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Abstract—Multi-label image classification (MLIC) has received
much attention due to its wide applications. Recently, the
Transformer-based methods have exhibited excellent perfor-
mance on MLIC tasks. Existing Transformer-based methods
either used standard encoders that employ traditional relative
positional encoding, or discarded encoders by focusing on the
decoders to establish relations between labels and the regions of
interest (RoI) in images. Yet, they pay less attention on enhancing
the encoders. Moreover, the self-attention layer in the decoder is
often employed in existing works, and is considered a component
that could potentially enhance the internal relationships of label
embeddings. It yet is unclear whether the self-attention layer
is really helpful in establishing label correlation. Last but not
least, existing Transformer-based methods use Asymmetric Loss
to alleviate the sample imbalance problem; however, Asymmetric
Loss may lead to the exclusion of some negative samples that are
actually helpful for model training. To address these issues, this
paper presents a novel Transformer-based two stage framework,
which can be viewed as a fusion of the RoI based technique
and an adapted Transformer. Our framework captures global
and local features in model training. It is simple and easy-
to-implement, but can achieve excellent performance. We have
conducted extensive experiments on two widely used public
datasets. The results consistently show us that our proposed
method is feasible and also competitive, compared against state-
of-the-art models.

Index Terms—Transformer, multi-label image classification,
deep learning.

I. INTRODUCTION

Image classification (1; 2; 3) is to analyze input images
and categorize them into predefined classes based on their
content. Specifically, the objective of image classification is
to assign one or more category labels to an image according
to the objects, scenes, or other features. Image classification
can be viewed as a branch of data classification, it has
been extensively studied in data mining and computer vision
community (4; 5; 6; 7; 8). With the rapid development of deep
learning, image classification tasks have achieved significant
advancements and are now widely used in various real-world
domains, such as image retrieval (9), object detection(10),
image segmentation (11), and image processing (12).

Image classification contains two types of cases: single-label
image classification (SLIC) (13; 14) and multi-label image
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classification (MLIC) (14; 15; 16; 17; 18; 19). SLIC refers to
the task of assigning an image to a single category or label.
In this type of task, the image is assigned to only one most
relevant label. In contrast, MLIC often assigns an image to
multiple labels or categories. It is more challenging than SLIC
due to various reasons (e.g., a greater variety of objects within
the images).

Early methods for MLIC often transform it into single-label
problem, and then use region of interest (RoI) based techniques
(20; 21). Owing to the rapid advancement of convolutional
neural networks (CNNs) and their excellent feature extraction
capabilities, CNNs often utilizes convolutional layers to extract
features from input images, and the resultant feature maps
are utilized to predict and determine the presence of specific
target categories. Some works have studied attention mech-
anisms (17; 22). Methods combining attention mechanisms
with convolutional neural networks (CNNs) can further focus
on more important local features. However, they often incur
issues such as incomplete feature representation, insufficient
utilization of inter-label correlations and dependencies, and
relatively poor generalization ability. Later, with the rise of
graph convolutional networks (GCNs), some researchers have
focused on developing graph convolution based methods for
multi-label image classification (1; 16). They can establish
correlations and dependencies between labels, and exhibit
strong generalization capabilities. However, these methods are
computationally intensive, requiring substantial computational
resources. Additionally, they carry a risk of overfitting in cases
of unreasonable graph structures or significant noise.

Recently, Transformer-based framework has attracted much
attention (3; 19; 22; 23). These approaches effectively integrate
spatial information with semantic information. Particularly, it
is much more flexible in modeling the relationship between
image features and labels. These characters are beneficial to
enhance the model’s classification performance and gener-
alization capabilities. Yet, there remains several issues: (i)
Existing works either used standard encoders that employ
traditional relative positional encoding, or focused on lever-
aging the decoder to establish relations between labels and
the RoI, i.e., depriving encoders directly. As for the former,
traditional relative positional encoding is originally designed



for one dimensional sequence data, which might be improper
for image data. As for the latter, the utility and effectiveness
of the Transformer encoder is ignored, which might harm the
performance. (ii) The self-attention layer in the decoder is
often employed in existing works, and is considered a compo-
nent that could potentially enhance the internal relationships
of label embeddings. We realize that, in MLIC tasks, the
input to the decoder consists of learnable label embeddings,
where the labels themselves are not inherently correlated,
since they are independent texts. If one conducts self-attention
calculations on these learnable label embeddings, it actually
forces the labels to learn relationships with each other; this
may lead to spurious/fake label correlations. In other words, it
is unclear whether the self-attention layer is really helpful in
establishing label correlation. (iii) Existing Transformer-based
methods use Asymmetric Loss to alleviate the problem of
positive and negative sample imbalance; however, Asymmetric
Loss mainly excludes easy negative samples through a hard
threshold mechanism, which may lead to the exclusion of some
negative samples that are actually helpful for model training.

To alleviate the above issues, we propose a new
Transformer-based framework. It consists of four major com-
ponents: (i) Feature extracting, which integrates data augmen-
tation and CNNs together to extract local image features.
(ii) Feature reshaping, which utilizes a 1×1 convolution and
learned positional encoding together to perform dimension
reduction and features serialization. (iii) Feature label cor-
relation, which uses an enhanced Transformer structure to
learn global feature information, and performs cross-attention
computations between learnable label embeddings and the
globally extracted image features. (iv) Final classification and
Loss, which obtains the classification score based on a linear
projection layer and sigmoid function. To summarize, our main
contributions can be listed as follows:

• We proposed a novel Transformer-based two stage frame-
work. To our knowledge, for MLIC tasks, it is the first
attempt to introduce image relative positional encoding
(IRPE) into the Transformer encoder. Our method is
simple, easy-to-implement but without loss of efficiency.

• We conducted extensive experiments on two widely-
used datasets including MS-COCO and PASCAL VOC.
The experimental results consistently show us that the
proposed model can achieve competitive performance,
compared against state-of-the-art models.

II. RELATED WORK

In recent years, many methods have been proposed for
MLIC. One type of approach is based on Region of Interest,
another type of approach is based on Transformer. Our method
combines these types of techniques, and thus is highly related
to them. Next, we review previous works most relevant to ours.

A. Regions of Interest

It is crucial to locate regions of interest (RoI) in computer
vision tasks (19; 20; 21). Early methods for MLIC often
transform it into single-label problem, and then use region

based techniques (20; 21). For example, Wei et al. (20)
proposed a flexible deep CNN infrastructure to produce the
multi-label predictions. Afterwards, many powerful region-
based methods were developed (17; 19; 24). For example,
Wang et al. (24) suggested to locate attentional regions by
using a spatial transform layer. Recently, the work (22) defined
spatial class-aware attention, which is used to reinforce the
correct causal relationships. The afore-mentioned methods can
efficiently focus on important local information, they however
often suffer from incomplete feature representation and rela-
tively weak ability to extract global features. To address this
issue, researchers developed methods considering global and
local features together (18; 25). Our method also considers
both global and local features, but is different from theirs.
In brief, our method enhances information interconnections
among different regions, by introducing a two-dimensional
relative positional encoding into Transformer encoders.

B. Transformer

The Transformer (26) was initially been applied to natural
language processing tasks. Recently, the Transformer architec-
ture has been applied in computer vision. Particularly, many
studies (3; 19; 22; 23) have employed Transformers for MLIC.
Some works (3; 22) mainly utilized Transformer encoders to
extract global image features. For example, Zhao et al. (3) used
a Transformer encoder to capture contextual information. Nev-
ertheless, these works often use standard Transformer encoders
that employ traditional relative position encoding or do not
employ relative position encoding at all. Unlike these works,
our paper introduces the Image Relative Position Encoding
(IRPE), which is specifically designed for 2D images, into the
Transformer encoder. This idea addresses the shortcomings
of traditional relative position encoding which is originally
designed for language sequences.

Recently, some studies (19; 23) have focused on using
Transformer decoders to establish relationships between labels
and image features. For example, (19) used the cross-attention
mechanism built in the Transformer decoder to establish rela-
tionships between labels and image features. Our work is most
similar to (19), as our method bears many similarities with it
(e.g., utilizing a Transformer decoder to query the presence
of category label). However, these methods often overlook the
importance of the Transformer encoder. Instead, we claim that
the Transformer encoder is also useful, as it plays a crucial role
in global information extraction and spatial structure modeling.
Compared to (19), there are several obvious differences: (i) We
use the Transformer encoders to help the model acquire global
feature information, and we further employ IRPE to enhance
the performance; (ii) We analyze the self-attention layers in the
decoder, and point out that they are often unhelpful for MLIC
tasks; and (iii) we introduced the Asymmetric Polynomial Loss
which is not covered in their paper.

C. Others

Previous works considered also label correlations (1; 6; 16).
For example, Chen et al. (16) utilized graph convolutional



networks (GCNs) to construct directed graphs on labels.
Ye et al. (1) proposed an attention-driven dynamic graph
convolutional network. These methods establish correlations
and dependencies between labels. They, however, often rely
on graph structures that require substantial computational
resources, and sometimes they may get false correlations,
harming the performance (14; 19). In contrast, our method
does not require the construction of complex graph models, it
instead directly detects image regions relevant to categories.

Loss functions are also obviously important to classification
quality. The binary cross-entropy loss can be used in multi-
label image classification, but such a loss function often fails
to address class imbalance issue, which is crucial for the
model’s performance. To this, many works (2; 27; 28) have
focused on improving loss functions. For example, Ridnik
et al. introduced the asymmetric loss (2). Huang et al. (28)
proposed the Asymmetric Polynomial Loss, which leverages
asymmetric focusing mechanisms to alleviate the imbalance
problem. Inspired by its excellent performance, our work
adopts the Asymmetric Polynomial Loss.

III. METHOD

In this section, we first present an overview of our proposed
model, and then cover the details of the model.

A. Overview of Our Model

Fig. 1 illustrates the architecture of our model. The first
step is feature extraction. Specifically, for a given input
image, we first apply data augmentation and then feed it
into a convolutional-based model to extract preliminary image
features. The second stage is feature reshaping. Generally
speaking, for the preliminary image feature, we first conduct
the dimensionality reduction by using a 1x1 convolution, and
then combine it with the learned positional embedding, by
executing a ”+” operator between feature vectors. Afterwards,
we obtain the serialized feature information by ”flattening”
the combined feature vectors. Later, the serialized feature
information is to be passed into the next stage. The third stage
is feature label interaction. The essence of this step is to extract
global image features and to locate regions of interest accord-
ing to specific categories. More specifically, in this stage, we
develop a variant of the standard Transformer structure. In
our structure, we introduce IRPE into the encoder, which is
beneficial to capture richer global features. Meanwhile, in the
decoder part, we, based on empirical study, remove the self-
attention layer that was used in prior studies. The final stage is
to obtain multi-label prediction scores. Specifically, the feature
vectors from the decoder are to be transformed into logits via
a linear projection layer, the multi-label prediction scores can
be obtained by the sigmoid function.

B. Feature Extracting and Reshaping

To better understand this stage, we first introduce the
concepts of Cutout and learned positional encoding.

1) Cutout: Cutout is a data augmentation technique involv-
ing the following two steps: (i) Random Region Selection.
Randomly select a rectangular region within the image. (ii)
Masking the Region. Set the pixel values in the selected
rectangular region to zero or apply random noise. This masks
the chosen region within the image. The resulting image
with the masked region serves as a new training sample,
contributing to increasing data diversity and model robustness,
ultimately improving generalization.

2) Learned positional encoding: The learned positional
encoding is actually a technique for modeling positional in-
formation in deep learning models. Unlike traditional absolute
positional encodings based on sine and cosine functions, the
learned positional encoding does not rely on a predefined
mapping from positions to vectors, it can be implemented with
a simple embedding layer. During model training, the weights
of these embedding layers are adjusted to minimize task-
specific loss functions, enabling the model to learn optimal
positional representations. In other words, it learns the vector
representation for each position during training, providing the
model with more flexible and adaptive positional information.

With the above concepts in mind, we proceed to explain the
details of ”Feature Extracting and Reshaping”. Given an image
x ∈ RH×W×3 as an input, we first implement the Cutout, and
then extract local spatial feature F ∈ RH′×W ′×d0 using CNN-
based backbone models (e.g., ResNet, TresNet, ConvNext),
where H and W respectively denote the height and weights
of the original image, H ′ and W ′ respectively denote the
height and weights of the feature map F , and d0 represents the
dimensionality of feature map F . Next, we reshape the features
to match the input expected by the Transformer. Specifically,
we divide the reshaping into two steps:

(i) Dimension Reduction to Hidden Dimension: We perform
this using a 1x1 convolution to transform the features from
H ′ × W ′ × d0 to H ′ × W ′ × dmodel, where dmodel is the
desired hidden dimension. This can be achieved as follows:

Y = Conv1×1(F ), Y ∈ RH′×W ′×dmodel (1)

where, Conv1×1 denotes the 1x1 convolution operation, con-
verting d0 channel feature maps into dmodel ones.

(ii) Flattening into Sequence Data: The reduced features Y
are reshaped from a 3D tensor (H ′ × W ′ × dmodel) into a
2D tensor representing a sequence of data, with dimensions
dmodel ×L, where L = H ′ ×W ′ is the sequence length. This
can be implemented with the following formula:

Z = Reshape(Y ), Z ∈ Rdmodel×L (2)

where Z represents the reshaped sequence features, Reshape
involves the Flatten operation followed by transposition of
certain dimensions.

C. Feature-Label Interaction

There are two major components: the enhanced encoder
and decoder, respectively (recall Fig. 1). The core element
of our enhanced encoder is the self-attention mechanism that
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Fig. 1: The architecture of our model.

incorporates IRPE. This mechanism aims to provide direc-
tional information for the sequential image features in a two-
dimensional encoding, enabling the model to extract better
global features. The core element of the enhanced decoder is
the cross-attention mechanism. We use learnable label embed-
dings as queries and the global image features obtained from
the encoder as keys and values for cross-attention calculation.
Next, we first cover the details of IRPE, and then discuss the
enhanced encoder and decoder, respectively.

1) Image Relative Positional Encoding: Inspired by (29),
we attempt to incorporate IRPE into our model. One can
incorporate the dot-product and context based IRPE. To under-
stand how IRPE is incorporated into the encoder, we briefly
introduce the process of applying IRPE simultaneously to
query, key, and value, for example. First, we can apply IRPE
to both query and key. The dot-product attention weights eij
is computed as:

eij =

(
xiW

Q
) (

xjW
K
)T

+ bij√
dz

(3)

where bij ∈ R is the 2D relative positional encoding. For the
contextual mode,

bij =
(
xiW

Q
) (

rKij
)T

+
(
xjW

K
) (

rQij

)T

(4)

where rKij , rQij ∈ Rd are both learnable vectors. Second, we
incorporate IRPE into the value. Consequently, the output after
the self-attention layer can be represented as:

zi =

n∑
j=1

softmax (eij)
(
xjW

V + rVij
)

(5)

2) Encoder: Recall Section III-B, we have obtained local
image features. To obtain the global features, we need to per-
form a second round of feature extraction on the feature maps.
We achieve it by using the self-attention mechanism within
the Transformer. Specifically, the reshaped serialized image
features undergo a linear transformation to map them into q,
k, and v inputs for the self-attention layer. By combining the
self-attention layer with the applied IRPE, we capture more
comprehensive global image features. The self-attention layers
in the enhanced encoder enable each image feature vector to
interact with all other feature vectors, facilitating the global
contextual information. Formally, the computational process
of the self-attention layer is as follows:

Fi = MultiHead
(
Zi, Z̃i, Zi

)
(6)

where Zi represents image sequence feature, Z̃i represents
image sequence feature augmented with image relative posi-
tional encoding, Fi represents the new feature representation
obtained from image sequences after undergoing multi-head
attention.

3) Decoder: We utilize learnable label embeddings as
queries, image features from the encoder as keys and values;
and we employ multi-layer Transformer decoders to perform
cross-attention computation, aiming to identify regions of
interest. Specifically, the cross-attention computation is:

Qj = MultiHead (Qj−1, Fi, Fi) (7)

where Qj denotes the query input; when j = 1, Q0 represents
the learnable label embedding; Fi denotes the sequence of



image features obtained from the encoder, and it is actually
identical to the Fi in Equation 6.

Note that the decoder structure we used excludes the self-
attention layer. In prior studies, the self-attention layer within
the decoder was considered a component that could poten-
tially enhance the internal relationships of label embeddings.
However, we realize that, in multi-label image classification
tasks, the input to the decoder consists of learnable label
embeddings, where the labels themselves are not inherently
correlated, since they are independent texts. If one conducts
self-attention calculations on these learnable label embeddings,
it actually forces the labels to learn relationships with each
other, potentially leading to spurious/fake label correlations.

D. Final Classification and Loss

1) Final Classification: After the feature-label interaction
is completed, we use a linear projection layer to assign a cor-
responding value to each class, and obtain the corresponding
prediction score using a sigmoid function.

2) Loss: To address the issue of sample imbalance, our
framework generally employs an asymmetric polynomial loss
(APL) function, although traditional binary cross-entropy and
focal loss can also be utilized. Here, APL is built upon the
foundation of asymmetric loss, it employs a Taylor expansion
to enable the function to fit more complex computations. The
specific computation is detailed as follows:

LAPL =

C∑
i=0

{
yi(1− pi)

γ+
[
− log pi + (α1 − 1)(1− pi)

+

(
α2 −

1

2

)
(1− pi)

2
]
+ (1− yi)p

γ−

res[
− log(1− pi) + (β1 − 1)pres

]}
/C

(8)

where yi represents the true label of the ith sample, pi
represents the predicted probability of the ith sample being
in the positive class, C are coefficients, and pres denotes
max (pi − pth, 0). In our experiments, we set γ+ = 0 and
γ− = 2 by default.

IV. EXPERIMENTS

A. Datasets, Evaluation Metrics, and Competitors

To assess our method, we conducted experiments on two
datasets, namely, MS-COCO (33) and PASCAL VOC (34).

• MS-COCO1: It is a large-scale dataset designed for
object detection and segmentation, widely used in recent years
for evaluating multi-label image classification. It comprises
82,783 training images, 40,504 validation images, covering
80 common objects, with an average of 2.9 labels per image.

• PASCAL VOC2: It contains two versions: VOC 2007
and VOC 2012. VOC 2007 is utilized for object detection and
image classification tasks. This dataset comprises 5011 images

1https://cocodataset.org
2http://host.robots.ox.ac.uk/pascal/VOC/

as the train-val set and 4952 images as the test set, covering
20 common object categories. The object categories within
VOC 2007 encompass humans, dogs, cats, airplanes, ships,
bicycles, and more. Each object instance is annotated with its
corresponding category label and bounding box delineating
its spatial extent. VOC 2012 is a classic dataset used for
object detection and image segmentation tasks. It comprises
bounding boxes for each object and pixel-level segmentation
annotations. VOC 2012 consists of 11,540 images for the
train-val set and 10,991 images for the test set.

In terms of evaluation metrics, we utilized the Average
Precision (AP) for each individual class; and we use the mean
Average Precision (mAP) across all classes, which is computed
as follows: mAP =

∑C
c=1 APc

C , where c, and C denote
current specific class, and number of all classes respectively.
Meanwhile, we employed Overall Precision (OP), Overall
Recall (OR),and Overall F1-Score (OF1), they are computed
as: OP =

∑
i M

i
c∑

i M
i
p

, OR =
∑

i M
i
c∑

i M
i
g

, OF1 = 2×OP×OR
OP+OR . Also,

we utilized per-Category Precision (CP), per-Category Recall
(CR), and per-Category F1-Score (CF1), they are computed
as: CP = 1

C

∑
i
Mi

c

Mi
p

, CR = 1
C

∑
i
Mi

c

Mi
g

, CF1 = 2×CP×CR
CP+CR .

To examine the competitiveness of our proposed method,
we compared it with state-of-the-art methods (e.g., published
in ICLR 2023 (22) and CVPR 2023 (31)). These competitors
can be categorized into three classes (recall Section II):

• Region of Interest based methods: ResNet101 (13),
Fev+lv (21), HCP (20), RDAL (24), MCAR (18), TRes-
NetL (35), Convnextv2-B (31), Swin-L (32).

• Transformer-based methods: TDRG (3), IDA (22),
Q2L (19), C-Trans (30).

• Other methods: CNN-RNN (6), SRN (15), ML-
GCN (16), MS-CMA (17), CCD (14), SSGRL (36),
ADD-GCN (1).

B. Experimental Settings

We adopted the following settings by default, unless stated
otherwise. As for the image enhancement, we used cutout; and
for regularization we used RandAugment. Considering GPU
efficiency and ensuring fairness and convenience, we selected
ResNet101, Tresnet-L, and Convnextv2-Base as the backbone
models when comparing various methods. Regarding reso-
lution, we utilized three resolutions: 384, 448, and 576. In
what follows, when we use ResNet101 and 448 resolution,
the resulting output features of backbone are denoted as
H ×W × d0 = 14 × 14 × 2048. Subsequently, the obtained
image features are reshaped to match the shape required by the
Transformer. Specifically, in our experiments, we employed
one encoder layer and two decoder layers (which can be
adjustable as needed) to update the label features. Finally, we
accomplished the classification via a linear projection layer.

We trained the model for 80 epochs using an AdamW
optimizer with a weight decay of 5e-3, a momentum of 0.9;
β1 and β2 are set to 0.9 and 0.9999, respectively. Addition-
ally, we employed the one-cycle learning rate policy with a
maximum learning rate of 5e-5. The experimental platform is



TABLE I: Comparison results on the MS-COCO dataset. The backbones marked with 22k are pre-trained on the ImageNet-22k
dataset. In the comparison, our primary focus lies in assessing more comprehensive metrics, including mAP, CF1, and OF1.
Other metrics can be used for reference.

Method Backbone Resolution mAP CP CR CF1 OP OR OF1
SRN(15) ResNet101 224x224 77.1 81.6 65.4 71.2 82.7 69.9 75.8

ResNet-101(13) ResNet101 224x224 78.3 80.2 66.7 72.8 83.9 70.8 76.8
ML-GCN(16) ResNet101 448x448 83.0 85.1 72.0 78.0 85.8 75.4 80.3
MS-CMA(17) ResNet101 448x448 83.8 82.9 84.4 78.4 84.4 77.9 81.0

MCAR(18) ResNet101 448x448 83.8 85.0 72.1 78.0 88.0 73.9 80.3
Q2L(19) ResNet101 448x448 84.9 84.8 74.5 79.3 86.6 76.9 81.5

SSGRL(7) ResNet101 576x576 83.8 89.9 68.5 76.8 91.3 70.8 79.7
C-Trans(30) ResNet101 576x576 85.1 86.3 74.3 79.9 87.7 76.5 81.7

ADD-GCN(1) ResNet101 576x576 85.2 84.7 75.9 80.1 84.9 79.4 82.0
TDRG(3) ResNet101 576x576 86.0 87.0 74.7 80.4 87.5 77.9 82.4
IDA(22) ResNet101 576x576 86.3 - - 80.4 - - 82.5
Q2L(19) ResNet101 576x576 86.5 85.8 76.7 81.0 87.0 78.9 82.8

Ours ResNet101 448x448 85.2 84.9 74.7 79.5 86.8 76.9 81.5
Ours ResNet101 576x576 86.8 85.9 77.0 81.2 87.3 79.0 83.0

Convnextv2-B(31) ConvNextv2-B(22k) 384x384 89.6 89.3 80.5 84.7 89.5 82.1 85.7
Swin-L(32) Swin-L(22k) 384x384 89.6 89.9 80.2 84.8 90.4 82.1 86.1
CCD(14) Swin-L(22k) 384x384 90.3 85.9 84.0 84.6 85.1 86.4 85.7

Ours ConvNextv2-B(22k) 384x384 91.1 89.8 82.3 85.9 90.0 83.8 86.8

an Ubuntu 18.04 system, equipped with an Intel Xeon Gold
6330 processor @ 2.0 GHz with 60 cores, 240 GB of RAM,
and 6 Nvidia GeForce RTX 3090 GPUs.

C. Comparison with State-Of-The-Art Methods

1) Performance on MS-COCO: Table I presents the com-
parative results. We can see that, when Resnet-101 is used
as the backbone, our model consistently outperforms other
state-of-the-art methods in terms of mAP, CF1, OF1, and
some other reference metrics. Particularly, although Q2L also
employs a Transformer based two-stage approach, our model
beats it in all metrics at both resolutions. Also, our model beats
the IDA(22) (ICLR’2023) by 0.5% at 576X576 resolution.
Remark that, an increase of 0.5% is non-trivial in MLIC tasks.
All these results consistently demonstrate the competitiveness
and effectiveness of our proposed approach.

Furthermore, we have observed that our proposed frame-
work is highly compatible with the ConvNeXt V2 backbone.
The unique Global Response Normalization (GRN) layer
of ConvNeXt V2 effectively addresses the issue of feature
collapse, preventing label embeddings from activating similar
but incorrect image regions, thereby enhancing the model’s
comprehension of input data. ConvNeXt V2 is adept at extract-
ing rich local features while avoiding redundant activations
across different feature channels. Meanwhile, the Transformer
component focuses on processing global features and precise
activation of label-specific features. Particularly, after the
incorporation of the IRPE, the Transformer encoder in con-
junction with the ConvNeXt V2 can leverage the best global
feature extraction capabilities, thereby improving the model’s
accuracy. Experimental results indicate that our method can
beat the baseline (ConvNeXt V2-Base) by 1.5%, achieving
an ultra-high precision of 91.1% on the MS-COCO dataset.
This validates the effectiveness of integrating our framework
and ConvNeXt V2. We have to mention that, it is non-trivial

to obtain an increase of 1.5% to the competitor, Convnext2-
B (31), published in 2023.

2) Performance on PASCAL VOC: (i) Results on VOC 07.
Table II presents the results. In the first part of Table II,
we utilized the standard Resnet101 as the backbone with a
448 resolution. The reported metrics include the AP values
of 20 categories and the overall mAP. We can see that our
method achieves the best results in most categories. In terms of
mAP, we have surpassed all these methods. More specifically,
comparing to region-based approaches (e.g., Fev+Lv, HCP,
RDAL), it can be observed that our result is obviously better
than them. This is mainly because our method utilizes the
Transformer decoder to obtain class-specific representations,
resulting in more accurate ROI (i.e., region of interest). On
the other hand, our method also beats the Transformer-based
methods (e.g., TDRG), this is mainly because our method
introduces IRPE into the encoder, providing us the spatial
relationships between pixels. In the second part of Table II,
except for SSGRL and ADD-GCN, which use Resnet101, all
other methods use Tresnet-L. We can see that our model also
achieves the best results in most categories. Particularly, we
achieved a mAP value of 96.2% on this dataset. Considering
the experimental results in Table II as a whole, our method
beats all these competitors in terms of mAP.

(ii) Results on VOC 12. Since complete labels for the test set
are not provided officially, we conducted testing on the official
evaluation server. Table III presents the comparative results
(the reader can also visit the anonymous link3). The training
strategy used in this experiment is the same as that for the
second part of VOC 2007. Similar to the results demonstrated
on the VOC 2007 dataset, we also achieved the state-of-the-
art performance on the VOC 2012 dataset. Particularly, we
observe that, even if SSGRL and ADDGCN used a higher
resolution (576x576), we still achieve higher mAP values
than theirs (i.e., demonstrating the competitiveness of our

3http://host.robots.ox.ac.uk:8080/anonymous/XFI9GJ.html



TABLE II: Comparison results on PASCAL VOC 2007, in terms of AP and mAP in percentages. The resolution of all results
are 448×448, with the exception of ADD-GCN and SSGRL, which have resolution of 576x576.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
CNN-RNN(6) 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
Fev+Lv(21) 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6

HCP(20) 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9
RDAL(24) 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9
MCAR(18) 99.7 99.0 98.5 98.2 85.4 96.9 97.4 98.9 83.7 95.5 88.8 99.1 98.2 95.1 99.1 84.8 97.1 87.8 98.3 94.8 94.8
TDRG(3) 99.9 98.9 98.4 98.7 81.9 95.8 97.8 98.0 85.2 95.6 89.5 98.8 98.6 97.1 99.1 86.2 97.7 87.2 99.1 95.3 95.0

Ours 99.9 99.3 98.9 98.1 84.8 97.6 98.6 98.9 82.7 98.3 88.0 98.8 98.7 97.3 99.2 88.8 98.6 85.3 99.4 94.9 95.3
SSGRL(7) 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0

ADD-GCN(1) 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0
TResNet(35) 99.9 98.4 98.9 98.7 86.8 98.2 98.7 98.5 83.1 98.3 89.5 98.8 99.2 98.6 99.3 89.5 99.4 86.8 99.6 95.2 95.8

Q2L(19) 99.9 98.9 99.0 98.4 87.7 98.6 98.8 99.1 84.5 98.3 89.2 99.2 99.2 99.2 99.3 90.2 98.8 88.3 99.5 95.5 96.1
Ours 99.9 99.1 99.2 98.8 87.9 98.6 98.7 99.2 83.4 98.4 90.6 99.1 98.9 98.9 99.4 90.5 99.7 88.6 99.8 95.7 96.2

TABLE III: Comparison results on PASCAL VOC 2012. The resolution of all results are 448×448, except that ADD-GCN
and SSGRL have resolution of 576×576. Differing from the VOC2007 dataset, for the sake of impartiality, we conducted tests
utilizing the official evaluation server, all results obtained are provided by the VOC2012 official evaluation server.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Fev+Lv(21) 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97.0 88.2 89.4

HCP(20) 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5
MCAR(18) 99.6 97.1 98.3 96.6 87.0 95.5 94.4 98.8 87.0 96.9 85.0 98.7 98.3 97.3 99.0 83.8 96.8 83.7 98.3 93.5 94.3
SSGRL(7) 99.7 96.1 97.7 96.5 86.9 95.8 95.0 98.9 88.3 97.6 87.4 99.1 99.2 97.3 99.0 84.8 98.3 85.8 99.2 94.1 94.8

ADD-GCN(1) 99.8 97.1 98.6 96.8 89.4 97.1 96.5 99.3 89.0 97.7 87.5 99.2 99.1 97.7 99.1 86.3 98.8 87.0 99.3 95.4 95.5
CCD(14) 99.8 98.2 98.3 98.0 88.6 97.4 96.9 99.1 90.8 98.9 90.2 99.2 99.6 98.4 99.0 87.7 98.4 88.8 99.7 96.4 96.1
Q2L(19) 99.9 98.2 99.3 98.1 90.4 97.7 97.4 99.4 92.7 98.7 89.9 99.4 99.5 99.0 99.4 88.4 98.8 89.3 99.6 96.8 96.6

Ours 100.0 98.5 99.1 98.5 90.6 97.5 97.6 99.5 91.8 98.6 89.6 99.4 99.3 98.9 99.4 89.2 98.7 90.5 99.8 97.0 96.7

TABLE IV: Comparisons of our encoders, standard encoders,
and no encoders. Our encoder contains IRPE. The resolution
of 448x448 is utilized.

Setting mAP
w/ our encoder 85.22

w/ standard encoder 84.90
w/o encoder 84.72

model). The possible reasons are that, SSGRL and ADD-GCN
used graph structures to establish label correlations, primarily
focusing on local features, their ability to capture global fea-
tures is weak. In contrast, our method utilized cross-attention
to compute the attention weights of each label for different
image regions, it implicitly captured the relationships between
labels; furthermore, our encoder with IRPE can acquire global
information efficiently.

D. Ablation study

1) Encoder: Previous works based on the Transformer
architecture either overlook the importance of the encoder, or
only use standard encoders. Table IV confirms the necessity
of the encoder in multi-label image classification model.
We can see that, on the MS-COCO dataset, employing a
standard Transformer yields a performance increase, compared
to the Transformer without encoders. Particularly, when our
enhanced encoder is employed, the performance is enhanced
further.

2) Self-Attention: The self-attention layer in the Trans-
former decoder is often thought to enable better embedding
representations of labels, and previous works that used the
standard decoder often employ the self-attention layer. In
Section III-C3, we argue that the self-attention layer in the
decoder may be not much helpful. To validate this, we con-
ducted experiments on the MS-COCO dataset. Table V shows

TABLE V: Comparison results between using self-attention
layers and without self-attention layers. ”*” denotes that self-
attention layer is only used in the second decoder.

Setting mAP
w/ self-attention 85.14
w/ self-attention* 85.07
w/o self-attention 85.20

TABLE VI: Comparison between different loss functions.

Loss Function mAP
Binary Cross-Entropy 84.92

Focal Loss(27) 85.11
Asymmetric Loss(2) 85.15

Asymmetric Polynomial Loss(28) 85.20

the results. From this table, we can see that removing self-
attention layers from the decoder achieves better performance.
One of possible reasons is that, applying self-attention to these
learnable label embeddings forces the labels to learn inter-
relationships, which may result in spurious label correlations,
as mentioned in Section III-C3. Another possible reason is
that, before computing cross-attention (recall Fig. 1), the
input label embeddings undergo a linear transformation, which
enables the input to fit adaptively the cross-attention module’s
expected input; in other words, removing self-attention layer
in decoders makes less or even no negative impact.

3) Loss Function: The Asymmetric Polynomial Loss
(APL) utilizes a Taylor expansion relative to the Asymmetric
Loss (AL), allowing it to handle more intricate computations.
On the other hand, compared to Binary Cross-Entropy (BCE)
and Focal Loss (FL), it possesses better capabilities in address-
ing sample imbalance issues. To validate their performance
when they are integrated into our framework, we conducted
comparisons. For Asymmetric Loss and Asymmetric Polyno-



mial Loss, we configured γ+ = 0 and γ− = 2 respectively.
The experimental results are shown in Table VI. We can see
that the best performance is achieved when loss function is
Asymmetric Polynomial Loss. The reason could be that, APL
can provide a more refined ability of handling positive and
negative samples than other competitors.

V. CONCLUSION

In this paper, we have proposed a novel framework for
multi-label image classification. Our framework incorporates
RoI-based technique and an enhanced Transformer structure.
We have validated its competitiveness on several widely used
multi-label image classification datasets. Our study yields
several important findings for MLIC tasks: (i) incorporating
IRPE into Transformer decoders is useful; (ii) removing self-
attention layers in the Transformer decoder has no negative
impact, or even improves the performance; and (iii) the APL
function could be more compatible with Transformer-based
frameworks, compared against BCE, FL, and AL.
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