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A B S T R A C T

Image deraining aims to remove rain streaks from images and reduce information loss
in outdoor images caused by rain. As a fundamental task in image processing, im-
age deraining not only enhances the visibility of images but also provides necessary
image restoration for advanced vision tasks. Existing image deraining models mostly
train end-to-end models by minimizing the similarity between the output image of the
model and the rain-free ground truth. Although these methods have achieved signif-
icant results, they often perform poorly in the face of dense and changing rain streak
scenes. In this paper, we propose a novel method, called Dual-Channel Component
Decomposition Network (DCD-Net). The basic idea of DCD-Net is to leverage the
separability prior of rainy images, treats the rain-free background layer and the rain
streak mask layer as two parallel component extraction tasks. To this end, it builds a
dual-branch parallel networks that extract the rain-free background image and decouple
the reconstruction information of the rain streak mask, respectively. It finally applies
a composite multi-level contrastive supervision to the output of the above dual-branch
parallel network, thereby achieving rain streak removal. Extensive experiments on var-
ious datasets demonstrate that the proposed model outperforms existing methods in
deraining dense rain streak images.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Rainy weather photography inevitably leads to visual quality
degradation, image distortion and other issues [1, 2, 3]. This
degradation has a negative impact on advanced tasks, including
outdoor monitoring, autonomous driving, object detection, and
so on [4, 5, 6, 7, 8]. Therefore, it is important to remove rain
streaks from rainy images without losing the original image in-
formation. Usually this task is called image deraining. Many
existing methods (e.g., model-driven and/or based on the sta-
tistical characteristics of rain streaks/ background scenes) can
handle light rain well. In the case of heavy rain, they, however,
often blur the background scene. Consider the example shown

in Fig. 1, dense rain streaks interfere with the model’s judg-
ment of the background details of the rainy image, while the
model lacks the acquisition of rain streak information; thereby
rain streaks and image details are usually deleted at the same
time, obtaining poor deraining result, see e.g., Figs. 1(b∼d).

In the past few decades, many researchers have been dedi-
cated to solving the rain image restoration problem (i.e., im-
age deraining). The proposed methods can be roughly divided
into two categories. The One is based on image priors, treat-
ing the rain removal problem as a decomposition problem be-
tween the rain layer and the background layer. This line of
works include morphological component analysis [9], non-local
mean filtering [10], sparse coding [11, 12], and sparsity and low
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Fig. 1. The results of image deraining between our method and other state-of-
the-art deraining methods. The derained images obtained by our method have
higher preservation of details and textures.

rank methods [13, 14, 15]. The other involves the construc-
tion of end-to-end rain removal networks by integrating deep
neural networks. This line of methods extract background de-
tails through stronger feature analysis. In recent years, many
network architectures with excellent rain removal performance
have been proposed [16, 17, 18, 19]. However, the above-
mentioned methods face the following challenges: 1) Model
constructions based on image priors often rely on well-defined
mathematical models, which limits their generalization ability.
2) Models constructed based on deep learning gradually attempt
to achieve rain removal advantages through more complex end-
to-end models or training on larger rain image datasets. Conse-
quently, they require significant computational power and data
requirements. Moreover, due to the ill-posed nature of end-to-
end model training, image details can still be lost. Therefore, it
is of great significance to study how to effectively extract back-
ground detail features from rainy images and make full use of
image priors to reduce detail loss.

To this end, we propose a component decomposition-based
image deraining method, called the Dual-Channel Component
Decomposition Network (DCD-Net). The proposed network
adopts a multi-task modeling approach. It builds a dual-
branch parallel network, and combines Swin-Transformer [1]
and UNet [3] to construct a background component decompo-
sition network (BCDN), in order to extract the rain-free back-
ground image. Meanwhile, it combines an attention module and
UNet to construct a mask component decomposition network
(MCDN), in order to decouple the reconstruction information
of the rain streak mask (which are from the multi-scale feature
maps). Furthermore, to enable the model to fully understand
the semantic information of the rain mask (while learning the
mapping relationship from rainy images to rain-free images),
we employ a composite multi-level contrastive supervision on
the model output. Briefly speaking, we use ground truth rain-
free images to constrain the model’s extraction of background
images, and use real rain mask to constrain the model’s extrac-
tion of rain mask. These two parallel branches of the network
share kernels to enable information interaction, in which the

proposed method considers the commonality between different
components contained in rainy images as well as the character-
istics of each component.

In summary, the main contributions of this work are as fol-
lows:

• We propose a new method called Dual-Channel Compo-
nent Decomposition Network (DCD-Net) for image de-
raining.
• We conduct extensive experiments based on both real and

synthetic datasets to demonstrate the competitiveness of
our proposed model.

The rest of the paper is organized as follows. Section 2 re-
views related work. Section 3 presents the prelimianry. Section
4 covers our proposed method in details. Section 5 presents ex-
perimental settings and discusses experimental results. Finally,
Section 6 concludes this paper.

2. Related Work

Existing image deraining methods can be generally catego-
rized into two types: traditional methods and deep learning-
based methods. In what follows, we first review traditional
methods (Section 2.1), and then review deep learning-based
methods (Section 2.2).

2.1. Tranditional Methods

Most traditional methods decompose the rain removal task
into the separation of rain layer and background layer. For ex-
ample, Kang et al. [9] utilized bilateral filtering to decompose
the input image into low-frequency and high-frequency compo-
nents and then extracted the rain-free component from the high-
frequency component. Luo et al. [12] proposed sparse coding,
which could better separate rain streaks and background layers
from rainy images. Our approach also considers the rain re-
moval task as a separation problem between the rain layer and
the background layer. However, we enhance the extraction of
detailed features for the background image by combining Swin-
Transformer and CNN. This integration provides a more ro-
bust capability to capture fine-grained details in the background
layer.

Additionally, researchers in this field developed rain removal
methods based on prior knowledge of rain and background. For
example, Li et al. [20] proposed a Gaussian Mixture Model
(GMM) as a prior method to decompose the input image into
rain streaks and background layers. Zhu et al. [21] first detected
image regions dominated by rainwater and then used the de-
tected regions as a guided image. Zhang et al. [15] utilized the
low-order characteristics of rain streaks to separate rain streaks
and background layers. Our approach also inherits this merit,
i.e., utilizing the separability prior of rainy images. Besides,
our approach incorporates deep neural networks to enhance the
decomposition capability.
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2.2. Deep Learning-based Methods

Fu et al. [22] pioneered the development of a deep convo-
lutional neural network for image deraining. Gradually, deep
learning-based approaches have dominated the research in the
field. Our method basically belongs to this branch.

In recent years, researchers have proposed many advanced
networks. For instance, Li et al. [23] introduced a multi-stage
network based on a recurrent neural network architecture to
capture rain streak informatio. Zhang et al. [24] proposed a
density-aware multi-flow fusion network for rain removal. Our
method also employs deep neural networks, but it is different
from theirs. In brief, our method integrates the rain streak ex-
traction task into the rain removal task, employing parallel deep
neural networks to handle each task.

Additionally, practical priors have been incorporated into
deep learning-based methods. For example, Yang et al. [25]
used a deep recurrent network to decompose the rain layer into
different layers corresponding to different types of rain streaks
for effective removal. Liu et al. [26] introduced a dual-residual
connection network that leverages the advantages of paired op-
erations to remove rain streaks. Our method combines both the
separability prior of rainy images and deep neural networks to
enhance the rain removal capability of the model. By leverag-
ing the complementary advantages of these two components,
our approach improves the effectiveness of rain removal.

Some researchers also considered the integration of adver-
sarial learning into rain removal tasks. For example, Zhang et
al. [27] proposed a conditional generative adversarial network
(GAN) for rain streak removal and combined it with perceptual
loss for supervision optimization. Wang et al. [28] introduced
an encoder-decoder architecture with a conditional generator to
enhance rain removal performance. Our method also employs
the encoder-decoder architecture, but it builds a dual-branch
parallel network, which is not covered in this line of works.

To handle real-world rainy images, Wang [29] constructed a
real rain image dataset and designed SPANet using spatial atten-
tion mechanisms. Wei et al. [30] utilized semi-supervised train-
ing by incorporating real rainy images to represent the residual
between input rainy images and their expected rain-free results
as Gaussian mixtures. Although our method does not currently
incorporate semi-supervised training with real images, it effec-
tively learns the characteristics of rain streaks by utilizing a syn-
thetic image dataset. As a result, our approach demonstrates
robustness in rain removal, even when applied to real rainy im-
ages, as shown later experiemnts.

Leveraging the significant success of Transformers [31] in
natural language processing (NLP) and advanced visual tasks,
more researchers have attempted to integrate Transformers into
the field of image rain removal. By leveraging the advantages
of Transformers in capturing global dependencies, superior per-
formance has been achieved, compared to previous CNN-based
methods. Yi et al. [32] proposed a rain removal network based
on a Wavelet-based Multi-Level Module, incorporating a resid-
ual channel prior (RCP) guidance mechanism to preserve more
background details. Xiao et al. [33] proposed an image rain
removal network with a dual-transformer architecture based on
window-based and spatial-based Transformers, achieving ex-

cellent rain removal results. Our approach combines Swin-
Transformer and UNet to enhance the model’s advantages in
extracting both long-term and short-term dependencies as well
as fine-grained details. By integrating these two architectures,
we aim to reduce the loss of details, thereby preserving impor-
tant information in the output.

3. Preliminary

To better understand the proposed method, we first introduce
some preliminaries related to Transformer [34] and its variant
called Swin-Transformer [1].

Fig. 2. Swin-Transformer Block (×2) [1].

In brief, Transformer is a deep learning model that uses self-
attention mechanism to process sequential data, such as natural
language text or time series data. It is notable for its ability con-
textual relationships and requiring less training time compared
to older models like LSTM (Long Short Term Memory). Trans-
formers are widely used in various applications, particularly in
natural language processing, computer vision, and so on.

As mentioned earlier, Swin-Transformer [1] is a variant of
Transormer. Generally speaking, it utilizes a sliding window
mechanism to facilitate the learning of cross-window informa-
tion. It also introduces a downsampling mechanism, allowing
the model to be trained on high-resolution images, while sig-
nificantly reducing computational costs. Unlike the multi-head
self-attention (MSA) module used in Vision Transformer [31],
the Swin-Transformer block is built based on a shifted window.
The Swin-Transformer Block (×2) is illustrated in Fig. 2 and
consists of LayerNorm (LN) layer, multi-head self-attention
module, residual connections, and a 2-layer MLP with GELU
non-linearity. The window-based multi-head self-attention (W-
MSA) module and the shifted window-based multi-head self-
attention (SW-MSA) module are applied to the first and sec-
ond Swin-Transformer blocks, respectively. Based on this dual-
layer framework, the Swin-Transformer Block (×2) can be rep-
resented mathematically as follows:

f̂ l =W −MSA
(
LN

(
f l−1

))
+ f l−1 (1)
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f l = MLP
(
LN

(
f̂ l
))
+ f̂ l (2)

f̂ l+1 = SW −MSA
(
LN

(
f l
))
+ f l (3)

f l+1 = MLP
(
LN

(
f̂ l+1

))
+ f̂ l+1 (4)

where f̂ l and f l represent the outputs of the (S)W-MSA module
and MLP module of the l-th block, respectively. The calculation
of self-attention is as follows:

Attention(Q,K,V) = S o f tMax
(

QKT

√
d
+ B

)
V (5)

where Q,K,V ∈ RM×d represents the query, key, and value vec-
tor matrices; M and d represent the number of patches in the
window and the dimension of the (query/key) matrix, respec-
tively. Since the relative positions along each axis range from
[−M + 1,M − 1], one can set a bias matrix B̂ ∈ R(2M−1)×(2M−1)

and extract the value B from B̂.

4. Proposed Method

In this section, we first present an overview of our model
(Section 4.1). Then, we cover the details of our model (Sections
4.2∼ 4.4).

4.1. Architecture Overview

The dense rain streaks are a significant factor causing blur-
riness in the details of rainy images. However, individual rain
streaks are small and have a minor impact on the light, which is
reflected from objects to the camera. Therefore, when removing
rain streaks, the rain-line map I can be represented as a linear
combination of a clean background component B and a sparse
rain-streak layer R. Thus, the image degradation caused by rain
streaks can be modeled as follows [35]:

I = B + R (6)

where I is the rainy image, B is the background image, R is the
rain streak mask, which describes the distribution and motion of
rain streaks. Based on the separability prior of rainy images, we
constructed a dual-channel component decomposition network
(DCD-Net), whose overall structure is shown in Fig. 3.

DCD-Net consists of two branches. On one hand, the back-
ground component decomposition network (BCDN) constructs
an encoder-decoder structure with Swin-Transformer as a unit
to extract multi-scale feature maps from rainy images and to re-
construct rain-free background images. BCDN servers as the
backbone of our model. On the other hand, the mask compo-
nent decomposition network (MCDN) constructs an encoder-
decoder structure with attention modules as a unit to extract
the reconstruction information of rain streaks mask from multi-
scale feature maps. The significance of MCDN lies in its ability
to enhance the model’s recognition capability of rain-streak re-
gions. The interaction between these two branches is achieved
through shared kernels, which are used to provide feedback to
the BCDN, improving the model’s attention to rain-streak re-
gions and minimizing the loss of background details.

4.2. Background Component Decomposition Network

The BCDN is an encoder-decoder network that is built with
Swin-Transformer as the node. The role of the BCDN is to ex-
tract multi-scale feature maps from the input rainy images, and
to preserve the reconstruction information of the rain-free back-
ground image as possible as it can. By combining transformer
and Unet, the BCDN can fully extract long-range dependencies
and detail features of the input degraded image. The skip con-
nection is added to fuse the multi-scale features of the encoder
stage with the upsampled features of the decoder stage, and thus
it reduces the information loss of the feature maps, during the
downsampling process.

Each block in the encoder part of the BCDN consists of a
Swin-Transformer block and a patch fusion block. The Swin-
Transformer block is responsible for information extraction at
the feature level, where the resolution and feature dimension
remain unchanged. The patch fusion block is responsible for
downsampling, i.e. reducing height and width of the feature
mapping, and increasing the number of channels (2× downsam-
pling).

In addition, following the modeling idea of the transfer UNet,
we also design a decoder that is symmetrical to the encoder.
Each block of the decoder consists of a Swin-Transformer block
and a patch extension block. The patch extension block is re-
sponsible for upsampling and reducing the number of channels
(2× upsampling).

The decoder receives the multi-scale features passed through
the skip connection from the encoder. Then, it fuses the multi-
scale features with its own extracted features, and passes them
to the next layer. This way, it thus reduces the spatial informa-
tion loss caused by downsampling during the encoding process.
Finally, the decoder output feature maps are restored to a clean
background image, through an image reconstruction kernel.

4.3. Mask Component Decomposition Network

We introduce a parallel branch network for reconstruct-
ing rain streak masks, and build an encoder-decoder net-
work with attention modules as nodes (Attention Model En-
coder/Decoder), in order to fully understand the semantic infor-
mation of rain streak masks, and to avoid confusion between
rain streaks and background.

Using feature decoupling methods, heterogeneous feature
maps of rain streak masks are extracted from the multi-scale
feature maps of rainy images. The attention module is em-
ployed to extract detailed information from these heterogeneous
feature maps, aiming to restore the rain streak mask.

The encoder part of the MCDN decouples and extracts het-
erogeneous feature maps from the multi-scale feature maps
FMi(1 ≤ i ≤ 10) of the BCDN. The input of each unit is
composed of the following two parts: 1) heterogeneous fea-
ture maps MFMi(1 ≤ i ≤ 5), which is decoupled from the
multi-scale maps of the same layer unit of the BCDN; and 2)
the output feature EF j(1 ≤ j ≤ 5) of the previous unit. The
attention module extracts the features required for component
reconstruction from the combined feature matrix of the input,
using a self-attention kernel. And it down-samples the extracted
features using maximum pooling.
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Fig. 3. Overall architecture of proposed DCD-Net. DCD-Net consists of the Background Component Decomposition Network (BCDN) and the Mask Component
Decomposition Network (MCDN). The BCDN is an encoder (SE) decoder (SD) network built with Swin-Transformer as the node, which extracts multi-scale feature
maps from the input rainy image and retain the reconstruction information of the rain-free background image. The final output background component is the target
derained image. The MCDN is an encoder (AE) decoder (AD) network built with attention module as a node, which extracts unique representations of rain mask
components from multi-scale feature maps in a decoupled manner, and ultimately reconstructs the rain streak mask. In order to enhance the model’s attention to the
rain pattern area and improve the model’s ability to recognize rain streaks, we respectively impose full-supervision constraint on the output (Background Component
& Mask Component) of the parallel dual-branch network. We design a composite multi-level loss function to calculate the loss values of the two supervision tasks.
And then we add the two values with weights to train the network.

In the decoder part, each unit’s input is composed of the
following three elements: 1) the heterogeneous feature map
MFMi(6 ≤ i ≤ 10), which is decoupled from the multi-scale
mapping of the same layer unit in the BCDN; 2) The encoder
output features that are passed through the shortcut connec-
tion at the same scale (skip connection); 3) the output feature
DF j(1 ≤ j ≤ 5) of the previous unit. The attention module
parses the features of the components from the combined fea-
ture matrix, using a self-attention kernel. And it performs bilin-
ear interpolation upsampling on the parsed features. The output
EFE of the encoder in the network can be obtained using the
following formula:

MFMi = decoupling (FMi) , (1 ≤ i ≤ 10) (7)

EFE = Enc (EFE−1,MFME) , (1 ≤ E ≤ 5) (8)

Enc(·) = down(att(conv(catN(·)))) (9)

where EFE represents the output of the E-th encoder in the
MCDN. EF0 = Null represents the input of the first encoder
has no forward data, att(·) represents the self-attention kernel,
down(·) represents the maximum pooling downsampling, and
decoupling(·) represents the decoupling kernel.

The output DFD of the decoder in the network can be ob-
tained based on the following formulas:

DFD = Dec (Φ (DFD−1) , EF4−D,MFMD+5) (10)

Φ(·) = up(conv(·)) (11)

Dec(·) = att(catN(·)) (12)

where DFD (1 ≤ D ≤ 5) represents the output of the D-th de-
coder of the MCDN, and DF0 = EF5 denotes that the forward
data of the first decoder is the output of the last encoder. EF4−D
represents the output of the encoder passed through the short-
cut. When D ≥ 4, EF4−D = Null, which means that only
the first three decoders have skip connection. Φ(·) represents
dimension adjustment operation, and up(·) represents bilinear
interpolation upsampling.

4.4. Loss Function

During network training, we set two supervision tasks and
calculate the loss values for each supervision task via a com-
posite multi-level loss function. The two supervision tasks
are: 1) supervising the predicted background image (Bpre)
with the ground truth image (Btrue); 2) supervising the pre-
dicted rain streak mask (Rpre) with the true rain streak mask
(Rtrue = I − Btrue).

The supervision task for rain streak masks will assist the
model in better learning the semantic information of rain streaks
during training, and thereby it can improve the model’s ability
to recognize rain streaks.

The composite multi-level loss function includes pixel-level
smooth L1 loss and image-level structural similarity loss. The
pixel-level smooth L1 loss provides fine-grained supervision
for image restoration from a micro-feature perspective. The
image-level structural similarity loss controls the model from
a macro-image perspective to avoid mistakenly removing the
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background area of the original image. The definition of pixel-
level smooth L1 loss is as follows:

Lα−S moothL1 =


0.5Eα2 i f |Eα| < 1

|Eα| − 0.5 otherwise,
(13)

where Eα = αtrue − αpre, α = B or R. The loss of structural
similarity is obtained based on the SSIM values of each group
of compared images. The goal is to improve the structural sim-
ilarity between predicted and real images. It can be defined as
follows:

Lα−S S IM = 1 − S S IM
(
αtrue, αpre

)
, (α = B,R) (14)

where S S IM (·) is the function used to calculate structural sim-
ilarity. The total loss of each supervision task can be defined as
follows:

Lα−total = Lα−S moothL1 +Lα−S S IM , (α = B,R) (15)

The total loss of the model can be summarized as follows:

Ltotal = λ1LB−total + λ2LR−total (16)

where λ1 and λ2 are hyperparameters. They can control the con-
tribution of the loss value (of each supervision task) to the total
loss. λ1 represents the relative importance for the supervised
task of predicting the background image, while λ2 represents
the relative importance for the supervised task of predicting the
rain streak mask.

In our model, the overall loss of the model considers the ex-
traction of background components as the main objective, and
the restoration of rain streak components as the secondary ob-
jective. In later experiments, we set λ1 and λ2 to 1 and 0.2,
respectively.

5. Experiments

In this section, we first introduce experimental settings such
as the datasets, training details, and evaluation metrics (Sections
5.1∼5.2). Then, we cover the experimental results (Section 5.3).
Finally, we conduct ablation study to verify the effectiveness of
various parts of the proposed method (Section 5.4).

5.1. Datasets and Evaluation Metrics
Datasets: We evaluate the performance of our method on

both real and synthetic datasets. Three widely used synthetic
datasets are employed: Rain200L [39], Rain200H [39], and
DID-Data [24]. Among them, Rain200L is a small synthetic
rain dataset, Rain200H is a large synthetic rain dataset, both of
which contain 1800 training image pairs and 200 testing image
pairs. DID-Data consists of synthetic rain images with different
rain directions and density levels, including 12000 training im-
age pairs and 1200 testing image pairs. We conduct ablation ex-
periments on the Rain200L dataset to verify the effectiveness of
the DCD-Net structure. In addition, the large-scale real-world
dataset SPA-Data [29] is employed, in order to further evaluate
the robustness of DCD-Net. The rainy images in SPA-Data are
extracted from real rainy videos, consisting of 638,492 image
pairs for training and 1,000 image pairs for testing.

Evaluation Metrics: We use two widely used evaluation
metrics, Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM), for image deraining algorithms. PSNR is
based on the pixel error between two images and is inversely
proportional to the error. PSNR has a range of (0, +∞). A
higher PSNR value indicates a higher overall similarity between
the two images, meaning that the derained result image is closer
to the ground truth rain-free image. On the other hand, SSIM
measures the similarity of content and textures between two im-
ages, and the SSIM value is ranging from 0 to 1. A higher
SSIM value also indicates a better deraining effect. By using
these two metrics, we can quantitatively compare the deraining
performance of the algorithms.

5.2. Training Details

We used the Pytorch framework to build the network and
conducted experiments on the NVIDIA RTX 8000 GPU. We
used the Adam optimizer [40] with a learning rate initialized
to 0.0001, which was automatically adjusted to 0.2 times the
original value every 40 epochs. The batch size was set to 8,
and the number of training epochs was determined based on the
dataset size: 300 epochs were trained on both the Rain200L and
Rain200H datasets, while 100 epochs were trained on the DID-
Date dataset. During training, we randomly cropped the input
image into patches of size 256×256 for rain removal. In each
epoch, we extracted 20% of the training data as the validation
set.

5.3. Comparisons with the State-of-the-Arts

We compared our method with several state-of-the-art de-
raining methods on the test dataset. The comparison was di-
vided into numerical evaluation and visual evaluation. Details
are presented as follows.

5.3.1. Synthetic Datasets
We compared DCD-Net with six advanced methods, PReNet

[19], MPRNet [36], DualGCN [37], SPDNet [32], Restormer
[38], and IDT [33], on three synthetic datasets.

Table 1 reports the quantitative evaluation results of each
method on different datasets, with the best performance shown
in bold and the second best performance shown underlined.
From Table 1 , it can be observed that our method outper-
forms other rain removal methods and exhibits the best rain re-
moval performance. For example, on the Rain200L/Rain200H
datasets, DCD-Net improves by 0.28dB/1.03dB in PSNR com-
pared to the second-best method. On the DID-Data dataset,
DCD-Net improves by 3.07dB and 0.0058 in the PSNR
and SSIM metrics, respectively, compared to the second-best
method.

Fig. 4 presents visual comparisons between our method and
these advanced methods. From this figure, it can be observed
that models purely based on CNN, such as PReNet and MPR-
Net, tend to confuse rain streaks with the background in heavy
rain scenes, resulting in the inability to restore clear images. On
the other hand, rain removal methods based on Transformers are
limited by their ability to extract detailed features, which leads
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Table 1. Quantitative results on synthetic datasets. Bold and underline represent the best and second-best results.

Methods Publication Rain200L Rain200H DID-Data Overall
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PReNet [19] CVPR-19 37.71 0.9798 29.02 0.8985 33.17 0.9480 33.30 0.9421

MPRNet [36] CVPR-21 39.37 0.9810 30.65 0.9107 33.99 0.9591 34.67 0.9503

DualGCN [37] AAAI-21 40.63 0.9875 31.15 0.9125 34.38 0.9621 35.39 0.9540

SPDNet [32] ICCV-21 40.35 0.9866 31.28 0.9189 34.57 0.9558 35.40 0.9538

Restormer [38] CVPR-22 40.87 0.9880 32.02 0.9215 35.29 0.9641 36.06 0.9579

IDT [33] TPAMI-22 40.65 0.9873 32.11 0.9226 34.85 0.9622 35.87 0.9574

DCD-Net(ours) — 41.19 0.9875 33.14 0.9221 38.36 0.9699 37.56 0.9598

Table 2. Quantitative results in terms of parameter sizes and time expense.

Methods PReNet [19] MPRNet [36] DualGCN [37] SPDNet [32] Restormer [38] IDT [33] DCD-Net(ours)

Params 0.17M 20.10M 2.73M 3.04M 25.31M 18.30 11.51M

Time 1.8ms 217.3ms 29.5ms 32.9ms 273.6ms 197.8ms 124.4ms

Fig. 4. Visual quality comparison with other state-of-the-art methods on the Rain200L/H and DID-Date datasets. Zooming in the figures offers a better view at the
deraining performance.

to drawbacks in image details and texture restoration. DCD-
Net, which combines the advantages of Swin-Transformer and
UNet in extracting long-range dependencies and detailed fea-
tures, can generate high-quality rain-free background images
that are closer to ground truth. These results further demon-
strate the effectivess of our proposed method.

Besides, Table 2 displays the parameter sizes of each model

as well as the average time expenditure for processing a single
image in the Rain200L dataset. From this table, we can see
that the time cost of our method is moderate, compared with all
these competitors. In addition, comparing with large-scale deep
learning models such as MPRNet, Restormer, and IDT, it is ev-
ident that our approach has advantages in terms of parameter
size and time cost. Although it may not have an advantage over
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Fig. 5. Visual quality comparison with other state-of-the-art methods on the SPA-Data datasets. Zooming in the figures offers a better view at the deraining
performance.

models like PReNet, DualGCN, and SPDNet in these aspects,
our method exhibits better rain removal performance and can
achieve clearer rain-free images with tolerable resource con-
sumption (recall Fig. 4).

5.3.2. Real-world Datasets
In this subsection, we compare our method against state-of-

the-art methods based on real datasets called SPA-Data [29].
The rainy images in SPA-Data are extracted from real rainy
videos. The visual quality comparisons are shown in Fig. 5.
From this figure, we can see that our method not only removes
the majority of rain streaks but also minimizes the residual rain
streak contours. Also, it reduces false judgments and removes
artifacts caused by rain streaks (which cover the background de-
tails). All in one, this set of results demonstrate that our method
can also obtain competitive results in real rain images.

5.4. Ablation Studies

To verify the effectiveness of each component in the DCD-
Net network structure, we conducted ablation studies based on
the Rain200L dataset.

5.4.1. Effectiveness of Parallel Dual-branch Structure
As mentioned earlier, the parallel dual-branch structure is

used to enhance the model’s ability in distinguishing rain streak
masks and background textures. To verify the effectiveness of
the mask component decomposition network (MCDN) in the
parallel dual-branch structure, we compared its rain removal
performance with the model under the single-branch structure.
Here the former refers to our proposed model DCD-Net, while
the later refers to the model that uses the single branch structure,
denoted as DCD-Net∗, for ease of presentation.

The quantitative comparison results on the Rain200L dataset
are shown in Table 3. From the comparison results, we can
see that, although the model with the dual-branch structure has
more parameters than the model with the single-branch struc-
ture, it has better rain removal performance and stronger ro-
bustness when facing different types of rainy images.

Table 3. Comparative experimental results of branch structures.

Structures Params PSNR SSIM

DCD-Net∗ 5.06M 40.25 0.9857
DCD-Net 11.51M 41.19 0.9875

5.4.2. Effectiveness of Loss Function
To investigate the impact of the proposed composite multi-

level loss function on the model’s rain removal performance,
we conducted experiments on two separate supervised tasks and
the composite loss function. The same parallel dual-branch net-
work structure was used for all experiments, and model perfor-
mance was evaluated based on two metrics, PSNR and SSIM.
Table 4 shows the performance obtained by training the net-
work with different loss functions, which were set using a con-
trolled variable method. The experimental abbreviations are as
follows:

• DBS single-Loss: Supervised constraint only on the back-
ground image extracted by the dual-branch network.
• DBS multi-Loss: The dual-supervision task set in this pa-

per refers to the full-supervision constraint applied sepa-
rately to the background image and rain mask components
extracted by the dual-branch network.

By analyzing the results, it can be concluded that the dual-
supervision task proposed in this paper helps improve the
model’s rain removal performance. The full supervision con-
straint on the rain mask can propagate semantic information
about the rain to the model. This improves its ability to rec-
ognize rain, and helps the background separation network to
focus on rain areas for removal, thereby reducing misremoval
of background texture. In terms of performance metrics, the
dual-supervision task improved the PSNR and SSIM values
by 0.73dB and 0.0026, respectively, compared to the single-
supervision task. The composite multi-level loss function also
greatly improves the model’s rain removal performance, since
it achieves the best SSIM value when this loss function is used.
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Furthermore, when using LS moothL1 and LS S IM as the loss func-
tions for the dual-supervision task, the model not only achieves
a better SSIM value but also increases the PSNR by 0.0036dB.
Since LS S IM calculates the loss value of the content structure
from the image level, while the smooth L1 loss calculates the
loss value of texture details from the pixel level, they form
a complementary joint supervision effect, providing more tar-
geted supervision for model training.

Table 4. Comparative experimental results of loss functions.

loss-functions LS moothL1 LS S IM PSNR SSIM

DBS single-Loss
✓ — 40.40 0.9841
— ✓ 40.25 0.9841
✓ ✓ 40.46 0.9849

DBS multi-Loss
✓ — 32.21 0.9021
— ✓ 40.22 0.9839
✓ ✓ 41.19 0.9875

5.4.3. Effectiveness of Attention Module
In order to evaluate the impact of the attention module used

in MCDN, we compared the rain removal performance of the
model with and without the attention modules. For ease of dis-
cussion, we use DCD-Net Na to denote that the model con-
structed using Non-attention modules as building blocks. Table
5 presents the quantitative comparison results on the Rain200L
dataset. From the table, it can be observed that the attention
module plays a crucial role in enhancing the rain removal per-
formance.

Table 5. Experimental results of with/without attention modules.

Models PSNR SSIM

DCD-Net Na 37.41 0.9675
DCD-Net 41.19 0.9875

6. Concluding Remarks

In this paper, we proposed an effective single-image rain re-
moval method, based on component decomposition. A dual-
channel decomposition network (DCD-Net) is built accord-
ing to the separability prior of rainy images, which extracts
the background image and rain mask from the rainy image
through a parallel dual-branch network architecture. To fully
extract the underlying background image from the rainy im-
age, a U-shaped background component decomposition net-
work (BCDN) is constructed, using the Swin-Transformer as
the basic unit. The rainy image is projected into a multi-scale
feature space to reconstruct a clean background image, and then
a U-shaped mask component decomposition network (MCDN),
using attention modules as the basic unit, is built to decouple
the reconstruction features of the rain mask from the multi-
scale feature maps. The information interaction between the
two branches is achieved through shared kernels. In addition,

to improve the model’s recognition ability for rain mask, we
introduced dual-contrast supervision to the output of the dual-
branch network, and added a supervision task specifically for
rain mask to assist the model in better recognizing and remov-
ing rain. Qualitative and quantitative experiments demonstrate
that the proposed method achieves good results on benchmark
datasets and real images, compared to state-of-the-art methods.

Limitations. Our approach aims to minimize the loss of de-
tails in the image deraining process and thereby to improve the
performance of image deraining. The inclusion of the mask
component decomposition network increases the number of
model parameters. Specifically, our model has about 11.51 mil-
lion parameters, which inevitably requires high computational
power when deployed in real applications. Additionally, the
model is trained on a synthetic rainy weather dataset, and its
effectiveness in handling more complex real rainy scenarios is
uncertain. In the future, we would like to optimize our model
and explore the feasibility of incorporating real rainy images for
semi-supervised training.
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