string. The SIMILES string
of a unique molecule is a single line text representation.
For example, a molecule is encoded as a linearly arranged
string si = s1, s2, ...si(i = 1, 2, ..., n). The encoding rules of
SMILES follows the strict grammars, which consists of sym-
bols indicating element types, bond values, and the start and
terminal location for ring closures and branching components.

SMILES strings are powerful for representing and storing
molecule data. To apply machine learning methods for learning
advanced features, we need to transform them into the new
format suitable for utilization. Take Aldicarb and its SMILES
string CC(/C = N/OC(NC) = O)(C)SC as an example,
one can convert it by RDKit [33] software into a graph-
structured representation, which can be later used for learning
features via graph convolutions. Instead of using chemical
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software such as RDKit to transform SMILES strings, we
adopt another manner that directly transforms them into atom
vectors. Briefly, molecule in SMILES format is first prepro-
cessed as an independent atom symbol, and then they are
expressed as a high dimensional vectors, which are sample
vectors and also machine-readable characters or strings. Figure
2 illustrates the general process of this transformation. Next,
we present the details of our transforming method, named
Format Transfer (FT).

C. Format Transformer

As we known, in natural language processing (NLP), the
sentences are processed using word vectors. We observe that
SMILES is a linguistic grammar that employs an alphabet of
characters to describe molecule, and each element or symbol
has an associated definition in SMILES. Here we use the sim-
ilar way in NLP to handle the SMILES strings. Specifically,
for a series of molecules si = s1, s2, ...si(i = 1, 2, ..., n)
in the format of SMILES, we divide them into a series of
atoms by space. Each single atom xi may consists of symbols
and numbers. Then, for all preprocessed atoms, we encode
them by one-hot encoding [34], which allows us to transform
atoms into a specific vectors vi(i = 1, 2...n) with some certain
dimensions. Since these specific vectors may have less feature
information. To obtain the sample vectors, we use a manner
similar to word2vec [23] to extract the sample vectors, by
training the specific vectors previously obtained. The sample
vectors will be used as the input of the embedding layer.

Before the extraction process (i.e., training the specific vec-
tors), we suggest a technique named simplified feature learning
(SFL). This is based on the follow observation: molecules in
SMILES format consist of numbers and characters, while some
symbols and numbers may represent repetitive information,
which may cause the complicated training process. For exam-
ple, Toluene is denoted as Cc1ccccc1 in SMILES, a benzene
ring is represented by number ”1”, while c and C denote
aromatic and aliphatic carbon atoms, which essentially imply
the existence of a benzene ring. Therefore, our SFL ignores
some feature information that has been already expressed,
and adds the occurrence frequency of each element (as the
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Fig. 3. The workflow of embedding implementation.

additional information) to the specific vector. These strategies
ensure the simplicity and integrity of the featuring information.

D. Embedding Layer

When the sample vectors as the inputs are fed into the
embedding layer, a huge matrix will be constructed, which
is convenience for model training in the later steps. The
size of the matrix depends on the product of the batch size
and the limited size (i.e., the dimension of an atom vector).
Note that, every vector vi, which is encoded using an N-bit
status register. Each state has its own register bit, and at any
time only one of them is valid. A workflow of embedding
implementation is shown in Figure 3. The construction of
the embedding matrix is based on the following principle:
the element vi located in the center of window k will be
output object, and the other elements are the input ones (for
example, see Figure 2, if atoms v∗i (i = 1, 2, ..., 22) located in
window k are as input, then the atom vi(i = 11) located in the
central of window k will be output). In this way, it guarantees
the output transmission channel unobstructed and ordered. In
addition, each vector vi encoded by one-hot encoding shall
automatically find the corresponding vector in the pretrained
matrix, until the mapping process completes.

E. LSTM Layer

Similar to the methods for dealing with semantics similarity
in NLP, we use the long short-term memory (LSTM) recurrent
neural network [17]. The LSTM is an alternative RNN, it
uses the so-called memory cell (controlled by input, output
and forget gates) to replace the conventional neuron in order to
overcome the vanishing gradient problem of traditional RNNs.
See Figure 4 for an illustration. In short, LSTM is a special
class of RNN [35] that is capable of capturing long sentence
relationships.

Owing to the existence of the gate of the adopted model,
we can learn and recognize the information needed to be
retained or forgotten. In our approach, each atom including
special symbols (e.g., =, ≡), has a corresponding time step xt
(t=1,2...n). The intermediate state associated with each time
step is referred to as a hidden state vector ht. This hidden
state vector is used to encapsulate and summarize all the
information appeared in the previous time step. The hidden
state is a function of the current atom vector and the hidden
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state vector of the previous step. The potential value of the
hidden state vector would be

ht = σ(WHht−1 + WXxt) (1)

where WH and WX represent the weighted matrices. The value
of WH stays the same in all time steps, but the value of
WX changes in every input. The size of these values is not
only affected by the current vector, but also by the previously
hidden layer. It is easily observed that the value of ht will vary
when WH and WX change. For example, when WH changes
greater than WX , ht is more affected by ht−1 than xt. In other
words, the current hidden state vector is more concerned with
a sum of the previous atom vectors than the current one.

Finally, the state vector of the hidden layer is sent to a
classifier (e.g., sigmoid) for task classification or property
prediction. Thus, the designed approach with learnable ability
can predict whether the tested molecule is toxic or not.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we cover and analyze the performance results
of our system, based on several commonly used molecule
datasets from the MoleculeNet Benchmark [36]. To evaluate
the performance of system, we adopt the ROC-AUC score [36]
(larger is better) throughout the paper. Everything necessary
to reproduce our results can be found in the opensource code
repository mentioned in Section I.

Note that, some datasets are single-task datasets while others
are multi-task datasets (more detailed descriptions shall be
discussed later). In our experiments, the output of the final
layer is changed according to the number of tasks, while the
other steps in our approach are applied to all tested datasets.
Our system was trained based on Tensorflow [37], and Adam
algorithm [38] is used to optimize all the parameters of the
adopted neural networks.

A. Data Description

The datasets we used are BACE, BBBP, Tox21, and SIDER
(see Table I). These datasets consist of a mix of physical and
non-physical properties, single-task and multi-task classifica-
tion problems. In these datasets, SMILES strings are used
to encode input molecules. The details of these data are as
follows.

• BACE. The BACE dataset provides quantitative and
qualitative binding results, and is a collection of 1522
compounds with their 2D structures and binary labels. It
is used as a classification task.

• BBBP. The Blood-brain barrier penetration (BBBP)
dataset concentrates on the modeling and prediction of
the barrier permeability. This dataset includes binary
labels for over 2000 compounds on their permeability
properties.

• Tox21. The Toxicology in the 21st Century (Tox21)
dataset contains qualitative toxicity measurements for

TABLE I
CHARACTERISTICS OF THE SELECTED CLASSIFICATION DATASETS USED IN MODEL EVALUATION

Dataset Category Description Data Type Tasks Classification Type Compounds Rec-Metric
BACE Biophysics quantitative inhibity SMILES 1 Classification 1,522 ROC-AUC
BBBP Physiology barrier permeability SMILES 1 Classification 2,053 ROC-AUC
Tox21 Physiology toxicity SMILES 12 Classification 8,014 ROC-AUC
SIDER Physiology side reactions SMILES 27 Classification 1,427 ROC-AUC

TABLE II
ROC-AUC SCORES OF VARIOUS APPROACHES IN BACE AND BBBP DATASETS.

Model
Dataset BACE BBBP

Random Stratified Random Stratified
test validate test validate test validate test validate

LR 0.6888 0.6040 0.6412 0.6603 0.7374 0.6819 0.7277 0.8004
RF (n=10) 0.7662 0.7634 0.7488 0.7521 0.8106 0.7141 0.7358 0.8074

SVM 0.6045 0.5187 0.5279 0.5400 0.6700 0.5573 0.5874 0.6193
KNN 0.7598 0.7498 0.7603 0.7335 0.7456 0.8049 0.8142 0.6718
DT 0.6863 0.7272 0.7320 0.7416 0.7652 0.6973 0.7552 0.7692

Ours 0.8144 0.8619 0.7628 0.7330 0.8320 0.8855 0.8759 0.9356



TABLE III
ROC-AUC SCORES OF EACH TASK IN TOX21. THE RESULTS ARE BASED ON THE STRATIFIED SPLIT METHOD.

Task
Model RF SVM Ours

test validate test validate test validate
NR-AR 0.6732 0.6730 0.4951 0.5098 0.6914 0.6909

NR-AR-LBD 0.6384 0.5825 0.5216 0.5208 0.7477 0.7228
NR-AhR 0.5980 0.6076 0.6396 0.6160 0.6780 0.6698

NR-Aromatase 0.5500 0.5798 0.5458 0.5486 0.4964 0.4991
NR-ER 0.5507 0.5433 0.5000 0.4992 0.6231 0.5546

NR-ER-LBD 0.5170 0.5931 0.5216 0.5436 0.5308 0.5256
NR-PPAR-gamma 0.5263 0.4984 0.5074 0.4944 0.5659 0.5000

SR-ARE 0.5568 0.5562 0.6355 0.5804 0.6414 0.5901
SR-ATAD5 0.5348 0.5356 0.4931 0.4982 0.5000 0.5171

SR-HSE 0.5124 0.5107 0.5161 0.4986 0.6120 0.6381
SR-MMP 0.6862 0.6809 0.6489 0.6596 0.7425 0.7438
SR-p53 0.5138 0.5310 0.4931 0.4982 0.5180 0.5149

8014 compounds on 12 different targets, including nu-
clear receptors and stress response pathways.

• SIDER. The side effect resource (SIDER) is a dataset of
marked drugs and adverse drug reactions (ADR), and it
contains 1427 compounds on 27 system organ classes.

In general, conventional machine learning methods require
datasets to be split into training/validating/testing subsets for
benchmark. Usually, models are trained by training sets,
hyperparameters are tuned through validating sets, and testing
sets are used for evaluating models/approaches/systems. In our
experiments we use two split methods mentioned in [36]. That
is, random splitting and stratified random splitting. Usually,

when there is some bias, random splitting is used for data
splitting. In contrast, stratified random splitting ensures that
each subset contains the full range of labels. To keep the
same benchmark, in our experiments, random and stratified
(random) split method with a 8/1/1 ratio are adopted for
BBBP and BACE datasets, while only stratified (random)
split method is adopted for Tox21 and SIDER datasets (since
random split exhibits poor performance for all these methods).

B. Single Task Classification

For single-task classification (i.e., on BACE and BBBP
datasets), we train several machine learning algorithms as
baselines on an identical single-task dataset. These algorithms

TABLE IV
ROC-AUC SCORES OF EVERY TASK IN SIDER. THE RESULTS ARE BASED ON THE STRATIFIED SPLIT METHOD.

Task RF SVM Ours
test validate test validate test validate

Hepatobiliary disorders 0.5654 0.5696 0.5553 0.5733 0.5843 0.6916
Metabolism and nutrition disorders 0.5490 0.5337 0.5083 0.5091 0.5345 0.5382
Product issues 0.4906 0.5087 0.5032 0.5000 0.5048 0.5120
Eye disorders 0.5034 0.4984 0.5071 0.5179 0.5087 0.5260
Investigations 0.4877 0.5185 0.5014 0.5179 0.5045 0.4917
Musculoskeletal and connective tissue disorders 0.5180 0.5234 0.5116 0.5111 0.5620 0.5355
Gastrointestinal disorders 0.5551 0.4962 0.4926 0.5385 0.5564 0.5686
Social circumstances 0.4828 0.5185 0.4918 0.4958 0.5170 0.5204
Immune system disorders 0.5558 0.5271 0.5024 0.4950 0.5248 0.5465
Reproductive system and breast disorders 0.5436 0.5863 0.5601 0.6101 0.5956 0.5689
Neoplasms benign, malignant and unspecified (incl cysts and polyps) 0.5363 0.5744 0.5388 0.5676 0.5396 0.5073
General disorders and administration site conditions 0.4922 0.4962 0.4826 0.4955 0.4929 0.5061
Endocrine disorders 0.5245 0.5015 0.4920 0.4959 0.5323 0.5301
Surgical and medical procedures 0.5228 0.5609 0.4955 0.4858 0.4960 0.5000
Vascular disorders 0.4976 0.4981 0.5036 0.5129 0.5011 0.5132
Blood and lymphatic system disorders 0.5373 0.5248 0.5036 0.5833 0.5408 0.5869
Skin and subcutaneous tissue disorders 0.5417 0.5335 0.4959 0.4915 0.5642 0.5407
Congenital, familial and genetic disorders 0.4713 0.5015 0.4971 0.4950 0.5000 0.5059
Infections and infestations 0.5139 0.5005 0.4989 0.5135 0.5148 0.5224
Respiratory, thoracic and mediastinal disorders 0.4893 0.4952 0.5122 0.5238 0.4954 0.5335
Psychiatric disorders 0.5282 0.5126 0.5073 0.5070 0.5378 0.5168
Renal and urinary disorders 0.5632 0.5514 0.5137 0.5234 0.5767 0.6394
Pregnancy, puerperium and perinatal conditions 0.4769 0.4885 0.4962 0.5288 0.4961 0.4885
Ear and labyrinth disorders 0.5617 0.5781 0.5000 0.4938 0.5012 0.4851
Cardiac disorders 0.5530 0.5871 0.4899 0.5000 0.5734 0.5104
Nervous system disorders 0.4890 0.5346 0.5417 0.5147 0.5147 0.5522
Injury, poisoning and procedural complications 0.5262 0.5333 0.4947 0.5145 0.5315 0.5546



include LR (Logistic Regression) [39], RF (Random Forest)
[13], SVM (Support Vector Machine) [14], DT (Decision Tree)
[15] and KNN (K Nearest Neighbor) [16]. Also, for datasets
used for these baselines, we use random and stratified splitting
method with a 8/1/1 ratio. The comparison results are shown in
Table II. It can be seen that our system generally outperforms
these compared methods in both single-task datasets (i.e.,
BACE and BBBP). In particular, compared with the strongest
baseline RF, in average, our system achieves an improvement
of about 5% in these two datasets. These results demonstrate
the competitiveness of our system. In addition, we observe
that, for these two data splitting methods (i.e., random and
stratified), there is no significant impact on our system. This
indicates the stability of the system.

C. Multi-Task Classification
In order to comprehensively analyze the predictive perfor-

mance of our system for multiple task classification, exper-
iments at this stage are conducted on each task in Tox21
and SIDER datasets. In this set of experiments, we only
show the results of RF and SVM methods, since they present
better performance than other baselines for multiple task
classification. Specifically, there are 12 and 27 tasks for Tox21
and SIDER respectively. The compared results on Tox21 are
shown in Table III. It can be seen that, on the whole our
system shows competitive performance on the Tox21 dataset.
Specifically, on 10 out of 12 tasks, our system achieves the
best performance compared against the baselines.

In addition, the results on the SIDER dataset are shown
in Table IV. We can see that, on 20 out of 27 tasks, our
system achieves the best performance. Overall, our system is
still competitive, although it is inferior to some approaches
on several tasks. But as we known, low ROC-AUC scores
appeared commonly in most models found in the literature.
Our system obtains much more leading scores for most tasks,
and reaches the best results on more than 75% of the whole
tasks, which essentially imply that our approach can effectively
learn the structure and related information between atoms and
the corresponding contexts.

V. CONCLUSION

In this paper, we presented an approach for learning atoms
and solving the problem of single and multiple task classifica-
tion in the field of drug discovery. Our approach transforms the
molecule data in the SMILES format into a set of vectors via a
component named the format transformer, and then feed them
into the LSTM networks for training the sample vectors. We
conducted extensive experiments based on several widely used
molecule datasets. The results demonstrated the feasibility and
superiority of our proposed approach. In the future, we would
like to further optimize our approach and solve other related
problems in the fields of drug discovery and bioinformatics.
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