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Abstract. The temporal data is ubiquitous, and massive amount of
temporal data is generated nowadays. Management of big temporal data
is important yet challenging. Processing big temporal data using a dis-
tributed system is a desired choice. However, existing distributed sys-
tems/methods either cannot support native queries, or are disk-based
solutions, which could not well satisfy the requirements of high through-
put and low latency. To alleviate this issue, this paper proposes an In-
memory based Two-level Index Solution in Spark (ITISS) for processing
big temporal data. The framework of our system is easy to understand
and implement, but without loss of efficiency. We conduct extensive ex-
periments to verify the performance of our solution. Experimental results
based on both real and synthetic dataset consistently demonstrate that
our solution is efficient and competitive.
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1 Introduction

Temporal data management has been studied tens of years and has gained in-
creasingly interest in recent years [17, 26], due to its widely applications. For ex-
ample, users may wish to investigate the demographic information of an adminis-
trative region (e.g., California) at a specific time (e.g, five years ago). Querying
a historical version of the database (like above) is usually referred to as time

travel [11, 5, 28]. As another example, in the quality assurance department users
may wish to analyze how many orders are delayed as a function of time, thereby
querying all historical versions of the database over a certain time period. Queries
like mentioned above is usually called temporal aggregation [10, 20, 19].



In the existing literature, there are already a large bulk of papers addressing
the problems of time travel and temporal aggregate queries (see e.g., [11, 5, 28,
20, 11, 21, 25]). Yet, most of prior works focused on developing single-machine-
based solutions, and few attention has been made on developing distributed
solutions for handling big temporal data. Nowadays, various apps, e.g., web apps
and also Internet of things (IOT) apps, generate massive amount of temporal
data. It is urgent need to efficiently process big temporal data. In particular,
it is challenging to handle such a large volume of temporal data in traditional
database systems. Clearly, processing such a large volume of temporal data using
a distributed system should be a good choice. Recently, distributed temporal
analytics for big data have been also investigated (e.g., [39, 9]). These works
share at least two common features: (i) they are distributed disk-based temporal
analytics; and (ii) time travel and temporal aggregate queries are not covered in
their papers. With the surging data size, these solutions could not well meet the
demand of high throughput and low latency.

Spark SQL [37] is such an engine, which extends Spark (a fast distributed
in-memory computing engine) to enable us to query the data inside Spark pro-
grams. To support distributed in-memory analytics for big temporal data with
high throughput and low latency, this paper proposes an In-memory based Two-
level Index Solution in Spark (ITISS). To the best of our knowledge, none of
existing big data systems (e.g., Apache Hadoop, Apache Spark) provides native
support for temporal data queries, and none of prior works develops distributed
in-memory based solution for processing time travel and temporal aggregation
over big temporal data. To summarize, the main contributions of our work are
as follows:

– We propose a distributed in-memory analytics framework for big temporal
data. Our framework is easy to understand and implement, but without loss
of efficiency.

– We present targeted algorithms for answering time travel and temporal ag-
gregation queries, by fully utilizing the proposed framework that adopts a
two-level index structure.

– We implement our framework in Apache Spark, and extend the Apache
Spark SQL to support declarative SQL query interface that enables users
to perform the complex tasks with a few lines of SQL statements.

– We conduct a comprehensive experimental evaluation for our proposed solu-
tion, using both real and synthetic temporal data. The experimental results
consistently demonstrate the efficiency and competitiveness of our proposal.

The rest of this paper is organized as the following. Section 2 formulates
our problem. Section 3 presents the framework for big temporal data, including
a distributed indexing structure, the query procedures, and the implementa-
tion details based on Apache Spark. We present the experimental evaluation in
Section 4. Section 5 reviews prior works most related to ours, and Section 6
concludes this paper.



Table 1. Frequently Used Notations

Notation Description

D a temporal dataset

ti the i-th temporal record of D

Ip a partition interval

v snapshot version number of temporal database

Qe time travel exact match query

Qr time travel range match query

Qa temporal aggregation operation

g a temporal aggregation function, e.g. SUM, MAX etc.

2 Problem Definition

Specifically, this paper attempts to achieve two representative operations (i.e.,
time travel and temporal aggregation) over temporal data in distributed environ-
ments. Nevertheless, our framework and algorithms described later can be easily
extended to support other operations (e.g., temporal join) and other data (e.g.,
bitemporal data [7]). In what follows, we formally define our problems. (For ease
of reference, Table 1 lists the frequently used notations.)

Given a temporal dataset D containing |D| temporal records {t1, t2, ..., t|D|}.
Each record ti (i ∈ [1, |D|]) is a quadruple in the form of (key, value, start, end),
where key corresponds to the id of the record, start and end are the starting
and ending timestamps of a time interval in which the record is alive. Further,
given a version (or timestamp) v and a record ti, we say that record ti exists in
version v (i.e., record ti is alive in version v), if and only if v ∈ [ti.start, ti.end).

Time travel establishes a consistent view for the history of a database, and it
is one of the most significant temporal operations in temporal databases. Here
we address two widely used time travel operations, i.e., time travel exact match
and time travel range match. Both of operations can support querying the past
version of a database. Their major difference is that the input of exact-match
query uses a specific value, while the input of range query uses a given range [5].
Specifically, their formal definitions are formulated below.

Definition 1 (Time travel exact-match query). Given a time travel exact
query Qe = {key, v}, we are asked to retrieve the record (denoted as θ) from D
such that,

θ = {ti ∈ D | ti.key = key ∧ ti.start ≤ v ∧ v < ti.end}.

As an example, consider a simple temporal database with 7 temporal records
as shown in Fig. 1. When Qe = {21, v1}, the query return t3; in contrast, when
Qe = {21, v2}, the query returns ∅.

Definition 2 (Time travel range query). Given a time travel range query
Qr = {start key, end key, v}, we are asked to retrieve a set θ of records from D
such that,

θ = {ti ∈ D | start key ≤ ti.key ∧ ti.key ≤ end key ∧ ti.start ≤ v ∧ v < ti.end}.
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Fig. 1. Temporal Aggregation

As an example (see also Fig. 1), when Qr = {7, 22, v1}, the query returns
{t2, t3}; in contrast, when Qr = {7, 22, v2}, the query returns {t2, t5, t7}.

Temporal aggregation is a common operation in temporal database, and usu-
ally is challenging and expensive. Since temporal aggregation was introduced
by [21], it has been heavily studied. In this paper we focus on aggregation (e.g.,
MAX, SUM) conducted at a specific timestamp. Formally, the temporal aggregation
operation is defined as follows.

Definition 3 (Temporal aggregation query). Given a temporal aggregation
query Qa = {g, v} where g is an aggregation function such as MAX, we are asked
to return an aggregate value (denoted as θ) based on D such that,

θ = g{ti ∈ D | ti.start ≤ v ∧ v < ti.end}.

Consider also the example shown in Fig. 1. When Qa = {MAX, v1}, the
query returns 21 (since max{9, 21, 5} = 21); in contrast, when Qa = {SUM, v1},
the query returns 32 (since 4+9+8+11=32).

Note that, compared with prior works, in this paper our focus is on big tem-
poral data in distributed environments. As discussed in Section 1, a straight-
forward implementation based on existing distributed systems is inefficient and
ineffective; in the next section we present our solution in detail.

3 Our Solution

In this section, we first describe the distributed processing framework. Then,
we show how to achieve time travel and temporal aggregation queries based the
proposed framework. Finally, we discuss the implementation details of deploying
the framework onto the classic distributed computing engine — Apache Spark.

3.1 System Framework

At a high level, our framework consists of three parts: (i) Partition unit. It
is responsible for partitioning all data into distributed (slave) nodes. Usually,
we should guarantee each node having roughly same size of data, in order to
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Fig. 2. The architecture of our system framework.

keep the load balance. (ii) Local index unit. Within each partition, the local
indexes are maintained to avoid a “full” scanning, and so may help us boost the
query efficiency. In addition, each partition also maintains the partition intervals
(explained later) for the global index construction. And (iii) global index unit.
In the master node a global index is designed to prune “unpromising” partitions
in advance. This can avoid checking each (individual) partition, and thus may
help us reduce the CPU cost and/or network transmission cost. In our design,
the master node collects all partition intervals from each partition in slave nodes,
and then builds the global index based on the collected partition intervals. The
architecture of our framework is shown in Fig. 2. It is easy to understand that
our framework adopts a two-level indexing structure, which can avoid visiting
irrelevant candidates (e.g., partitions and local records) as much as possible.
Although the rational behind the framework is simple, it is definitely efficiency
as demonstrated later. In what follows, we discuss important issues in each unit.
I Partition method. Typically, load balance is a desired goal when partitioning
the general data. As to the temporal data, another desired goal is to minimum the
overlap of partition intervals. To achieve these goals, in our design we partition
the data by interval (known as range partition). As an example, assume one
wants to partition six temporal records, shown in Fig. 3(a), into two partitions P1

and P2. He/she can first sort these temporal records by their intervals, obtaining
a sorted records (t3, t2, t6, t4, t5, t1). To balance the size of each partition, he/she

v4

t1t2
t3 t4

t5t6
P1 P2

v4'

t1t2
t3 t4

t5t6
P1' P2'

v1 v2 v3 v1' v2' v3'
(a) Range partition method

v4

t1t2
t3 t4

t5t6
P1 P2

v4'

t1t2
t3 t4

t5t6
P1' P2'

v1 v2 v3 v1' v2' v3'
(b) Hash partition method

Fig. 3. Different partition methods
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Fig. 4. Local index structure

can evenly split the sorted records into two. As a result, P1 contains first three
records (t3, t2, t6), and correspondingly P2 contains (t4, t5, t1). This way, the
partition interval of P1 is [v1, v3), and that of P2 is [v2, v4). In particular, the
interval overlap of P1 and P2 is v3 − v2, which is the minimum overlap.

Note that, although using hash to partition the data is widely used for other
data domain such as streaming data (since the data can be evenly allocated
via this manner), it could be not appropriate for the context of our concern.
The major reason is that partitioning in such a way could cause many overlaps
(among partition intervals). For example, consider the temporal data shown in
Fig. 3(b). After finishing hash partition, P ′

1 contains (t3, t4, t6) and P ′
2 consists

of (t1, t2, t5). One can easily see that the interval overlap of P ′
1 and P ′

2 is v′3−v′2,
which is much larger than that of P1 and P2.
I Local index method. As mentioned earlier, the local index is used to manage
the temporal data in each partition. In existing literature, there are already on-
shelf index structures to support time travel queries such as multiversion B-tree
[5] and time-index [11]. In our paper, we use multiversion B-tree (shorted as
MVB-Tree) as a sample. For ease of understanding, Fig 4(a) shows an example
of this index structure. The first entry of the root points to its leaf child A,
which contains all the records that are alive from version 1 to 9 (excluded). In
the leaf nodes, each entry represents a record, where ∗ means that this record is
still alive now.

Also, there are already existing index structures (e.g., [35, 29]) to support
temporal aggregation queries. Here we use the index (named SB-Tree) developed
in [35] as a sample. The SB-Tree node is composed of two arrays, as illustrated
in Fig 4(b). One of arrays stores the intervals, this array is used for pointing
to the children nodes, and another stores the aggregate values. To calculate an
aggregation using the SB-Tree, one can search the tree from the root to the leaf,
and aggregate the values in its path.

Note that, in this paper, we mainly focus on how to leverage existing indexes
to support distributed in-memory analytics (particularly, time travel and tem-
poral aggregate queries) for big temporal data, and hence we care more about
the design principle of the system, rather than addressing the limitations of ex-
isting index structures. In addition, although this paper adopts the MVB-tree
and SB-tree, it is not compulsory to use these indexes. In other words, other
on-shelf indexes, or more powerful indexes developed in the future can be also
used in our framework.



Algorithm 1: ExactMatchQuery (key, v)

1 R← ∅
2 P ← GlobalPruning(v, rg)
3 foreach p in P do
4 root← rl
5 while root is not leaf do
6 root← child of root whose route directs to key and v
7 end while
8 if key exists in root then
9 add record containing key to R

10 end if

11 end foreach
12 return R

I Global index method. As discussed previously, the global index manages the
partition intervals. Since each partition interval is a pair of version numbers,
and is comparable by start value and length of the interval, naturally we can use
the binary search tree to maintain partitions’ interval information. Note that,
for each partition in slave nodes, there are many time intervals. Nevertheless,
we only use one partition interval for a partition. To understand, consider a
simple example with three time intervals {[u1, u2], [u3, u4], [u5, u6]} in a partition.
Then, the partition interval is [min{u1, u3, u5},max{u2, u4, u6}]. This way, each
partition interval in the global index essentially corresponds to a partition in
slave nodes. This implies that, in the query processing, if a partition interval can
be pruned, then the corresponding partition can be pruned safely. Based on this
intuition, in our design each node in the global tree maintains a key-value pair
< Ip, pid >, where Ip and pid refer to the partition interval and its corresponding
partition, respectively.

3.2 Query Processing

The query evaluation in our framework consists of two phases: (i) global pruning,
and (ii) local look-up.

The first phase essentially is to fully utilize the global index and the version
v (in the query input) to prune “unrelated” partitions. To understand, consider
an example shown in Fig. 4(c). Assume one wants to prune partitions that
does not belong to version 60, he/she can traverse the global index to examine
the partition interval. As a result, only two partitions (id=3 and id=4) can be
regarded as the candidates. In contrast, the second phase mainly retrieves, in
each candidate partition, the “qualified” records, based on the local indexes and
part of query inputs. As an example, consider Fig. 4(a) and assume a time travel
exact-match query Qe = {key = 8, v = 6}; the local look-up first finds the entry
that belongs to version 6 at the root node. Then, it checks the child A, in which
we can find an entry with key = 8, and its valid time interval is [1, ∗) containing



6. This completes the local look-up. In what follows, we cover detailed query
algorithms for time travel and temporal aggregation queries.

I Time travel queries. We first discuss the time travel exact query, followed by
the time travel range query. Algorithm 1 shows the pseudo-codes of the time
travel exact query. Note that, Line 2 is used to perform global pruning, detailed
in Algorithm 2. After finishing the global pruning at the master node, we obtain
the ids of candidate partitions, which are stored in P . Then, the local look-up
(Lines 2-15) retrieve the results in each partition; here local look-ups for all these
candidate partitions are distributed to the cluster and executed in parallel. Note
that, the algorithm for time travel range query is similar to Algorithm 1. The
difference is that, we do not need to find the entry for the given key (Line 8).
Instead, we maintain an array for entries that can direct to [start key, end key],
and then examine each block referenced by entry in entries. More details are
shown in Algorithm 3.

I Temporal aggregation queries. When processing the temporal aggregation
queries, the global pruning process is same to that for the time travel queries.
Yet, the local look-up phase works in a different way. In brief, in each candidate
partition, it first finds the child of the root so that the interval contains version
v. If child is a leaf node, we just return aggregate value (denoted as r) in it.
If not, we recursively find the aggregate value (denoted as s) of v in child, and
return aggregate value r and s. The pseudo-codes are shown in Algorithm 4.

3.3 Implementation on Apache Spark

In Apache Spark the resilient distributed dataset (RDD) is fault-tolerant and
can be stored in memory to support fast data reusing without accessing disk. In
this section, we elaborate how to implement our framework in Apache Spark.

To support partition method suggested in Section 3.1, we extend Spark’s
RangePartitioner. Note that, Spark’s RangePartitioner is developed for the
general purpose data partition, it cannot effectively support partition via range.
To achieve this function, we implement the comparision procedure for interval
data format, and integrate it to Spark RangePartitioner.

Algorithm 2: GlobalPruning (v, root)

1 R← ∅
2 if root 6= null then
3 if v ∈ root.Ip then
4 add root.id to R
5 end if
6 GlobalPruning(v, root.left)
7 GlobalPruning(v, root.right)

8 end if
9 return R



Algorithm 3: RangeQuery (start key, end key, v, root, out parR)

1 P ← GlobalPruning(v, rg)
2 foreach p in P do
3 if root is not leaf then
4 startc← child of root whose route directs to start key and v
5 endc← child of root whose route directs to end key and v
6 children← all children between startc and endc
7 foreach node in children do
8 RangeQuery(start key, end key, v, node,R)
9 end foreach

10 else if key exists in root then
11 add record containing key to R
12 end if

13 end foreach

As to the implementation of global index in Spark, it is straightforward. We
first collect all the partition intervals distributed in the slaves, and then we build
a binary search tree as the global index in the master node. The implementation
of local indexes in Spark is basically different from the above. One can easily
know that RDD is the basic abstraction in Spark, and it represents a partitioned
collection of elements that can be operated in parallel. Meanwhile, a partition
wraps its dataset records according to its partitioner. Particularly, we observe
that RDD is designed for sequential access. This incurs that one cannot build
indexes over RDDs directly. To deploy the local indexes over RRDs, we use a
method suggested in [34]. In brief, we first wrap all the records in a partition into
an array with the temporal data format, and construct the local index structure
using this array; Afterwards, the local array can be released, and we persist the
local in memory to support subsequent queries.

In addition, it would be nice to enable users to write concise SQL statements
to support analytics for big temporal data. Yet, in Apache Spark there is the
corresponding SQL operations/commands. To this end, we develop new Spark

Algorithm 4: TemporalAggregation (g, v, root)

1 P ← GlobalPruning(v, rg)
2 foreach p in P do
3 child← child of root which satisfies v ∈ child.interval
4 if child is leaf then
5 return child.value
6 else
7 return g(child.value, TemporalAggregation(g, v, child)
8 end if

9 end foreach



SQL operations/commands to support temporal data analytics. Several major
changes are as follows.

• We design a new keyword “VERSION” to support temporal operations
with SQL statements. This new keyword can help us reinterpret the AS of sub-
clause in SQL Server, endowing it with the new meaning by modifying the SQL
plan in the Spark SQL query engine. Specifically, FOR VERSION AS OF
version number means specifying a version number, where VERSION is just
the newly introduced keyword. For instance, users can use the following SQL
statements to execute a time travel exact query mentioned in Section 2.

SELECT * FROM D WHERE key = ‘9’

FOR VERSION AS OF v2.

• In order to manage indexes for temporal data, we also develop index man-
agement SQL commands. Users can specify the index structure by using USE
index type, where index type is the keyword for a specific index name (e.g., MVB-
TREE, SBTREE). For example, to create a SB-tree index called “sbt” for table
D, one can use the following SQL commands:

CREATE INDEX sbt ON D USE SBTREE.

4 Experiments

In this section we first present the experimental settings (Section 4.1), and then
cover and analyze the experimental results (Section 4.2).

4.1 Experiment Setup

In our experiments, we use both real and synthetic datasets described as follows.
The real dataset SX-ST is extracted from a temporal network on the website
Stack Overflow [24]. The network has 2.6 million nodes representing users, and
63 million edges in form of (u, v, t), where u and v are the ids of source user and
of target user respectively, and t is the interaction time between these two users.
Specifically, we extract users who interacted with others more than once. And
we treat each of these users as a record, in which two consecutive interaction
timestamps of the user are regarded as the interval of the record, and the value of
the record is the total number of interactions related to the users. This gives us
about 0.4 million records. Following the schema of SX-ST, we also generate the
synthetic dataset, shorted as SYN. Specifically, in SYN the starting timestamp
of a record is generated randomly, and the length of the interval is uniformly
distributed between the minimum and maximum length of that in SX-ST. The
size of SYN ranges from 1 million to 4 billion records (i.e., [106, 4 × 109], the
default value is 5× 108).

To measure the performance of our system, we adopt two widely-used evalu-
ation metrics: (i) runtime (i.e., query latency) and (ii) throughput. To obtain the
runtime, we repeatedly perform 10 queries for each test case, and calculate the
average value. On the other hand, the throughput is evaluated as the number of



queries performed per minute. Additionally, we also examine the performance of
indexes used in our system.

We compared our system with two baselines: (i) a Naive In-memory based
Solution on Spark (NISS). It partitions all temporal records randomly using
the default method in Spark, and stores the data in memory of the distributed
system. These partitions are collected and managed via RDD, which allows us
to manipulate the data in parallel. To achieve temporal queries, NISS uses pred-
icates (e.g., WHERE predicate) provided by Spark SQL, to launch a scanning
on the data. By checking each record according the condition presented in the
query input, NISS can obtain the query result. For example, when an aggrega-
tion query with MAX function is detected, NISS checks each partition in parallel.
For each partition, it scans the whole partition and determines the max value
among records, which are alive in version v, in this partition. Finally, it col-
lects all “local” max values from partitions and finds the “global” max value.
And (ii) a distributed disk-based solution named OcRT, which is extended from
OceanRT [39]. Note that, OceanRT employs a hashing of temporal data blocks
according to the temporal attributes of records; this behaviour essential serves as
a global index. In our baseline, we implement this hashing process by grouping
the starting value of intervals to form a partition. In addition, OceanRT runs
multiple computing units on one physical node and connects these units using
Remote Direct Memory Access(RDMA); this behaviour is roughly same to the
executors in Apache Spark. More importantly, our adapted solution OcRT stores
the data on disks, which is same to that in OceanRT.

All experiments are conducted on a cluster containing 5 nodes with dual 10-
core Intel Xeon E5-2630 v4 processors @ 2.20 GHz and 256 GB DDR4 RAM. All
these nodes are connected to a Gigabit Ethernet switch, running Linux operating
system (Kernel 4.4.0-97) with Hadoop 2.6.5 and Spark 1.6.3. One of these 5
nodes is selected as the master and the remaining 4 machines are slaves. The
configuration is totally 960 GB main memory and 144 virtual cores in our cluster,
which is deployed in standalone mode. In our experiments, the size of HDFS
block is 128 MB. The default partition size (a.k.a., the size of each partition)
contains 105 records. The balance factor (i.e., fanout) of local index(es) is set to
100.

4.2 Experimental Results

Fig. 5 investigates the index cost of our system. For the local indexes, the con-
struction time of SB-Tree (SBT) is much faster than that of MVB-Tree (MVBT),
as shown in Fig. 5(a). This is mainly because MVBT requires node copy and has
about 2 times of operations (e.g.., insertion and deletion) than SB-tree. Even so,
the indexing time is acceptable. For example, indexing 4 billion records using
MVBT takes about 198GB memory space (cf., Fig. 5(b)), yet it takes only 1.54
hours. Besides, we also show the results by varying the size of partition (SP );
see Figs. 5(c) and 5(d). It can be seen that there is a non-linear relationship be-
tween SP and the index construction time (cf., Fig. 5(c)). This is main because
the index construction time is influenced by not only the size of each partition
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but also the total number of partitions. In our experiments, the “good” parti-
tion size falls in the range from 20K to 200K records. This is essentially why
we choose SP = 100K as the default setting (recall Section 4.1). Note that, an
appropriate choice on the number of partitions and the size of each partition can
both improve system throughput query latency performance. Meanwhile, we can
see that SP makes less impact on the index size (cf., Fig. 5(d)). This further
shows that the index size is mainly related to the dataset size |D|. On the other
hand, one can see that the construction of the global index is very fast; about
330 milliseconds even if NP is set to the largest value (cf., Fig. 5(e)). This is
mainly because the global index size is very small, i.e., only about 3 MB even
so NP = 40K (cf., Fig. 5(f)). In addition, as we expected, the global index size
is strictly proportional to NP .
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Next, we compare our method with the baselines. We first discuss the results
on the SX-ST dataset. It can be seen from Figure 6 that the execution of NISS is
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Fig. 7. Time travel and temporal aggregation queies on the SYN dataset
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Fig. 8. A enlarged drawing. Here |D| ranges from 1× 106 to 10× 106

slow, although it also stores the data in-memory. This is mainly because the full
scan over the dataset in partitions is time-consuming. As to OcRT, the hashing
process can perform partition pruning, but the lack of local index makes it slow,
since it needs in-partition full scanning. The reason why OcRT is slower than
NISS could be due to two points: (i) OcRT is disk-based solution; and (ii) the
partition pruning effect of OcRT is weak when it is confronted with relatively
small dataset like SX-ST. Compared to the baselines, our method takes only
about 0.3 seconds for temporal aggregation queries, and less than 0.2 seconds
for time travel. It is about 3× faster than NISS, and 4× faster than OcRT. This
demonstrates the competitiveness of our method. On the other hand, one can
see that different aggregation queries (e.g, SUM, MAX) have the similar query
cost. In what follows, when we discuss aggregation queries, we mainly report the
SUM aggregation query results for saving space.

Fig. 7 covers the comparison results on the synthetic (SYN) data, which is
much larger than the SX-ST dataset. For time travel exact-match queries, one
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Fig. 9. Temporal operations vs. SP

can easily see from Fig. 7(a) that our solution is 3∼7 times faster than OcRT.
Our solution outperforms NISS about one order of magnitude on both runtime
and throughput (cf., Figs. 7(a) and 7(b)) when dataset size |D| ranges from 106 to
4×109 records; especially, it outperforms NISS near to two orders of magnitude
when |D| = 109. This essentially demonstrates the superiorities of our solution.
Also, we can see that the performance of our framework drops much slower
than that of others, which essentially shows us that our framework has much
better scalability. This is mainly because the partition pruning in our framework
is much more powerful on larger datasets. Another interesting phenomenon is
that, OcRT here is obviously better than NISS (cf., Figs. 7(a), 7(c), and 7(e)),
while it is inferior than NISS in the previous test (cf., Fig. 6). This is mainly
because SX-ST is relatively small, compared to SYN. Fig. 8 well explains this
phenomenon (see the crossing point in this figure).

As we expected, when we execute the time travel range queries (cf., Figs. 7(c)
and 7(d)), our solution presents the similar performance, compared again the
exact-match queries. For example, the running time for both queries is close and
has the similar growth tendency). One the other hand, for temporal aggregation
queries, one can see from Fig. 7(e) that, the runtime of aggregation query is
a little longer than that of time travel operations. This is mainly because it
needs to checks many more records. Similarly, in Fig. 7(f), the throughput of
the aggregation query has the similar charateristics.

Fig. 9 shows the impact of partition size SP on the performance of temporal
queries. we can see from Fig. 9(a) that, the good partition size for both time travel
and temporal aggregation queries is between 20K to 100K records. Meanwhile,
it can be seen from Fig. 9(b) that the throughput is even more sensitive to
partition size. This shows the significance of number of partitions in distributed
systems.

5 Related Work

In the field of temporal databases, prior works addressed various issues related
to temporal data (see several representative surveys [18, 30, 17]).



In the existing literature, most of early works concentrate on semantics of
time [6], logical modelling [33] and query languages [4] for temporal data. Re-
cently, some researchers addressed the problem of discovering/mining interesting
information [27] from temporal data, such as trend analysis [15] and data cluster-
ing [36]. Other works addressed query or search issues for temporal data, such as
top-k queries [26] and membership queries [22]. Some optimal problems related
to temporal data are also investigated, such as finding optimal splitters for large
temporal data [23]. Similar to general databases, in temporal databases join op-
eration is also a common operation, researches on this topic can be found in
[13]. Since temporal data is involved with an evolving process, researchers have
attempted to model evolutionary traces [32], and to trace various elements in
temporal databases, such as tracing evolving subspace clusters [16]. The afore-
mentioned works are related to ours (since these works also handle temporal
data). Yet, it is not hard to see that they are clearly different from ours, since
our work focuses on time travel and temporal aggregate queries, instead of the
above problems such trend analysis, logical modelling.

Nevertheless, there are already existing works addressing the problems of
time travel [20, 11, 5, 28, 3, 31, 1] and temporal aggregate [38, 10, 20, 11, 21, 25]
queries. For example, Kaufmann et al. [20] proposed a unified data structure
called timeline index for processing queries on temporal data, in which they use
column storage to mange temporal data. General-purpose temporal index struc-
tures can be found in [11, 5]. Furthermore, SAP HANA [12] provides a basic
form of time travel queries based on restoring a snapshot of a past transaction.
ImmortalDB [28] is another system that supports time travel queries. From in-
dustry perspective, database vendors, such as Oracle [3], IBM [31], Postgres [1],
SQL Server [2], also integrate time travel queries into theirs systems. On the
other hand, Snodgrass et al. [21] introduced the first algorithm for computing
temporal aggregation on constant intervals. Later, algorithm for temporal aggre-
gation based on AVL Trees was proposed [8]. Furthermore, temporal aggregates
with range predicates [38], or over extreme cases such as null time intervals
[10], are also investigated. Attempts for temporal aggregates with a multipro-
cessor machine can be found in [25, 19]. Efficient indexing structures supporting
temporal aggregates are discussed in [11, 35, 29]. A major feature of the afore-
mentioned proposals or systems is that, they focused on single-machine-based
solutions, while few attention has been made on developing distributed solutions
for handling big temporal data.

Essentially, we also realize that, distributed temporal analytics for big data
have been also investigated in recent years [39, 9]. And they are different from
the early work [14] (in which the data being processed is relatively small). Never-
theless, these works share at least two common features: (i) they are distributed
disk-based temporal analytics instead of distributed in-memory based temporal
analytics; and (ii) time travel and temporal aggregate queries are not covered in
their papers. Thus, they are different from our work.



6 Conclusion

In this paper we suggested a distributed in-memory analytics framework for
big temporal data and implemented it on Spark. Our framework used a two-
level index structure to enhance the pruning power. It also provided declarative
SQL query interface that enables users to perform typical temporal operations
with a few lines of SQL statements. We conducted extensive experiments to
demonstrate its superiorities, compared against state-of-the-art solutions. In the
future, we plan to extend this framework to support more temporal queries.
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