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Abstract

The boundaries of conic polygons consist of conic segments or second degree curves. The conic polygon has two degenerate or
special cases: the linear polygon and the circular-arc polygon. The natural problem — boolean operation on linear polygons, has
been extensively studied. Surprisingly, (almost) no article focuses on the problem of boolean operation on circular-arc polygons,
which actually also has many applications. This implies that if there is a targeted solution for boolean operation on circular-arc
polygons, it should be favourable for potential users. In this article, we close the gap by devising a concise data structure and then
developing a targeted algorithm called RE2L. Our method is simple, easy-to-implement but without loss of efficiency. Given two
circular-arc polygons with m and n edges respectively, our method runs in O(m+n+(l + k) log l) time, using O(m+n+ k) space,
where k is the number of intersections, and l is the number of related edges (defined in Section 5). Our algorithm has the power
to approximate to linear complexity when k and l are small. The superiority of the proposed algorithm is also validated through
empirical study. Particularly, our method is of independent interest, we show it can be easily extended to compute boolean operation
of other types of polygons.
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1. Introduction

Boolean operation on polygons is one of the oldest and
best-known problems in computer graphics, and it has attracted
much attentions, due to its simple formulation and broad ap-
plications in various disciplines such as computational geome-
try, CAD, GIS, visual computing, motion planning [5, 8, 9, 12,
18, 27–29]. When the polygons to be operated are conic poly-
gons (whose boundaries consist of conic segments or second
degree curves), researchers have made some efforts, see, e.g.,
[3, 4, 10]. The conic polygon has several special or degener-
ate cases: (i) the linear polygon (known as traditional polygon),
whose boundaries consist of only linear curves, i.e., straight
line segments; and (ii) the circular-arc polygon, whose bound-
aries consist of circular-arcs and/or straight line segments. The
natural problem — boolean operation on traditional polygons
— has been extensively investigated, see e.g., [1, 11, 13–18,
20–22, 25]. However, in existing literature (almost) no arti-
cle focuses on another natural problem — boolean operation on
circular-arc polygons. In fact, boolean operation on circular-
arc polygons also has many applications. For instance, deploy-
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ing sensors to ensure wireless coverage is an important prob-
lem [19, 26]. The sensing range of a single sensor is a circle.
With polygonal obstacles, its sensing range is cut off, shaping
a circular-arc polygon. When we verify the wireless coverage
range of sensors, boolean operation on circular-arc polygons is
needed. As another example, assume there are a group of free-
rotating cameras used to monitor a supermarket. The visual
range of a single camera can be regarded as a circle, as it is to
be freely rotated. Various obstacles such as goods shelves usu-
ally impede the visions of cameras, here boolean operation can
be used to check the blind angles. Last but not least, consider
a group of free-moving robots used to guide the visitors in a
museum. Since the energy of a single robot is limited, its mov-
able region is restricted to a circle. With the impact of various
obstacles such as exhibits, the original movable region is to be
cut off by these obstacles. When we verify if every place in the
museum can be served by at least a robot, boolean operation on
circular-arc polygons is also needed.

Although the solution used to handle conic (or more gen-
eral) polygons can also work for its special cases, the special
cases, however, usually have their unique properties; directly
executing the algorithm used to handle conic (or more gen-
eral) polygons is usually not efficient enough. It is just like
when the applications only involve traditional polygons, we
usually incline to use the solutions targeted for traditional poly-
gons rather than the ones for conic (or more general) polygons.
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With the similar argument, when the applications only involve
circular-arc polygons, a targeted solution for circular-arc poly-
gons should be favourable for potential users.

Motivated by these, this paper makes the effort to the prob-
lem of boolean operation on circular-arc polygons. In partic-
ular, we are interested in developing algorithms with the fol-
lowing features: (i) easy-to-implement for deployment in prac-
tice, and (ii) having nice theoretical guarantees. To this end,
first of all a concise and easy-to-operate data structure is natu-
rally developed (Section 4.1); based on this concise structure,
we then propose an algorithm dubbed as RE2L that consists of
three main steps.

The first step is the kernel (or core) of RE2L, yielding two
special sequence lists. Specifically, the kernel integrates three
simple yet efficient strategies: (i) it introduces the concept of
related edges, which is used to avoid irrelevant computation
as much as possible; (ii) it employs two special sequence lists,
each one is a compound structure with three domains; they are
used to let the decomposed arcs, intersections and processed
related edges be well organized, and thus immensely simplify
the subsequent computation; and (iii) it assigns two labels to
each processed related edge before the edge is placed into a
balanced tree; this contributes to avoiding the “false” intersec-
tions being reported, and speeding up the process of inserting
the reported intersections into their corresponding edges (Sec-
tion 5). The second step produces two new linked lists in which
the intersections, appendix points, and original vertices have
been arranged, and the decomposed arcs have been merged. To
obtain these two new linked lists, two important but easy-to-
ignore issues, “inserting new appendix points” and “merging
the decomposed arcs”, are addressed (Section 6). The third step
is to obtain the resultant (or output) polygon by traversing these
two new linked lists. In order to correctly traverse them, the
entry-exit properties are naturally adopted, and three traversing
rules are developed (Section 7).

Viewed from a macro perspective, similar to many meth-
ods (see e.g., [1, 11, 14, 15, 24, 25]) in the literature, our solu-
tion also partially inherits two well-known proposals: Bentley-
Ottmann Plane Sweep algorithm [2] and Weiler-Atherton Clip-
ping algorithm [29], whereas we also advance existing results
from various aspects. To summarize, we make the following
main contributions.

1. We highlight the circular-arc polygon is one of special
cases of the conic polygon, and boolean operation on
circular-arc polygons also has many applications.

2. We devise a concise and easy-to-operate data structure,
and develop a targeted algorithm for boolean operations
on circular-arc polygons.

3. While this paper focuses on boolean operations of circular-
arc polygons, we show our techniques can be easily ex-
tended to compute boolean operations of other types of
polygons (Section 9).

4. We provide the rigorous and detailed theoretical analysis
for our algorithm. In brief, given two circular-arc poly-
gons with m and n edges respectively, our algorithm runs
in O(m+n+(l+k) log l) time, using O(m+n+k) space,

where k is the number of intersections, and l is the num-
ber of related edges (Section 8).

5. We conduct extensive experiments to demonstrate the ef-
ficiency and effectiveness of our solution (Section 10).

The novelty of our work is threefold: to the best our knowl-
edge (i) it is the first comprehensive study on boolean oper-
ations of circular-arc polygons; (ii) it is the first time to em-
ploy the idea “utilizing related edges” for boolean operations of
polygons, this technique is simple enough to be practical value;
and (iii) it is the first output-sensitive algorithm having the po-
tential to approximate to linear complexity for boolean opera-
tions of polygons.

Next, we review previous works most related to ours, and
then present our algorithm including rigorous theoretical anal-
ysis and extensive empirical study.

2. Related Work

We first clarify several technical terms for ease of presen-
tation. It is well known that there are three typical boolean
operations: intersection, union, and difference. Note that poly-
gon clipping mentioned in many papers is actually to compute
the difference of two polygons [25]. Given two polygons, the
one to be clipped is called the subject polygon, another is usu-
ally called the clip polygon or clip window [14, 24, 25]. Given
a polygon, if there is a pair of non-adjacent edges intersect-
ing with each other, this polygon is usually called the self-
intersection polygon [1, 11, 22]. Throughout this paper, the tra-
ditional polygon refers to the polygon whose boundaries con-
sist of only straight line segments, while the circular-arc poly-
gon refers to the polygons whose boundaries consist of circular
arcs, or both straight line segments and circular arcs. We are
now ready to review the previous works most related to ours.

2.1. Boolean Operations on Traditional Polygons

In existing literature, there are many papers studying boolean
operation of traditional polygons. For example, Sutherland-
Hodgeman [24] proposed an elegant algorithm dealing with the
case when the clip polygon is convex. Liang et al. [14] gave
elaborate analysis on the case when the clip polygon is rectan-
gular. Andreev [1] presented an algorithm dealing with the case
when the subject polygon is with holes and self-intersections.
Vatti [25] and Greiner-Hormann [11] proposed general algo-
rithms that can handle concave polygons with holes and self-
intersections for both the clip and the subject polygons. Later,
Liu et al. [15] further optimized Greiner-Hormann’s algorithm.
Rivero-Feito [22] achieved boolean operation of polygons based
on the concept of simplicial chains. Peng et al. [20] also adopted
simplicial chains, and improved Rivero-Feito’s algorithm. Re-
cently, Martinez et al. [18] proposed to subdivide the edges at
the intersection. These works lay a solid foundation for the fu-
ture research. Compared to these works, this paper focuses on
boolean operation of circular-arc polygons, and thus is different
from theirs.
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2.2. Boolean Operations on Conic/General Polygons
Researchers have also made some efforts on boolean oper-

ations of conic polygons. For example, Berberich et al. [3]
proposed to decompose non-x-monotone curves and compute
the arrangement of segments using the plane sweep method,
and then compute the overlap of two polygons using the results
of arrangement, in order to achieve boolean operations. Gong
et al. [10] achieved boolean operation of conic polygons us-
ing the topological relation between two conic polygons, this
method does not require x-monotone conic arc segments. Both
algorithms can support boolean operation of circular-arc poly-
gons, as the conic polygon is the general case of the circular-arc
polygon. Moreover, the computational geometry algorithms li-
brary (CGAL) [7] can also support boolean operation of circular-
arc polygons. Inspecting the source codes of CGAL, we realize
that its idea is directly invoking the algorithm of boolean op-
eration on general polygons, defined as General Polygon 2

in CGAL1. To some extent the general polygon can be consid-
ered as the most general case, as its edges can be line segments,
circular arcs, conic curves, cubic curves, or even more compli-
cated curves. Although the essence of the algorithm in CGAL
is basically similar to that in [3] (using the plane sweep method
to compute the intersections, and the DCEL structure to repre-
sent the polygons), CGAL is a very powerful and useful library
collecting many classical ideas. For example, Emiris et al. [6]
developed a kernel, for curved objects and related operations,
that was targeted for inclusion in CGAL. Note that, the CGAL
project itself also yields many nice papers in which boolean op-
eration on polygons with curves is mentioned, see e.g., [4, 30],
to mention just a few. These excellent works are the corner-
stones of our study, giving us a lot of inspiration.

Compared to these works, our work is different from theirs
in the following aspects at least. First, this paper focuses on
one of special cases of conic polygon; specially, we give in-
sights into its unique properties, design a concise data structure
customized for this special case, and develop a targeted algo-
rithm, in which the central idea ‘utilizing related edges’ (ac-
companied with a set of well-designed strategies) is proposed.
To our knowledge, it is the first time to employ this technique
for boolean operations on polygons. Moreover, we give the
rigorous theoretical analysis for our algorithm, which runs in
O(m+ n+(l + k) log l) time, and approximates to linear com-
plexity when k and l are small (notice: the best known result for
polygon boolean operation runs in O((m+ n+ k) log(m+ n))
time, which is no better than linearithmic time2 even if k is
small); its superiority is also verified by extensive experiments.

3. Solution Overview

This section describes our algorithm at a high level. Let
P1 and P2 be the circular-arc polygons to be operated, and E1
(resp., E2) be the set of all edges of P1 (resp., P2), and P3 be the
resultant polygon (i.e., the output of our algorithm). The overall

1More information please refer to the site: http://www.cgal.org
2Simply speaking, linearithmic time in Big O notation refers to O(N logN),

provided that the input is O(N) size.
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Figure 1: Framework of our solution. The term “Inside” refers to the
case: P1 ⊆ P2 or P2 ⊂ P1. The term “Disjoint” refers to the case:
P1∩P2 = /0. The term “Intersectant” refers to the case: P1∩P1 , /0.

framework of our solution is illustrated in Figure 1. It contains
three main steps: (1) construct two sequence lists; (2) build two
new linked lists; and (3) traverse two new linked lists. Note
that, the first step is the kernel of our algorithm, as the central
idea “utilizing related edges” (accompanied with several other
helpful strategies) is included in this step.

Before explaining the construction process of two sequence
lists (i.e., arrays), we first understand their internal structures.
In brief, each item in the two sequence lists is a compound
structure consisting of multiple domains; these domains are
used to store various information such as edges and intersec-
tions (Section 5.2). The essence of constructing two sequence
lists is to choose a set E ′1 of edges from E1 and another set E ′2 of
edges from E2 (Section 5.1), and compute the intersections of
these edges based on a modified plane sweep method (Section
5.3). Note that, some arcs (i.e., edges) in E ′1 and E ′2 may need
to be decomposed before computing the intersections. These
edges, intersections, and many other information are stored in
the two sequence lists orderly, completing Step 1. It is note-
worthy that in the construction phase, we can determine the
geometry relation between P1 and P2, based on some available
information. It is trivial to get the resultant polygon when P1
and P2 are disjoint (or when one is inside another). In the sub-
sequent discussion, we focus our attention on the case when P1
and P2 intersect with each other, for ease of exposition.

We proceed to explain Step 2 “build two new linked lists”.
We need to mention that the input polygon P1 (P2) is also stored
using the linked list like data structure. Unless stated otherwise,
the terms “input polygons” and “original linked lists” are used
interchangeably in the rest of the paper. Note that, although the
original linked lists and the new linked lists use the same data
structure, the information stored in them is different. To under-
stand Step 2, consider that we have two sequence lists (obtained
in the previous step) and two original linked lists (i.e., input
polygons). The task is to efficiently merge part of information
in the original linked lists and the information in the two se-
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quence lists, and store the ‘merged information’ using two new
linked lists. Particularly, for the two new linked lists we are
asked to maintain some properties: for example, the intersec-
tions and original vertices should be well arranged, the decom-
posed arcs should be merged (Section 6). Note that although
Step 2 partially inherits the well-known Weiler-Atherton Clip-
ping method, the problem considered here is much more chal-
lenging, and thus needs more treatments. On the other hand,
as we generate two sequence lists in the previous step, the de-
tailed steps of building the two linked lists are basically differ-
ent from Weiler-Atherton’s and also other existing methods (see
e.g., [1, 11, 14, 15, 24, 25]).

Step 3 is essentially adapting existing traversing methods
that were used to compute boolean operations of traditional
polygons. Briefly speaking, it first assigns entry-exit proper-
ties to intersections (Section 7.1), and then traverses the two
new linked lists based on various traversing rules (Section 7.2).
Our paper discusses various boolean operations (intersection,
union and intersection), and investigates various circular-arc
polygons: with or without holes, self-intersection or non self-
intersection (Sections 7 and 9). It is non-trivial and also mean-
ingful to provide a comprehensive investigation, we believe it
would be helpful for interested readers.

In the successive sections, we describe in detail our solution
including data structure, main ideas, algorithms, and rigorous
theoretical analysis.

4. Preliminary

4.1. Data Structure
It is well known that the traditional polygon can be repre-

sented by a series of vertices. This method however is invalid
for polygons containing circular arcs, as two vertices cannot
exactly determine a circular arc segment (note: it may be a
major or minor arc). Even so, this ambiguity can be easily
eliminated by adding an appendix point, where the appendix
point can be an arbitrary point that is located on the arc but it
is not the endpoints of the arc. For clarity, a traditional ver-
tex is denoted by vi, and an appendix point is denoted by ṽ j.
For example, {v1, ṽ2,v3,v4,v5} determine a circular-arc poly-
gon with four edges (including one circular arc segment v̂1ṽ2v3
and three straight line segments v3v4, v4v5, v5v1). Unless stated
otherwise, in the rest of the paper we always use · and ·̂
to denote the line segment and the arc segment, respectively.
In order to efficiently operate circular-arc polygons, we devise
a data structure called APDLL (appendix point based doubly
linked list). Specifically, each node in the list consists of several
domains below.

• Data: (x,y), the coordinates of a point.
• Tag: Boolean type, it indicates whether this point is a

traditional vertex or an appendix point.
• Crossing: Boolean type, it indicates whether this point is

an intersection.
• EE: Boolean type, it indicates what property (entry or

exit) an intersection has.
• Prev: Node pointer, it points to the previous node.
• Next: Node pointer, it points to the next node.

4.2. Observation
In this subsection, we introduce a simple yet important ob-

servation that will be frequently used later. To explain, we need
some preliminaries.
Definition 4.1. (Non-x-monotone circular arc) Given any cir-
cular arc, it is a non-x-monotone circular arc such that there is
at least one vertical line that intersects with the circular arc at
two points.

Definition 4.2. (X-monotone circular arc) A circular arc is an
x-monotone circular arc such that there is at most one intersec-
tion with any vertical line.

Lemma 4.1 below formalizes our observation, which can be
viewed as a unique property of circular-arc polygons (compared
to other types of polygons).
Lemma 4.1. Let Nxmc be an arbitrary non-x-monotone circular
arc, and C be its corresponding circle. Assume that lh is a hori-
zontal line passing through the center of C. We have that lh can
decompose Nxmc into at least two and at most three x-monotone
arcs.

Proof. It is immediate by analytic geometry. See Figure 2 for
some illustrations.

p1 p2

Nxmc

lh

(a)

p1 p2

Nxmc

lh

(b)

p1

Nxmc

lh

(c)

Figure 2: Illustrations of Lemma 4.1.

5. The Kernel of RE2L

In this section, we detail Step 1 of our solution. Specifically,
we first expatiate the main ideas integrated in Step 1 (Sections
5.1-5.3), and then present the detailed algorithms (Section 5.4).
5.1. Utilizing Related Edges

One of our strategies is to choose related edges (defined
later) before doing others. The purpose of choosing related
edges is to avoid operations that are irrelevant with obtaining
the final result as much as possible. To define related edges
formally, we need two notions.

Definition 5.1. (Extended boundary lines) Given a circular-arc
polygon, w.l.o.g. (without loss of generality), assume the coor-
dinates of left-bottom corner of its MBR (minimum bounding
rectangle) are (x1,y1), the one of right-top corner are (x2,y2).
Then, the following four lines, X=x1, X=x2, Y=y1, Y=y2 are
respectively the left, right, bottom and top extended boundary
lines of this circular-arc polygon.

Definition 5.2. (Effective axis) Let Imm be the intersection set
of two circular-arc polygons’ MBRs. If the horizontal span of
Imm is larger or equal to its vertical span; then, the y-axis is the
effective axis. Otherwise, the x-axis is the effective axis.

We now provide the formal definition and inspect more prop-
erties of related edges.
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Definition 5.3. (Related edges) Let l1(l2) and r1(r2) be the left
and right extended boundary lines of the circular-arc polygon
P1(P2), respectively. W.l.o.g., assume the effective axis is the
x-axis and l1 < l2 < r1 < r2, where l1 < l2 denotes l1 is in the
left of l2. Then, the following edges are related edges: (i) edges
located between l2 and r1; or (2) edges intersected with l2 or
r1.

See Figure 3(a) for an example, edges ab and bc are related
edges as they intersect with l2. Similarly, edges de and e f are
also related edges. We remark that in Definition 5.3 there are
actually other cases, e.g., “l1 < l2 < r2 < r1” or the effective axis
is the y-axis; these cases are similar to the listed case, omitted.

a

b
c

d

e

f

P1

P2

l1 r2
l2 r1

Horizontal span

Vertical span

(a)

a

b

c
d

e

f

i1
i2

i3

4i

(b)

Figure 3: Example of related edges. (a) Two big rectangles denote the
MBRs; the grey rectangle denotes the intersection set of two MBRs,
and the dashed vertical lines denote the extended boundary lines. (b)
Partial enlarged drawing.

Definition 5.4. (Processed related edges) Given a number of
related edges, we decompose them if there are non-x-monotone
arcs, we call all the edges (after decomposing) the processed
related edges.

By Lemma 4.1 and Definition 5.4, we have the following
corollary (which will be used later).

Corollary 5.1. Given l related edges, if there is no non-x-monotone
arc among them, the number of processed related edges is l.
Otherwise, the number of processed related edges is larger than
l and no more than 3l.

Up to now, we have discussed the properties of related edges,
and briefly explained how to choose related edges from two
circular-arc polygons (remark: more explanations will be given
in Algorithm 1 and in the proof of Lemma 5.1). We next show
how to use two sequence lists to manage the processed related
edges and other important components.

5.2. Managing Important Components

The main purpose of the two sequence lists (i.e., arrays) is to
let the processed related edges, intersections and decomposed
arcs be well organized, which can facilitate the subsequent op-
erations. Specifically, each item in the two sequence lists is a
compound structure consisting of three domains: (i) the pro-
cessed related edge; (ii) the intersections (if exist) on this edge;
and (iii) a tri-value switch. For ease of discussion, we denote
by S1 and S2 the two sequence lists, by Si[ j] the jth item in Si

S1

(ab)

(bc)

(de)

(ef)

i1, i2

S2

i3, i4

i2, i3

i4, i1

0

0

0

0S2 [2]

S2 [1][1]S1

[2]S1

Figure 4: Example of sequence lists.

(i ∈ 1,2), and by Si[ j].a, Si[ j].b and Si[ j].c the three domains of
Si[ j], respectively.

The processed related edges in each sequence list are stored
in counter-clockwise direction with regard to the original circular-
arc polygon. For example, regarding to circular-arc polygons in
Figure 3, we construct two sequence lists as shown in Figure 4.
Note that when there are multiple intersections on an edge, we
should keep these intersections in order. See S1[1].b of Figure 4
for an example, the point i1 is ahead of the point i2. Regarding
to the third domain Si[ j].c, it is assigned to either 0, 1, or 2.
The assignment rules are as follows. When the edge is not a de-
composed arc, we assign “0” to Si[ j].c. In this example, for any
1≤ j≤ |Si| (where | · | denotes the cardinality of Si), Si[ j].c is set
to 0, as there is no decomposed arc. Otherwise, we assign “1” or
“2” to Si[ j].c. The readers may be curious why we use two dif-
ferent values. The purpose is to differentiate the decomposed
arcs which are from different non-x-monotone arcs. This can
help us efficiently merge them in the future. (The specific steps
on how to merge them will be discussed in Section 6.) Given a
series of decomposed arcs, we assign “1” to each decomposed
arc that is from the odd (1st, 3rd, · · · ) non-x-monotone arc, and
assign “2” to each decomposed arc that is from the even (2nd,
4th, · · · ) non-x-monotone arc.

See Figure 5(a) for an example, there are five related edges
in P1. Furthermore, Figure 5(b) illustrates eight processed re-
lated edges (after we decompose them based on Lemma 4.1),
implying that |S1|= 8. Based on the assignment rules, the val-
ues of the third domains should be “0, 1, 1, 2, 2, 1, 1, 0”, re-
spectively.

So far, we have shown how to use two sequence lists to man-
age the processed related edges and intersections. Note that,
in order to obtain the intersections, a standard technique is the
plane sweep method [2, 23]. In this paper, we do not directly
use this algorithm. Instead, we modify it by adding two labels
to avoid the “false” intersections being reported, and to speed
up the process of inserting the reported intersections into their
corresponding edges. (Remark: here the false intersections re-
fer to the vertices of polygons.) We next give a brief summary
of the plane sweep algorithm, and then show how the two labels
work.

Plane sweep method. Let Q be a priority queue, R be a bal-
anced tree3, and lv be a vertical sweep line. The basic idea of the
plane sweep method is as follows. First, it sorts the endpoints
of all segments according to their x-coordinates, and then puts
them into Q. Next, it sweeps the plane (from left to right) us-

3It is not mandatory to use a priority queue and a balanced tree, whereas
they are usually being recommended, for the sake of efficiency [2]. Moreover,
both of them are abstract concepts; the priority queue, for example, can be
implemented with a heap or other methods.
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Figure 5: Example of consecutive non-x-monotone circular arcs. (a)

Edges ab, b̂g̃c, ĉh̃d, d̂ĩe, e f are related edges of P1. (b) Edges ab,

b̂m̃ j, ĵg̃c, ĉñk, k̂h̃d, d̂ĩl, l̂õe, e f are processed related edges of P1;
three dashed lines are the auxiliary lines.

ing lv. At each endpoint during this sweep, if an endpoint is
the left endpoint of a segment, it inserts this segment into R; in
contrast, if it is the right endpoint of a segment, it deletes this
segment from R. Note that all the segments intersecting with
lv are stored (in order from bottom to top) in R. In particular,
when lv moves from one endpoint to another endpoint, it always
checks whether or not newly adjacent segments intersect with
each other; If so, it computes the intersection. In this way, all
intersections can be obtained finally4.

5.3. Avoiding False Intersections and Speeding Up Lookups

We can easily see that the plane sweep method directly in-
serts a segment into the balanced tree R, if the point p (∈ Q) is
the left endpoint of the segment. Instead, we assign two labels
to the segment before it is inserted into R. Note that the seg-
ment discussed here refers to the processed related edge. For
clearness, we denote by lb1 and lb2 the two labels, respectively.

lb1 is the boolean type, identifying that a segment is from
which one of the two circular-arc polygons. Specifically, if the
segment is from P1, we assign true to lb1; otherwise, we assign
false to lb1. Recall that the plane sweep method always checks
whether or not two segments intersect with each other, when
they are adjacent. Our proposed method does not need to check
them regardless of whether or not they intersect, if the first la-
bels of two adjacent edges have the same value. This can avoid
the unnecessary test and the “false” intersections.

lb2 is an integer type denoting a serial number, which cor-
responds to the “id” of an item stored in the sequence list (note:
the “id” information of each item is implied, as we store the
items using the sequence list, i.e., array). When we detected an
intersection, this label can help us quickly find the item in the
sequence list, and then insert the intersection into this item. See
Figure 3(b) for an example, lb1 and lb2 of edge ab are assigned
to true and 1, respectively. When we detected the intersection

4Note that, in some cases the segments may be vertical line segments, or
the segments may be tangent, or many segments possibly intersect at one point;
for these degenerated cases, please refer to the papers (e.g., [2, 11, 15, 21, 23])
for more details. Unless stated otherwise, degenerated cases are processed us-
ing existing techniques and/or a straightforward adaptation from existing tech-
niques. We no longer expatiate them separately for saving space (as they are
tedious, and are not the focus of the paper).

i1, we thus can quickly know that we should insert the intersec-
tion into S1[1] (i.e., the first item of S1). Otherwise, we have to
scan the sequence list in order to insert the intersection into an
appropriate item, this way is inefficient especially when |S1| (or
|S2|) is large.

Algorithm 1 ConstructSequenceLists
Input: Circular-arc polygons P1 and P2
Output: Sequence lists S1 and S2, related edge sets R1 and R2

1: Find the MBRs, effective axis and extended boundary lines
2: for each i ∈ {1,2} do
3: Ri← related edges from Pi
4: Create two empty sequence lists S1 and S2
5: for each i ∈ {1,2} do
6: InitializeSequenceList (Ri, Si) // cf., Algorithm 2
7: Sort the endpoints of the segments (from S1, S2), and put them into

the priority queue Q

8: Initialize the empty balanced tree R

9: for each point p ∈ Q do
10: Let s be the segment containing the point p, and t be the

segment immediately above or below s
11: if (p is the left endpoint of segment s)
12: Assign two “labels” to s, and insert s into R

13: if ( s.lb1 , t.lb1 )
14: if (s intersects with t)
15: Insert the intersection into Q, and also insert into S1 and S2
16: else if (p is the right endpoint of segment s)
17: if (s.lb1 , t.lb1)
18: if (s intersects with t and this intersection < Q)
19: Insert this intersection into Q, and it into S1

also insert and S2, respectively; delete s from R

20: else // p is an intersection of two segments, say s and t
21: Swap the position of s and t // assume s is above t
22: Let t1 be the segment above s, and t2 be the segment below t
23: if (s.lb1 , t1.lb1 or t.lb1 , t2.lb1)
24: if (s intersects with t1, or t intersects with t2)
25: Insert the intersection point into Q, and

also insert it into S1 and S2, respectively
26: return S1 and S2, R1 and R2

5.4. The Algorithm

Let R1 and R2 be the related edges from P1 and P2, respec-
tively. Given a segment s, we use s.lb1 and s.lb2 to denote the
two labels of segment s. Algorithm 1 illustrates the pseudo-
codes of constructing the two sequence lists.

We first choose the related edges based on the extended
boundary lines (Lines 1-3). Next, we construct two empty se-
quence lists and initialize them (Lines 4-6). After this, we com-
pute the intersections (Lines 7-25). In particular, when we com-
pute the intersections, two labels are assigned to the segment
before it is inserted into the balanced tree (Line 12), and we
use the two sequence lists to store the intersections (Lines 15,
19 and 25). Note that, the pseudo-codes of initializing the two
sequence lists are listed in Algorithm 2. This algorithm decom-
poses non-x-monotone arcs, puts the processed related edges
into the sequence lists in an orderly manner, and assigns appro-
priate values to the tri-value switches.

Lemma 5.1. Given two circular-arc polygons with m and n
edges, respectively, and assume there are l related edges be-
tween the two polygons, we have that constructing the two se-
quence lists can be finished in O(m+n+ l +(l + k) log l) time,
where k is the number of intersections.
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Proof. To obtain the related edges, we first need to find the
MBRs of two polygons, which takes linear time. We next de-
termine the effective axis by comparing the horizontal and ver-
tical spans of the intersection set of two MBRs, which can be
finished in constant time. Furthermore, the extended boundary
lines can be obtained in constant time once we obtain the ef-
fective axis. Based on two extended boundary lines, we finally
obtain the related edges by comparing the geometrical relation-
ship between each edge and extended boundary lines, which
also takes linear time. Thus, Lines 1-3 take O(m+n) time.

Creating two empty sequence lists takes constant time. In
addition, in order to initialize the two sequence lists, we need
to decompose each non-x-monotone arc. Decomposing a sin-
gle arc can be finished in constant time. In the worst case, all
the related edges are non-x-monotone arcs. Even so, there are
no more than 3l items in the two sequence lists, according to
Lemma 4.1. Hence initializing two sequence lists takes O(l)
time. Sorting all the endpoints of segments in the priority queue
Q takes O(l log l) time, and initializing the balanced tree R takes
constant time. Thus, Lines 4-8 take O(l + l log l) time.

As there are no more than 3l segments in S1 and S2, the
number of endpoints thus is no more than 6l. So we can easily
know that the number of executions of the for loop (Line 9) is
no more than 6l + k. Within the for loop, each operation (e.g.,
insert, delete, swap, find the above/below segment) on R can be
finished in O(log l) time, as the number of segments in R never
exceeds 3l. Additionally, each of other operations (e.g., assign
labels to the segment, determine if two segments intersects with
each other) can be finished in constant time. Thus, Lines 9-25
take O((6l + k) log l) time, i.e., O((l + k) log l) time. Putting it
together, this completes the proof.

Algorithm 2 InitializeSequenceList
Input: Ri, Si
Output: Si
1: temp← 1 // the temp is used to set the tri-value switch
2: for each related edge r ∈ Ri do
3: if (r is a non-x-monotone circular arc )
4: Decompose it and put the decomposed arcs into Si, and

set the value of each tri-value switch to “temp”
5: if (temp=1)
6: temp←2;
7: else // temp=2
8: temp←1;
9: else // r is not a non-x-monotone circular arc

10: Put it into Si, set the value of tri-value switch to “0”

We have shown how to construct two sequence lists. It is
easy to know that we cannot get the resultant polygon based on
only the information stored in the two sequence lists. Next, we
are ready to merge the information in them and part of informa-
tion in the original linked lists, and store the ‘merged informa-
tion’ using two new linked lists. For ease of exposition, we call
this step ‘building two new linked lists’. Note that the two new
linked lists will be significantly used in Section 7, as we need
to traverse them to get the resultant polygon.

6. Building Two New Linked Lists

To construct two new linked lists, on the whole we first ini-
tialize two (empty) new linked lists, and then copy the informa-
tion from the original linked lists to the new linked lists while
we replace those related edges using the information stored in
the two sequence lists. Note that there are two important yet
easy-to-ignore issues needed to be handled when we construct
new linked lists. We next check these issues, and then present
the algorithm of constructing new linked lists.
6.1. Eliminating The Ambiguity

Recall Section 4.1, we always add an appendix point be-
tween two vertices if an edge is a circular arc. When we replace
related edges with the information stored in sequence lists, we
also have to ensure this property. It is easy to know that, when
the intersections appear on a circular arc, this arc will be de-
composed by these intersections. We thus have to add the new
appendix point for each sub-segment, in order to eliminate the
ambiguity.

Lemma 6.1. Suppose there are k intersections on a circular
arc; then, we need to insert at least k and at most k + 1 new
appendix points.

Proof. Since k intersections can subdivide a complete circular
arc into k + 1 small circular arcs, and for each small circular
arc one appendix point is needed and enough to eliminate the
ambiguity. Clearly, k+ 1 appendix points are needed for k+ 1
small circular arcs. Note that, there is an appendix point be-
forehand. Therefore, when there is no any intersection (among
all these intersections) that is coinciding with this existing ap-
pendix point, only k new appendix points are needed. Other-
wise, we need k+1 new appendix points.

Besides the above issue, another issue is to handle the de-
composed arcs. We decomposed non-x-monotone arcs into x-
monotone arcs ever, we thus need to merge them. The natural
solution is to compare each pair of adjacent edges of the resul-
tant polygon, checking if they can be merged into a single arc.
This way however is inefficient because (i) most of edges of
the resultant polygon may not need to be merged; and (ii) given
two adjacent arcs, let C1 and C2 respectively denote their corre-
sponding circles; checking if the two arcs can be merged into a
single arc needs to compute the centres of C1 and C2, this will
use trigonometric functions (which could have been avoided).
We next show how to efficiently merge them, with the help of
the tri-value switch (recall Section 5.2).
6.2. Efficiently Merging Decomposed Arcs

We merge the decomposed arcs when constructing new linked
lists, rather than merge them after obtaining the resultant poly-
gon. In particular, we here utilize the information stored in the
tri-value switch to improve the efficiency. Specifically, given
an item Si[ j], if Si[ j].c = 1 (or 2), we continue to fetch its next
item Si[ j+ 1] from the sequence list if Si[ j].c = Si[ j+ 1].c. In
this way, a group of consecutive items are fetched from the se-
quence list. W.l.o.g, assume that we have fetched λ consecutive
items, Si[ j], · · · , Si[ j+λ −1]. Then, we do as follows.
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• If Si[ j].b = Si[ j + 1].b = · · · = Si[ j + λ − 1].b = /0, we
discard the fetched items instead of merging them. This
is because there is no intersection on these decomposed
arcs, the merged result should be the same as the edge in
the original linked list.

• Otherwise, we insert new appendix points, merge decom-
posed arcs, and replace the edge in the original linked list.

Let us revisit Figure 5(b); recall that there are eight items
in S1, and the values in their tri-value switches are “0, 1, 1,
2, 2, 1, 1, 0”, respectively. Although S1[2].c = S1[3].c = 1,
we discard the two items instead of merging them, as S1[2].b =
S1[3].b= /0. Similarly, we also discard the items S1[4] and S1[5].
Note that, for the 6th and 7th items, S1[6].c = S1[7].c = 1 and
S1[7].b, /0; thus, we insert a new appendix point, merge the two
decomposed arcs, and use the merged result to replace the edge
in the original linked list.

Note that, the consecutive items mentioned earlier are actu-
ally the decomposed arcs generated from a single non-x-monotone
circular arc. According to Lemma 4.1, we can easily obtain the
following corollary.

Corollary 6.1. Let λ be the number of consecutive items, we
have that λ ≤ 3 and λ ≥ 2.

Algorithm 3 BuildNewLinkedLists
Input: P1 and P2, S1 and S2, R1 and R2
Output: P∗1 and P∗2

1: Set P∗1 =P∗2 = /0, and j← 1
2: for each i ∈ {1,2} do
3: for each edge e ∈ Pi do
4: if (e < Ri )
5: Add e to P∗i
6: else // e is a related edge
7: if (si[ j].c = 0) // not a decomposed arc
8: if (Si[ j].b = /0) // no intersection
9: j← j+1, and add e to P∗i

10: else // Si[ j].b , /0
11: if (Si[ j] is a circular arc)
12: Insert new appendix points
13: Put the information from Si[ j] into P∗i , and set j← j+1
14: else // si[ j].c = 1 (or 2)
15: Set tri = Si[ j].c, and λ ← 0
16: do // copy the consecutive decomposed arcs
17: λ ← λ +1, temp[λ ]← Si[ j], j← j+1
18: while Si[ j].c = tri
19: if (temp[1].b = · · ·= temp[λ ].b = /0)
20: Put e into P∗i
21: else
22: Insert new appendix points, merge decomposed arcs, and

put the merged result into P∗i
23: return P∗1 and P∗2

6.3. The Algorithm

Let P∗1 and P∗2 be the two new linked lists, respectively. Al-
gorithm 3 depicts the pseudo-codes of constructing two new
linked lists. For each edge e in the original linked list, we check
whether it is a related edge. If so, we further check whether
Si[ j] is a decomposed arc. Lines 7-13 are used to process the
case when it is not a decomposed arc. In contrast, Lines 14-22
are used to handle the opposite case. In this case, we first fetch
all the consecutive decomposed arcs (Lines 15-18), and then

check if there are intersections on these decomposed arcs. If it
is not, we put the edge e into P∗i (Lines 19-20). Otherwise, we
insert new appendix points, merge decomposed arcs, and put
the merged result (instead of e) into P∗i (Lines 21-22).

Lemma 6.2. Suppose we have obtained the two sequence lists
S1 and S2; then, constructing the two new linked lists P∗1 and
P∗2 takes O(m+n+ l + k) time.

Proof. Inserting a single appendix point takes constant time. In
the worst case, all the intersections are located on arcs rather
than on line segments. Even so, there are no more than 2k
new appendix points according to Lemma 6.1. Hence insert-
ing appendix points takes O(k) time. Merging λ consecutive
decomposed arcs takes constant time, as λ ≤ 3 (cf., Corol-
lary 6.1). In the worst case, all the related edges are non-x-
monotone arcs, hence merging all consecutive decomposed arcs
takes O(l) time.

Since the number of edges in P1 and P2 is m+n, the number
of executions of the second for loop (Line 3) is m+n. Specif-
ically, the number of executions of Line 4 is m+n− l, and the
one of Line 6 is l. Even if all related edges are non-x-monotone
arcs, the number of executions of Line 17 is no more than 3l.
Furthermore, within the for loop, each operation takes constant
time (note: here we no longer consider the time for inserting
new appendix points and merging decomposed arcs, as we have
analysed them in the previous paragraph). Therefore, Lines 4-5
and Lines 7-22 take O(m+n− l) and O(3l) time, respectively.
Putting it all together, this completes the proof.

7. Traversing

In the previous section, we have obtained P∗1 and P∗2. This
section shows in detail how to get the resultant polygon by
traversing them. In order to correctly traverse P∗1 and P∗2, we
need to assign the entry-exit properties to intersections.
7.1. Entry-Exit Property

The entry-exit property is an important symbol that was ever
used in many papers focusing on boolean operation of tradi-
tional polygons (see e.g., [11, 15]). The followings show this
technique can be used to the case of our concern as well. Specif-
ically, we assign the intersections with the entry or exit property
alternately. Note that the entry-exit property for the first inter-
section in P∗1 (P∗2) is determined as follows. W.l.o.g, assume
the first intersection is i (i′) in P∗1 (P∗2), and the previous node
of i (i′) is i.prev (i′.prev). We check if i.pre (i′.pre) is out-
side the input polygon P2 (P1). If so, we assign the entry (exit)

v1

v4 v3

v2
v6

v7

v8
v10

i1

i2

i3

i4

v9

v5

n1

Figure 6: Example of assigning entry-exit properties. P1 = {v1,v2,v3,
ṽ4,v5} and P2 = {v6,v7,v8, ṽ9,v10}.

8



v1 i2 i3 v2 v3
~n1 i4 v4

~ v5 i1
exitentry entry exit

head

v6 v7 i3 i4 v8 v9
~ v10 i1 i2

entryexitexit entry
head

(a)

v1 i2 i3 v2 v3
~n1 i4 v4

~ v5 i1
exitentry entry exit

head

v6 v7 i3 i4 v8 v9
~ v10 i1 i2

entryexitexit entryhead

(b)

v1 i2 i3 v2 v3
~n1 i4 v4

~ v5 i1
exitentry entry exit

head

v6 v7 i3 i4 v8 v9
~ v10 i1 i2

entryexitexit entryhead

(c)

v1 i2 i3 v2 v3
~n1 i4 v4

~ v5 i1
exitentry entry exit

head

v6 v7 i3 i4 v8 v9
~ v10 i1 i2

entryexitexit entry
head

(d)

Figure 7: Illustrations of entry-exit properties and traversing rules. (a) Entry-exit properties of P∗1 and P∗2. (b) Intersection operation. (c) Union
operation. (d) Difference operation.

property to i (i′). See Figure 6 for an example. P1 and P2 are
two input polygons. We can easily obtain the two new linked
lists P∗1 and P∗2 using algorithms discussed before. Here P∗1 =
{v1, i2, i3,v2,v3, ñ1, i4, ṽ4,v5, i1}, and P∗2 = {v6,v7, i3, i4,v8, ṽ9,
v10, i1, i2}. Regarding to P∗1, since the previous node of i2 is
v1 which is outside P2, we assign “entry, exit, entry, exit” to
“i2, i3, i4, i1”, respectively. The entry-exit properties of “i2, i3, i4,
i1” in P∗2 are obtained similarly. See Figure 7(a).

Once the entry-exit properties are assigned to intersections,
we then obtain the resultant polygon based on the traversing
rules below.
7.2. Traversing Rules

Let is be an intersection (point) of P∗1 such that is has the en-
try property. Let vs be a vertex of P∗1 such that vs does not locate
in P∗2. There are three typical boolean operations: intersection,
union and difference. Note that in the rest of discussion, the
default traversing direction is counter-clockwise, unless stated
otherwise.

Intersection. We start to traverse P∗1 using is as the starting
point. Once we meet an intersection with the exit property, we
shift to P∗2, and traverse it. Similarly, if we meet an intersec-
tion with the entry property in P∗2, we shift back to P∗1. In this
way, a circuit will be produced. After this, we check if there
is another intersection of P∗1 such that (i) it has the entry prop-
erty; and (ii) it is not a vertex of the produced circuit. If no such
an intersection, we terminate the traversal, and this circuit is the
intersection between P1 and P2. Otherwise, we let this intersec-
tion as a new starting point, and traverse the two new linked lists
(using the same method discussed just now), until no such an
intersection exists. In the end, we get multiple circuits, which
are the intersection between P1 and P2. See Figure 7(b) for an
example, we first choose i2 in P∗1 as the starting point, and then
traverse the two linked lists, getting a circuit (see the dashed
lines). Moreover, there is no other intersection satisfying the
two conditions mentioned before. Therefore, the intersection is
{i2, i3, i4, ṽ4,v5, i1}.

Union. For this case, we, however, traverse P∗1 using vs
as the starting point. Once we meet an intersection with the

entry property, we shift to P∗2, and traverse it. Similarly, if we
meet an intersection with the exit property in P∗2, we shift back
to P∗1. In this way, a circuit will be produced, which is the
union between P1 and P2. See Figure 7(c), for example, we
first choose v1 as the starting point, and then traverse the two
linked lists, until we are back to the starting point v1. Therefore,
{v1, i2,v6,v7, i3,v2,v3, ñ1, i4,v8, ṽ9,v10, i1} is the union between
P1 and P2.

Difference. The first several steps are the same as the ones in
the union operation, but we traverse P∗2 in clockwise direction.
Similarly, if we meet an intersection with the exit property in
P∗2, we shift back to P∗1. In this way, a circuit will be produced.
Furthermore, we check if there is another vertex of P∗1 such that
(i) it is not a vertex of any produced circuit; and (ii) it does not
locate in P∗2. If no such a vertex, we terminate the traversal, and
this circuit is the difference between P1 and P2. Otherwise, we
let the vertex as a new starting point, and traverse the two new
linked lists (using the same method discussed just now), until
no such a vertex exists. In the end, we get multiple circuits,
which are the difference between P1 and P2. See Figure 7(d),
for example, we shall get that the difference between P1 and P2
consists of two parts, i.e., {v1, i2, i1} and {v2,v3, ñ1, i4, i3}.
7.3. The Algorithm

In some cases the result consists of multiple circuits, we
denote by l j the linked list used to store the jth circuit. Let nd be
a node of P∗i where i ∈ {1,2}, we denote by cn the current node
when we traverse P∗i , and denote by cn.next the next node of cn.
Furthermore, we denote by i′s the intersection of P∗1 such that i′s
has the entry property and it is not a vertex of any produced
circuit, and we use ∃(i′s) = true to denote that there exists such
a point. Algorithm 4 illustrates the pseudo-codes of obtaining
the intersection result (remark: the ones of other two operations
can be constructed similarly by traversing rules, omitted).

Lemma 7.1. Given the two new linked lists P∗1 and P∗2, to ob-
tain the resultant polygon takes O(k+m+n+ l) time.

Proof. Assigning the entry-exit property to each intersection
takes constant time, and there are k intersections on each new
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linked list. Thus, assigning entry-exit properties to intersections
takes O(k) time.

P∗1 and P∗2 are used to generate the resultant polygon, they
store the vertices, appendix points, and intersections. The num-
ber of vertices is 2(m + n). In the worst case, all edges of
two input polygons are circular arc segments, implying that the
number of appendix points in the input polygons is m+ n; in
this case, all the k intersections are located on arcs, we need to
insert new appendix points, and the number of new appendix
points is no more than k+ 1, according to Lemma 6.1. So the
number of all appendix points in P∗1 and P∗2 is no more than
m+ n+ k+ 1. Therefore, the total number of nodes in P∗1 and
P∗2 is no more than 3(m+n)+2k+1. Further, each operation on
a node (e.g., determine the type of a node, insert a node into the
resultant polygon) takes constant time. Therefore, the traversal
takes O(3(m+n)+2k+1) time. Putting it all together, we have
that obtaining the resultant polygon takes O(m+n+k+ l) time
when P∗1 and P∗2 are given beforehand5.

Algorithm 4 TraverseLinkedLists
Input: P∗1 and P∗2
Output: P3

1: Set j = 1
2: for each i ∈ {1,2} do
3: Assign entry-exit property to P∗i
4: do
5: if ( j=1)
6: Choose a starting point is from P∗1
7: else
8: Let is← i′s // i.e., let i′s be a new starting point
9: Set cn← is, and l j = /0

10: do
11: Put cn into l j
12: if (cn.next is not an intersection point)
13: Let cn← cn.next, and put cn into l j
14: else
15: Shift to P∗2, choose the node nd such that nd = cn.next, let

cn← nd , and put cn into l j
16: if (cn.next is not an intersection point)
17: cn← cn.next, and put cn into l j
18: else
19: Shift to P∗1, choose the node nd such that nd = cn.next, and

let cn← nd
20: while (cn , is)
21: Let P3← P3 ∪ l j , and set j← j+1
22: while (∃(i′s) = true)
23: return P3

Up to now, we have addressed all the main steps of our al-
gorithm — RE2L. We next analyse its complexity.

8. Time/Space Complexity

We analyse the complexity of our algorithm using the in-
tersection operation as a sample (note: the complexity of other
two operations is the same as the one of this operation, and can
be derived similarly, omitted).

5It is simple to determine i′s (cf., Lines 8 and 22). We just need to collect all
the intersections with entry properties in a data structure when we assign entry-
exit properties to intersections, and then remove the intersections from this data
structure once they have already been visited in the process of traversing. After
a circuit is formed, we check if this data structure is empty. If otherwise, any
intersection stored in this data structure can be taken as i′s.

Theorem 8.1. Given two circular-arc polygons with m and n
edges, respectively, and assume there are l related edges be-
tween the two circular-arc polygons. Then, to achieve boolean
operation on them takes O(m + n + (l + k) log l) time, using
O(m+n+ k) space, where k is the number of intersections.

Proof. Our algorithm consists three main steps, and they take
time O(m+ n+ l +(l + k) log l), O(m+ n+ k+ l), and O(m+
n+ k+ l), respectively (see Lemmas 5.1, 6.2 and 7.1). Putting
these results together, hence the time complexity is O(m+n+
(l + k) log l).

The space used in our algorithm mainly consists of two
groups of related edges R1 and R2, two sequence lists S1 and
S2, the priority queue Q, two new linked lists P∗1 and P∗2, and
the balanced tree R. (Remark: the input polygons P1, P2, and
the output polygon P3 are the input and output data; by the con-
vention6, we do not need to consider them when we analyse the
space complexity.)

Specifically, R1 and R2 have the size of O(l), as they are
used to store the related edges. S1 and S2 are used to store the
processed related edges. In the worst case, the number of pro-
cessed related edges is no more than 3l, according to Corollary
5.1. So S1 and S2 have the size of O(3l). Recall Algorithm 1,
the priority queue Q is used to store the endpoints of processed
related edges and the intersections, and so Q has the size of
O(6l + k). Regarding to the balanced tree R, it has the size of
O(l) at most, as it is used to store the segments currently inter-
secting the sweep line. Furthermore, P∗1 and P∗2 have the size of
O(3(m+n)+2k+1), see the proof of Lemma 7.1. Putting it all
together, we have that the space complexity of our algorithm is
O(m+n+k+ l). In addition, the upper bound of the parameter
l is m+n. This completes the proof.

We can see that our algorithm roughly consumes linear space
when k is small. The running time also approximates to lin-
ear complexity when l and k are small. It is noteworthy that a
straightforward adaptation from the plane sweep algorithm (see
e.g., the ‘Standard’ method described in Section 10.1) requires
O((m+ n+ k) log(m+ n)) time. In other words, even if k is
small (e.g., k << m+ n), it is also linearithmic time. We re-
mark that, for boolean operations on circular-arc polygons, the
O((m+n+ k) log(m+n)) result is actually the state-of-the-art
competitor in terms of computational complexity.

Although our algorithm has some advantages to some ex-
tent, we have to point out that in the worst case (note: this case
is possible although it is not the usual case), i.e., l = m+n, the
running time deteriorates to O((m+ n+ k) log(m+ n)), which
is equal to the one of the standard method. In this case, the
advantages of the proposed algorithm disappear, viewed from
the theoretical perspective. To this step, an interesting issue is:
when l = m+ n, whether or not its practical efficiency is also
the same as the one of the standard method? We will experi-
mentally evaluate our algorithm as well as the competitors in
Section 10, after we introduce some immediate extensions.

6As an example, the bubble sort algorithm takes O(1) space for sorting
arbitrary n natural numbers.
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9. Extensions

While this paper focuses on boolean operation of circular-
arc polygons, our techniques can be easily extended to compute
boolean operation of traditional polygons. Assume there are
two traditional polygons, for example, we can also use two lists
to represent them. In this case, the Tag domain is unneeded as
the traditional polygons do not need the appendix points. We
can also choose related edges based on the extended bound-
ary lines, and store them using two sequence lists. Note that the
third domain of the sequence list is unneeded, as here all related
edges are straight line segments. When computing the intersec-
tions, we can also use two labels to speed up the process of
inserting the intersections into their corresponding edges, and
to avoid false intersections. Next, we also construct two new
linked lists, by using the information stored in two sequence
lists to replace the related edges in the original linked lists. Par-
ticularly, we here do not need to insert new appendix points and
merge the decomposed arcs, as the traditional polygons have
no such information. We finally get the resultant polygon by
traversing the two new linked lists, it is the same as that in Sec-
tion 7.

Furthermore, the discussions presented in previous sections
assumed the circular-arc polygons to be operated have no holes.
If we want to handle the opposite case, this can be easily achieved
by a straightforward adaptation of our proposed method. As-
sume we want to compute the intersection of two circular-arc
polygons with holes, for example, we can use multiple lists to
represent the circular-arc polygon with holes. One is to repre-
sent the outer boundaries of the circular-arc polygon, others are
respectively to represent the boundaries of each hole. We can
first compute the intersection of the outer boundaries of two
polygons, and then use this intersection result to subtract each
hole of the two polygons. All of these steps are quite straight-
forward, when our proposed method is given beforehand.

Finally it is also immediate to compute boolean operation
on circular-arc polygons with self-intersection. Assume we want
to compute the intersection, for example, we just need to make
a minor modification on the traversing rule presented in Sec-
tion 7.2. We also start to traverse P∗1 using an intersection with
the entry property as the starting point, and shift to P∗2 when the
number of intersections we meet in P∗1 is even. The main differ-
ence is that the traversing direction here is not always constant.
To determine whether or not the traversing direction is needed
to change when we shift from P∗1 (P∗2) to P∗2 (P∗1), a key step
is to check if the entry-exit property of this intersection in P∗1
is different from the one in P∗2. If so, we need to change the
traversing direction. Otherwise, we needn’t.

10. Performance Evaluation

This section evaluates our algorithm experimentally. Specif-
ically, Section 10.1 describes the baselines. The experimental
settings and datasets are introduced in Section 10.2, and the re-
sults are reported in Section 10.3. We also investigate our pro-
posed algorithm based on a specific application (Section 10.4).

Polygon Coordinates

P1 (10,10), (40,10), (40,30), (32.5,40), (20,40),(15,30), (25,22.5),(15,15)

P2 (20,20), (32.5,25) (45,20), , (55,30), (47,38.625), (50,50), (30,45)

Table 1: The coordinates of vertices are listed counter-clockwise, and
the left-bottom vertex is listed at first. The values tagged with “ ”
denote the coordinates of appendix points.

10.1. Methodologies

We compare our method (i.e., RE2L) with several baselines,
which are either the algorithms used to handle more general
case of polygons, or the simpler versions of our proposed method.
We shortly introduce them as follows.

CGAL. We directly use the implementation of CGAL. The
essence of this method is to directly invoke the algorithm of
boolean operation on general polygons, defined as GeneralPol
ygon 2 in CGAL. Specifically, the “CGAL::Cartesian<Number
type>” is used as the kernel, in which “Number type” denotes
the exact rational number-type by default (see the header file
“arr rational nt.h” in CGAL for reference). Based on this kernel,
we construct “CGAL::Gps circle segment traits 2” trait class,
and the following objects “Curve 2, X monotone curve 2, Ge
neral polygon 2, Point 2” are used, which inherit the trait class
above.

Berberich. We directly use the algorithm in [3], which is
initially developed for computing boolean operations of conic
polygons. This method employs the DCEL structure to represent
the polygons. It first decomposes non-x-monotone conic curves
and then computes the arrangement of segments using the plane
sweep method; next, it uses the results of arrangement to com-
pute the overlap of two polygons in order to achieve boolean
operation. This algorithm is similar to that of CGAL, recall Sec-
tion 2. (Remark: more information about the DCEL structure
and computing the overlap of two polygons can be found in
[5].)

Naı̈ve. It is one of simpler versions of our proposed method.
This method employs our proposed data structure, it however
computes the intersections by comparing each pair of edges.
Specifically, for each edge e of P1, it checks whether e inter-
sects with the edges of P2. If so, it computes the intersec-
tions and inserts them into corresponding edges. It does in
this way, until all edges of P1 are processed. The rest of steps
are to assign the entry-exit properties and to traverse, which
are the same as the ones of our proposed method. Note that
Greiner-Hormann’s algorithm [11], that was initially developed
for boolean operations of traditional polygons, also computes
the intersections by comparing each pair of edges, and the rest
of steps also include traversing. In this regard, the Naı̈ve method
can be also looked as a generalization of Greiner-Hormann’s
method.

Standard. It is also a simpler version of our proposed method,
but it is different from the previous one. Specifically, it em-
ploys the standard plane sweep algorithm to compute the inter-
sections instead of checking each pair of edges. Note that it
does not adopt the proposed optimization strategies (e.g., ‘us-
ing related edges’, ‘avoiding false intersections’, ‘speeding up
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Polygon Coordinates

P1 (15,5),(88.5,16.5),(80.95,25.9),(69,27.5),(60,27.5),(60,35),(70,35),(72.35,43.05),(68.5,50.5),(4.5,40.5),(13.65,33.65),(25,35),(20,30),(28.5,27.5),(22.4,26.75),(18.5,22)

P2 (33.5,21),(39.5,17.15), (46.5,18.5),(46.5,25.5),(56,12.5),(70,22),(64,22),(67.9375,31.9643), (66,42.5),(36,37),(21.5,42.5),(17.4643,29.32145), (21,16)

Table 2: The coordinates of vertices are listed counter-clockwise, and the left-bottom vertex is listed at first.
Black: (1,1)(4,1)(4,3)(a)(2,4)(2,3)(a)(1,2)

Read: (2,2)(5,2)(a)(6,1)(6,3)(4,5)(a)(2,4.5)(1,4)

P1: (10,10), (40,10),(40,30),(20,40),(15,30),(15,15)

P2: (20,20),(45,20),(55,30),(50,50),(30,45)

(a) (b) (c)

Figure 8: The use cases for our experiments. The polygon with dashed
lines is P1, and another one is P2. (a) For the first set of experiments.
(b) For the fourth set of experiments. (c) A sampled example for which
all algorithms work well, even if we use floating point data type.

the lookups’, ‘speeding up the merging of decomposed arcs’),
others are the similar as the RE2L method. (Remark: the idea
of the Standard method is roughly same to that of CGAL and
Berberich, but it simply gets rid of the generality and employs
a targeted data structure.)

10.2. Experimental Settings & Datasets
10.2.1. Settings

All the algorithms are implemented in C++ language, the
versions of LEDA, CGAL and BOOST library are 6.2, 4.3, and
1.46.1, respectively. The proposed algorithm and its simpler
versions do not employ other libraries except the standard tem-
plate library (STL). The priority queue and the balanced tree
mentioned in previous sections are implemented using a heap
and a red-black tree, respectively. The experiments are con-
ducted on a computer with 2.16GHz dual core CPU and 1.86GB
of memory. By convention, we use the execution time to mea-
sure the efficiency. In our experiments, we run 100 times by
default for each algorithm and then compute the average run-
ning time.

10.2.2. Datasets
Experiment 1. We manually produce two circular-arc poly-

gons, each of them is less than 10 edges, for simplicity and for
ease of reproducing the findings. The vertex coordinates of the
two polygons (cf., Figure 8(a)) are listed in Table 1.

Experiment 2. To study the overall performance of these al-
gorithms, we adopt thousands of circular-arc polygons. Specif-
ically, given an integer n, a pair of circular-arc polygons with n
edges are generated at random7, and then each algorithm is ex-
ecuted alternately, using the pair of polygons as the input. This

7Generally speaking, we first randomly generate two rectangles such that
they are overlapping each other. Then, we randomly generate n points in each
rectangle one by one such that they satisfy two constraints: (i) the segment join-
ing the jth point and the ( j−1)th one cannot intersect with any other segment
except the segment joining the ( j− 1)th point and the ( j− 2)th one, where
j≥ 4; and (ii) the segment joining the 1st point and the nth one cannot intersect
with any other segments except its two adjacent segments. These n points will
be used as the vertices of the circular-arc polygon. Finally, we import circular-
arc segments by inserting a set of appendix points.

Method CGAL Berberich Naive Standard RE2L

Time (sec.) 0.0273 0.0287 0.00239 0.00175 0.00112

Impr. fac. 24.375 25.625 2.13 1.5625 —

Table 3: The average running time in the first set of experiments.

is done one thousand times. In each trial, the running time of
each algorithm is recorded, and accumulated to previous trials.
We compute the average value for estimating the average run-
ning time of each algorithm. Furthermore, we vary the value of
n, and obtain the running time of each algorithm using the same
method mentioned above.

Experiment 3. We use the parameter “double” to replace
the parameter “Number type” in the kernel “CGAL::Cartesian
<Number type>” (the 1st approach), and also the parameter
“Rational” in the kernel “CGAL::Cartesian <Rational>” (the
2nd approach), in order to investigate the performance when all
these algorithms use the floating point number-type. We ran-
domly generate pairwise circular-arc polygons as the test data.

Experiment 4. To answer the interesting issue mentioned
in Section 8, we use the polygons satisfying the condition l =
m+ n as the input, see Figure 8(b) (it is a sample). The vertex
coordinates of these two polygons are listed in Table 2.

Experiment 5. Inspired by the curiosity, we also investi-
gate the scalability of our proposed algorithm using polygons
with a larger number of edges. Note that in this set of exper-
iments almost all the polygons generated are self-intersection
polygons when the number of edges is equal to or larger than
100. This is because it is pretty difficult to generate polygons
without self-intersections when the number of edges is large,
using the method mentioned in Footnote 7. Specifically, in this
case we do not employ the constraint (ii), see Footnote 7.

10.3. Experimental Results

10.3.1. Results of The First Experiment
Table 3 lists the results of Experiment 1. Specifically, the

methods are listed in Row one, the average running time of each
method is listed in Row two, and the improvement factors8 of
our algorithm over the baseline methods are shown in Row 3.
From this table, we can see that the proposed method outper-
forms its simpler versions, demonstrating the effectiveness of
our proposed strategies. Interestingly, the simpler versions of
the proposed method yet outperforms the former two methods,
let alone the proposed method. To some extent this verifies our
previous claim — directly executing existing algorithms used

8Here the improvement factor refers to the ratio of time. Assume that the
exectution time of the ‘Standard’ method is 0.2 seconds, the one of the proposed
method is 0.05 seconds, for example, the improvement factor is 0.2

0.05 = 4.
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n CGAL Berberich Naive Standard RE2L

5 0.0281 0.0293 0.00234 0.0018 0.00107

10 0.0609 0.0772 0.0062 0.0041 0.00256

20 0.1282 0.1297 0.0125 0.0072 0.00369

30 0.1656 0.1741 0.0328 0.0176 0.00614

40 0.5172 0.5672 0.0391 0.0182 0.00683

50 0.61 0.681 0.0594 0.0213 0.00851

Table 4: The average running time of each algorithm, where n denotes
the number of edges of each polygon.

Method CGAL Berberich Naive Standard RE2L

Time (sec.) 0.0112 0.0127 0.00192 0.00151 0.000948

Imp. fac. 11.814 13.396 2.025 1.593 —

Table 5: The average running time when machine floating type is used
for all these methods.

to compute boolean operation of conic and/or general polygons
is usually not efficient enough.

Compared to the former two methods, although the latter
three ones adopt a different data structure, but we note that
the ‘Standard’ method also directly employs the plane sweep
method, similar to the former two ones. Viewed from the the-
oretical perspective, the former two methods should have the
performance similar to the “Standard” method. To further ver-
ify this phenomenon and explain it, we hence conduct another
set of experiments, evaluating the overall performance based on
larger datasets.

10.3.2. Larger Datasets
Table 4 lists the detailed results of Experiment 2. The re-

sults show that the proposed method outperforms other four
ones as well, and is several orders of magnitude faster than the
former two ones. By comparing the differences of these meth-
ods, we can easily see that the reason for the larger running
time of the former two methods may well be that both methods
employ the CGAL library and the DCEL structure9. Even so, it
is noteworthy that comparing the former two methods with the
latter three ones might be not very fair, as the latter three ones
use floating point arithmetic (similar to that in [11, 14–18, 20–
22, 25]), whereas the former two ones use exact algebraic arith-
metic, which is more robust.

To make a more fair comparison, a simple remedy is to let
the input data type be also machine floating point for the former
two ones. In the next paragraph, we report our findings when
all these methods use machine floating point type.

10.3.3. Floating Point Number-type
Specifically, we use double type as the input data type for

all these methods, recall Section 10.2.2. After this, we gener-

9We remark that computing the intersections of two polygons is unavoidable
for any clipping algorithm, and it is a dominant step [5, 8, 11]. Both the for-
mer two methods and the “Standard” method adopt the plane sweep method to
compute the intersections, their performance differences however are so great.
This reminds us that the gap may well be due to the usage of the CGAL library
and the DCEL structure (the former might be the major reason).

Method CGAL Berberich Naive Standard RE2L

Time (sec.) 0.07844 0.08023 0.00718 0.004652 0.002965

Imp. fac. 26.4553 27.058 2.4215 1.5689 —

Table 6: The average running time when the two polygons satisfy the
condition l = m+n.

ate randomly a pair of circular-arc polygons and then attempt
to call these methods. Unfortunately, the former two methods
fail with the message ’precondition violation’ for many inputs.
To this step, we also attempt to generate many other (pairs of)
circular-arc polygons, and to test them. As a result, in most of
cases the runtime exceptions are also reported. We also realize
that, for a few test data (i.e., circular-arc polygons generated
randomly), all these methods can work correctly10. For exam-
ple, when the vertex coordinates of two input circular-arc poly-
gons (cf., Figure 8(c)) are {(5,2), (5.125,1), (6,0.5), (6,3), (4,5),
(2.875,5.25), (2,4.5), (1,4)} and {(2,4), (2,3), (1.25,2.75), (1,2),
(1,1), (4,1), (4,3), (3.25,4)}, all these methods can work cor-
rectly. We remember these two polygons and run 100 times for
each method (using these two polygons as the input). Table 5
depicts their average running time. This table shows us that the
proposed method also outperforms its simpler versions. Again,
the simpler versions of the proposed method also outperforms
the former two methods, which is similar to our previous find-
ings (although the improvement factors decrease in terms of the
former two methods). This verifies our original claim in a more
justified manner.
10.3.4. The Case “l = m+n”

Table 6 reports the results of Experiment 4. Interestingly,
the proposed method still outperforms the ‘Standard’ method11

(note: both algorithms have the same time complexity in this
case, recall Section 8). This phenomenon reveals that (i) two
algorithms with the same time complexity might have differ-
ent performance results in terms of execution time12; (ii) here
other heuristics or optimization strategies (except the heuristic
“utilizing related edges”) also bring us the benefits; and (iii) the
performance gain of other optimization strategies is larger than
the cost consumed by the operator “choosing related edges”.
10.3.5. Scalability

Figure 9 reports the results when we vary the number of
edges (of polygons) from 5 to 500. The columns denote the
numbers of intersections and related edges respectively, whereas
the curves denote the running time. From this figure, we can
see that the RE2L has better scalability compared to its com-
petitors, as the growth speed of the running time is slower than

10The former two methods are originally designed for the exact algebraic
arithmetic, here we use the machine floating point as the input data type; this
could be the reason why most of cases cannot work correctly.

11We remark that the results are similar when the input polygons with more
edges are used, omitted for saving space.

12This argument could be another reason why the performance of
the‘Standard’ method is significantly different from the former two methods.
That is, it is possible that the CGAL library used in the former two methods
pays more attention to the robustness and stability, at the expense of the part of
the performance. The further explanation is beyond the topic of this paper.
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Figure 9: The experimental results when we use larger data sets.

(a)

camera

(b)

Figure 10: (a) A corner of the ‘Auchan supermart’. (b) An illustration
of the visual range.

that of other two ones, when the number of edges increases.
Compared to the ‘Standard’ method, the better performance of
our proposed method is ascribed to those optimization strate-
gies, and the poorer performance of the ‘Naive’ method is due
to that computing the intersections in such a way is (somewhat)
inefficient. Especially, this deficiency is more obvious when the
number of edges of polygons is large.

10.4. Case Study

In this subsection, we study our proposed algorithm based
on a specific application. We use the ‘Auchan supermarket’
located at 2092 Dongchuan Rd., Shanghai, China, as a sample.
We collect the deployment information of the shopping area on
the 2nd floor of this supermarket. Figure 10(a) exposes a corner
of this shopping area. The length and width of the shopping
area are 100 and 60 meters, respectively. Its plane layout is
depicted in Figure 11 for the sake of intuition. The heights of
different shelves or obstacles are listed in Table 7.

To connect our algorithm with the specific application, we
consider a set of nc free-rotating cameras which are to be placed
on the ceiling for monitoring the shopping area; later, we shall
employ our algorithm to check the blind angles. In the follow-
ing, we restrict our attention to checking the blind angles on the
ground, i.e., the ‘z = 0’ plane. (Remark: the blind angles for
the ‘z , 0’ plane can be achieved similarly.)

In our experiments, we adopt two types of manners to de-
ploy the nc cameras: (i) they are placed uniformly; and (ii) they
are placed randomly. For short, we denote by U and R these
two distributions, respectively. We regard the visual range of a
single camera as a circle with the center c and radius r when
there is no obstacle near to it, where the x- and y- coordinates
of c are the same as the ones of the camera but z = 0. Other-
wise, we compute its visual range by considering the effect of
obstacles. See Figure 10(b) for an illustration of computing the
visual range.

Obstacle

Height 4.50 2.85 2.15 1.8 1.65 1.2 0.5

Table 7: The height information. Notice that when the heights of several
different obstacles are almost the same, we adopt the average value for
clearness.
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Figure 11: The plane layout of the shopping area. The geometries filled
in different colors are with different heights.

Let Ba, Sa, Oa, and V i
a denote the blind angles (notice: here

we do not consider the areas occupied by obstacles), the shop-
ping area, the areas occupied by obstacles such as shelves, and
the ith camera’s visual range respectively, where i ∈ [1, · · · ,nc].
We compute Ba based on the following equation.

Ba = (Sa−Oa)−
nc⋃

i=1

V i
a

For ease of reference, Table 8 lists the parameters used in
our experiments. We use the ‘Standard’ and the ‘Naive’ meth-
ods as the baselines when we compute the blind angles, as both
of them work well for the floating point data type. Figure 12(a)
reports the performance results when we use different settings.
We can easily see that the execution time increases for all the
methods when we vary the number of cameras from 9 to 49.
This is mainly because for those ‘new’ cameras we also need to
compute their visual areas and to remove them by boolean op-
erations, and so the total number of boolean operations needed
to be executed increases, which consumes more computation
time. From these figure, we realize another interesting phe-
nomenon, i.e., the distributions of cameras make little impact
on the execution time (remark: here the distributions refer to
uniform and random, instead of others). Besides the above two
findings, we can also see that our preferred method, RE2L, al-
ways outperforms its competitors for all these settings. This
further validates the superiority of our algorithms. Moreover,
Figure 12(b) reports the time consumed by boolean operations
and the one consumed by all other operations. This shows us
that improving the efficiency of boolean operations is feasible
and also important for this type of applications.

11. Conclusions

In this paper we investigated the problem of boolean oper-
ation on circular-arc polygons. By well considering the nature
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Para. Desc. Value

nc number of cameras 9, 25, 49

r radius of the visual range 5

h height of cameras being placed 4

D distribution of cameras U, R

Table 8: The parameters used in this set of experiments.
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Figure 12: Pefromances for computing the blind angles.

of the problem, concise data structure and targeted algorithms
were proposed. The proposed method runs in time O(m+ n+
(l + k) log l), using O(m+ n+ k) space. We conducted exten-
sive experiments demonstrating the effectiveness and efficiency
of the proposed method, and showed our techniques can be
easily extended to compute boolean operation of other types
of polygons. We conclude this paper with two research top-
ics: (i) As we know, the multiprocessor and multi-GPU sys-
tems are widely used nowadays; it could be interesting to de-
sign efficient parallel algorithms for computing boolean oper-
ations of polygons. (ii) As we showed in the paper, our tech-
niques can be easily extended to compute boolean operations of
traditional polygons, and circular-ac polygons with holes and
self-intersections; it is still open whether our techniques can be
extended to compute boolean operations on conic polygons or
more general cases.
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