
ISAECC: An Improved Scheduling Approach for Energy Consumption Constrained
Parallel Applications on Heterogeneous Distributed Systems

Ting Ye†, Zhi-Jie Wang‡,#, Zhe Quan†, Song Guo⊥, Kenli Li†, and Keqin Li§
† College of Information Science and Engineering, Hunan University, Changsha, China
‡ School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, China
⊥ Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
§ Department of Computer Science, State University of New York, United States

ytcaro@hnu.edu.cn, wangzhij5@mail.sysu.edu.cn, quanzhe@gmail.com,
song.guo@polyu.edu.hk, lkl510@263.net, lik@newpaltz.edu

Abstract—Power-aware task scheduling on processors has
been a hot topic. In this paper, we study the problem
of minimizing the schedule length for energy consumption
constrained parallel applications on heterogeneous distributed
systems. Previous work (solving this problem) adopts a policy
that preassigns the minimum energy consumption for each
unassigned task. Nevertheless, our analysis reveals that such a
preassignment policy could be unfair, and it may not achieve
an optimistic schedule length. Motivated by this, we propose
a new task scheduling algorithm that suggests a weight-based
mechanism to preassign energy consumption for unassigned
tasks. We theoretically prove that our preassignment mecha-
nism can guarantee the energy consumption constraint. Also,
we have conducted extensive experiments based on two real
parallel applications. The results consistently demonstrate that,
compared to state-of-the-art algorithms, our approach can
achieve smaller schedule length while satisfying the energy
consumption constraint.

Keywords-Distributed system, energy consumption, parallel
application, task scheduling, preassignment strategy

I. INTRODUCTION

Computers have been developed to achieve higher per-
formance over the past seven decades. While the perfor-
mance has increased dramatically, power consumption in
computer systems has also increased [1, 2]. Such increased
energy consumption causes severe economic, ecological, and
technical problems [2]. Power conservation is critical in
many computation and communication environments and
has attracted much attention [1–8].

Generally, there are two kinds of approaches to reduce
power consumption in computing systems [2]: (i) using the
thermal-aware hardware design; and (ii) using the power-
aware software design. As for the latter, there is a well-
known mechanism called dynamic voltage and frequency
scaling (DVFS), which dynamically tunes the energy-delay
tradeoff [3, 9]. Owning to this mechanism, power-aware
task scheduling on processors with variable voltages and
frequencies has been extensively studied [3, 10–13]. There
are two main considerations in dealing with the energy-delay
tradeoff: (i) in high performance computing systems, tech-

niques and algorithms usually aim to maximize performance
under certain energy consumption constraints; and (ii) in
low-power devices and systems, techniques and algorithms
usually aim to minimize energy consumption while still
meeting certain performance goals. These two lines of works
can be witnessed in [14–17].

Recently, the problem of minimizing schedule length of
an energy consumption constrained application with prece-
dence constrained sequential tasks was studied in [2] by Li.
Later, the author extended this problem to the context of
constrained parallel tasks [18]. These works were interested
in homogeneous systems with shared memory and they
cannot be applied to heterogeneous distributed systems.
Different from the above works, Xiao et al. [19] studied
a variant problem that aims to minimize schedule length of
an energy consumption constrained parallel application on
heterogeneous distributed systems. To solve this problem,
they developed an algorithm called MSLECC. The basic
idea of their method is to preassign the minimum energy
consumption for each unassigned task to satisfy the energy
consumption constraint, and then minimize the schedule
length in a heuristic manner. With this idea, their algorithm
achieves favourable performance. Nevertheless, we observe
that, for the low priority tasks, the preassignment policy
in MSLECC could be not fair, which may lead to less
optimistic results. To address this issue, this paper develops
a new approach that achieves a better performance.

The main contributions of this paper are as follows.

• We design a preassignment strategy that adopts a
weight-based mechanism (Section III-A), and provide
the rigorous proof to show its feasibility (Section III-B).

• We develop a new task scheduling algorithm to mini-
mize the schedule length while considering the energy
consumption constraint (Section III-C).

• We evaluate our approach and the experimental results
show that it can achieve much shorter schedule length
while satisfying the energy consumption constraint
(Section IV).

In next section, we introduce some preliminaries, and
finally we conclude the paper in Section V.

II. PRELIMINARIES

In this section, we first introduce the models (Section
II-A), and then describe the problem to be studied (Section
II-B), and finally we review state-of-the-art method for this
problem and reveal its limitation (Section II-C).

A. Models

Following prior works [5, 19–22], we use the directed
acyclic graph (DAG) to represent the application model. Let
U =

{
u1, u2, ..., u|U |

}
denote the set of processors, where

|U | is the number of processors. The DAG application model
is defined as G = {N,M,C,W}, where N denotes the set
of nodes in G, M denotes the set of communication edges,
C denotes the set of communication time, W is a matrix
with size |N |×|U |. In addition, we define the followings: (i)
each node ni ∈ N denotes a task; (ii) each edge mi,j ∈M
denotes the communication message from task ni to nj ; (iii)
ci,j ∈ C denotes the communication time of mi,j when
task ni and nj are assigned to different processors; (iv)
wi,k denotes the execution time of task ni running on the
processor uk with the maximum frequency; (v) pred(ni)
and succ(ni) denote the set of direct predecessor tasks and
the set of direct successor tasks of task ni, respectively; (vi)
nentry and nexit denote the task without predecessor and
without successor, respectively.

On the other hand, the power model used in this paper
follows that in [19, 23]. Specifically, the system power
consumption at frequency f is defined as:

P (f) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceff
m)

where Ps denotes static power (similar to [19, 23], in this
paper we also do not consider it, since it is unmanageable),
Pind and Pd denote frequency-independent and frequency-
dependent dynamic power, respectively, h denotes the sys-
tem state (h = 1 means the system is active, and h = 0
means it is inactive), Cef denotes the effective capacitance,
and m denotes the dynamic power exponent.

The minimum energy-efficient frequency, denoted by fee,
is defined as

fee =
m

√
Pind

(m− 1)Cef

Clearly, if the frequency of a processor ranges from the
minimum value fmin to the maximum value fmax, then the
actual frequency f should be in the interval [flow, fmax],
where flow = max(fmin, fee). In addition, since the pro-
cessors in system are heterogeneous, we can define the
following sets:
• The set of Pind:

{
P1,ind, P2,ind, ..., P|U |,ind

}
;

• The set of Pd:
{
P1,d, P2,d, ..., P|U |,d

}
;

• The set of Cef :
{
C1,ef , C2,ef , ..., C|U |,ef

}
;

• The set of m :
{
m1,m2, ...,m|U |

}
;

• The set of actual efficient frequencies:
{f1,low, f1,α, ..., f1,max} ,
{f2,low, f2,α, ..., f2,max} ,

...,{
f|U |,low, f|U |,α, ..., f|U |,max

}

This way, we can compute the energy consumption of task
ni executed on the processor uk with frequency fk,h based
on the following:

E(ni, uk, fk,h) = Pk,h × wi,k ×
fk,max
fk,h

(1)

where Pk,h = Pk,ind + Ck,ef × (fk,h)
mk .

B. Problem Description

For ease of understanding the problem, we first clarify
several definitions.

Definition 1: Given a task ni executed on processor uk
with frequency fk,h, its earliest start time (EST) is denoted
as EST (ni, uk, fk,h), which is computed as
EST(nentry, uk, fk,h)= 0

EST(ni, uk, fk,h)=max

(
avail[k], max

nj∈pred(ni)

{
AFT (nj)+c

′
i,j

})
where avail[k] is the earliest available time while processor
uk is ready for executing a task, AFT (nj) represents the
actual finish time of task nj . c′i,j denotes the communication
time between task ni and nj . c′i,j = 0 if ni and nj are
assigned to the same processor, otherwise, c′i,j = ci,j .

Definition 2: The earliest finish time (EFT) of task ni
executed on processor uk with frequency fk,h is denoted
as EFT (ni, uk, fk,h), which is computed as

EFT (ni, uk, fk,h) = EST (ni, uk, fk,h) + wi,k ×
fk,max
fk,h

(2)
We now describe the problem to be addressed. Specif-

ically, the scheduling problem discussed in this paper is
to find a proper processor and frequency for each task
in application G, so as to (i) generate the minimum
schedule length SL(G), where SL(G) = AFT (nexit) =
min {EFT (nexit)}; and (ii) ensure the actual energy con-
sumption of G, denoted by E(G), is no larger than its given
energy consumption constraint Egiven(G). That is,

E(G) =

|N |∑
i=1

E(ni, upr(i), fpr(i),hz(i)) ≤ Egiven(G) (3)

where upr(i) and fpr(i),hz(i) denote the processor and
frequency assigned to task ni respectively, fpr(i),hz(i) ∈[
fpr(i),low, fpr(i),max

]
, upr(i) ∈ U and 1 ≤ i ≤ |N |.

Let Emin(G) and Emax(G) represent the minimum and
maximum energy consumption of application G, respec-
tively. They are calculated as

Emin(G) =

|N |∑
i=1

Emin(ni) (4)

Emax(G) =

|N |∑
i=1

Emax(ni) (5)

where the minimum and maximum energy consumption of
task ni are computed as

Emin(ni) = min
uk∈U

E(ni, uk, fk,low) (6)

Emax(ni) = max
uk∈U

E(ni, uk, fk,max) (7)

Note that, throughout this paper, we assume Emin(G) ≤
Egiven(G) ≤ Emax(G).

C. State-Of-The-Art
In this subsection we review the existing method closest

to ours, and reveal its limitation through a running example.
I The MSLECC algorithm. In the literature, the state-of-
the-art method for this problem is proposed in [19]. Their
method, called the MSLECC algorithm, consists of several
major steps: (i) it gets the sequence of tasks sorted by the
upward rank values (defined later); (ii) it preassigns the
minimum energy consumption for each unscheduled task to
satisfy the energy consumption constraint (i.e., Egiven(G));
(iii) it transfers the energy consumption constraint to that of
each task; and (iv) it traverses all processors and frequencies
to select a proper processor with the minimum EFT for each
task in the sequence.

Definition 3: The upward rank value (ranku) of a task
reflects its priority among all the tasks in the application
[24]. It is computed as

ranku(ni) =

∑|U |
k=1 wi,k
|U |

+ max
nj∈succ(ni)

{ci,j + ranku(nj)}

It is worth noting that, Step (ii) mentioned above is
the core of their method, since it assures that the energy
consumption constraint is satisfied.

Without loss of generality, one can use {ns(1), ns(2), ...,
ns(|N |)} to denote the sequence of tasks ranked by the ranku
values, and assume that ns(j) is the task that should be as-
signed currently. Accordingly, one can use {{ns(1), ns(2), ...,
ns(j−1)} to denote the set of tasks that have been assigned,
and

{
ns(j+1), ns(j+2), ..., ns(|N |)

}
to denote the set of tasks

that are unassigned. Then, when scheduling the task ns(j),
the energy consumption of application G is computed as

Es(j)(G) =

j−1∑
x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

+ E(ns(j), uk, fk,h) +

|N|∑
y=j+1

Epre(ns(y))

(8)

where Epre(ns(y)) denotes the preassigned energy con-
sumption for task ns(y).

Fact 1: For any task ns(j) (j ∈ [1, ..., |N |]), if

Es(j)(G) ≤ Egiven(G), (9)

then the actual energy consumption E(G) ≤ Egiven(G) (cf.,
Formulate 3) can be satisfied.

Besides Step (ii), another important step is to transfer
energy consumption constraint of G to that of each task,
recall Step (iii). It is based on the followings. Firstly, by
Eqs. 8 and 9, one can have

E(ns(j), uk, fk,h) ≤ Egiven(G)

−
j−1∑
x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

−
|N|∑

y=j+1

Epre(ns(y))

Let the energy consumption constraint of task ns(j) be

Egiven(ns(j)) =Egiven(G)

−
j−1∑
x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

−
|N|∑

y=j+1

Epre(ns(y))

(10)
Further, considering the upper bound Emax(ns(j)), one

can set Egiven(ns(j)) =min{Egiven(ns(j)), Emax(ns(j))}.
Hence, when processing task ns(j), one just needs to con-
sider the following constraint (instead of the total energy
consumption constraint):

E(ns(j), uk, fk,h) ≤ Egiven(ns(j))

Under this constraint, one can assign each task to a processor
with the minimum EFT to obtain the minimum schedule
length. The above idea essentially transfers the energy
consumption constraint of G to that of each task.
I The limitation of MSLECC. We now introduce the concept
of “extra energy”, which will be used in analysing the
limitation of MSLECC.

Definition 4: The extra energy refers to the difference
between the energy consumption constraint of a task and
its preassigned energy consumption. It is computed as

4 Eex(ni) = Egiven(ni)− Epre(ni) (11)

Note that, for the MSLECC algorithm, it sets Epre(ni) =
Emin(ni), and initially, the “total” extra energy of G,
denoted by 4Eex(G), can be computed as 4Eex(G) =

Egiven(G)−
∑|N |
i=1Epre(ni).

To examine the limitation of MSLECC, we execute a pre-
liminary experiment running the application example shown
in Fig. 1. In this experiment, the parallel application with 10

2

𝑛1

𝑛3 𝑛4 𝑛5 𝑛6

𝑛7 𝑛8 𝑛9

𝑛10

18
12

14

119

151323
27

1619

23

17 11
13

Figure 1. An example of the DAG application model.

Table I
POWER PARAMETERS OF PROCESSORS

uk Pk,ind Ck,ef mk fk,low fk,max

u1 0.03 0.8 2.9 0.26 1.0
u2 0.04 0.8 2.5 0.26 1.0
u3 0.07 1.0 2.5 0.29 1.0

tasks is executed on 3 processors; the maximum frequency
of each processor is set to 1.0; the frequency precision is
set to 0.01; the energy consumption constraint is set as
Egiven(G) = Emax(G)× 0.5 = 80.995, and the parameters
of all processors are shown in Table I. Then, the schedul-
ing sequence of tasks is {n1, n3, n4, n2, n5, n6, n7, n8, n10},
Table II shows the execution time of each task on three
processors with maximum frequency, and Table III shows
part of scheduling results.

One can see from Table III that the tasks with higher
priorities usually have more extra energy than those with
low priorities (cf., the fourth column). For example, the
extra energy of task n3 is 18.38 while task n7 is just 0.08.
The underlying reason could be that MSLECC uses the
policy of preassigning the minimum energy consumption
for each unscheduled task; this leads to the vast major-
ity of total extra energy to be shared by the tasks with
higher priories. On the contrary, the low priority tasks have
to find the processors that have low energy consumption
(since the available energy consumption is little); this leads
to less chance to choose optimistic schedule length. The
phenomenon above essentially implies that, the preassign-
ment policy in MSLECC could be somewhat extreme, and
so it could be nice if one can have a more competitive
task scheduling algorithm that allows us to obtain smaller
schedule length while satisfying the energy consumption
constraint. This is just the focus of our paper.

III. OUR SOLUTION

The central idea of our approach is to preallocate the
energy consumption for unscheduled tasks by a weight
mechanism, instead of directly preallocating the minimum
energy consumption for them. In what follows, we first
show how to preassign energy consumption based on the

Table II
EXECUTION TIME OF EACH TASK.

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

u1 14 13 11 13 12 13 7 5 18 21
u2 16 19 13 8 13 16 15 11 12 7
u3 9 18 19 17 10 9 11 14 20 16

Table III
SCHEDULING RESULTS

ni Egiven(ni) Epre(ni) 4Eex(ni)
n1 13.44 2.48 10.96
n3 20.33 1.95 18.38
n4 18.19 2.08 16.11
n2 19.26 2.30 16.96
n5 10.92 2.13 8.79
n6 13.44 2.30 11.14
n9 5.44 3.12 2.32
n7 1.32 1.24 0.08
n8 0.8874 0.8863 0.0011
n10 1.8204 1.8193 0.0011

E(G) = 80.98, SL(G) = 129.3660

so-called weight mechanism (Section III-A), and then prove
that such a preassignment method can always satisfy the en-
ergy consumption constraint (Section III-B). Finally, Section
III-C presents the improved scheduling approach for energy
consumption constrained parallel applications (ISAECC).
A. Preassigning Energy Consumption

We first present several concepts, which benefit to under-
stand our preassignment strategy.

Definition 5: Given Emin(G) and Egiven(G), the improv-
able energy, denoted by Eie(G), is computed as

Eie(G) = Egiven(G)− Emin(G) (12)

Definition 6: Given a task ni, its energy consumption
level Eave(ni) is defined as the average of its maxi-
mum and minimum energy consumption, i.e., Eave(ni) =
Emax(ni)+Emin(ni)

2 .
Like Definition 6, we can define the energy consumption

level of an application G by Eave(G) if replacing ni with
G.

Definition 7: Given a task ni, the weight of its energy
consumption level, denoted by el(ni), is defined as

el(ni) =
Eave(ni)

Eave(G)
(13)

Here
∑|N |
i=1 el(ni) = 1. In the sequel, we show how to

preassign the energy consumption for each task ni based
on the weight.

Specifically, in our approach the preassigned energy con-
sumption Epre(ni) is computed as

Epre(ni) = min {Ewa(ni), Emax(ni)} (14)

where Ewa(ni) is computed based on the following:

Ewa(ni) = Eie(G)× el(ni) + Emin(ni) (15)

where Eie(G) refers to the improvable energy in terms of G
(recall Eq. 12). Note that, Eq. 15 could reflect the basic idea
of our method. Regarding Eq. 14, it is mainly for assuming
that, in the extreme case the preassigned energy consumption
is no larger the upper bound Emax(ni).

To this step, a natural question is “does the above
preassignment mechanism satisfy the energy consumption
constraint?” Next, we address this question positively.

B. Feasibility of The Preassignment Mechanism

To prove the feasibility, we only need to show the follow-
ing theorem holds.

Theorem 1: Given an application G, and assume we
preassign the energy consumption for unscheduled tasks by
the weight mechanism, then each task ns(j) can always find
a processor to satisfy Eq. 9.

Proof: We prove it by induction. Firstly, for the first task
ns(1), all other |N |−1 tasks in application G are unassigned.
Then, by Eqs. 8, 12, 13, 15, and 14, we have

Es(1)(G) = E(ns(1), uk, fk,h) +

|N|∑
y=2

Epre(ns(y))

≤ E(ns(1), uk, fk,h) +

|N|∑
y=2

Ewa(ns(y))

= E(ns(1), uk, fk,h) +

|N|∑
y=1

Ewa(ns(y))− Ewa(ns(1))

= E(ns(1), uk, fk,h) + Egiven(G)− Ewa(ns(1))

and Ewa(ns(1)) ≥ Emin(ns(1)). This means that, ns(1)
at least can find a processor that satisfies its minimum
energy consumption Emin(ns(1)). In other words, when
E(ns(1), uk, fk,h) = Emin(ns(1)), we have

Es(1)(G) = E(ns(1), uk, fk,h) + Egiven(G)− Ewa(ns(1))

≤ Egiven(G)

This essentially shows that Eq. 9 is satisfied for ns(1).
Secondly, without loss of generality, assume that for the

jth task ns(j) it can find a processor upr(s(j)) and frequency
fpr(s(j)),hz(s(j)) to satisfy the Eq. 9. That is,

Es(j)(G) =

j−1∑
x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

+ E(ns(j), upr(s(j)), fpr(s(j)),hz(s(j)))

+

|N |∑
y=j+1

Epre(ns(y))

=

j∑
x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

+

|N |∑
y=j+1

Epre(ns(y))

≤ Egiven(G)

The above formulation can be written as
j∑

x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

≤ Egiven(G)−
|N |∑

y=j+1

Epre(ns(y))

(16)

Thirdly, for the (j + 1)th task ns(j+1), the energy con-
sumption of application G is

Es(j+1)(G) =

j∑
x=1

E(ns(x), upr(s(x)), fpr(s(x)),hz(s(x)))

+ E(ns(j+1), uk, fk,h) +

|N |∑
y=j+2

Epre(ns(y))

(17)
Combing Eqs. 16 and 17, we get

Es(j+1)(G) ≤ Egiven(G)−
|N|∑

y=j+1

Epre(ns(y))

+ E(ns(j+1), uk, fk,h) +

|N|∑
y=j+2

Epre(ns(y))

= Egiven(G) + E(ns(j+1), uk, fk,h)− Epre(ns(j+1))

By Eqs. (15), (14), we can know Epre(ns(j+1)) ≥
Emin(ns(j+1)). That means, when the energy consumption
E(ns(j+1), uk, fk,h) assigned to task ns(j+1) is in the inter-
val
[
Emin(ns(j+1)), Epre(ns(j+1))

]
, we have:

Es(j+1)(G) ≤ Egiven(G) (18)

Putting all together, hence Theorem 1 holds.

C. The Proposed Algorithm

Our approach (i.e., ISAECC) is shown in Algorithm 1. In
brief, Lines 2-6 are for calculating some values (e.g., energy
consumption level) for each task and also for the application
G, while Lines 7-8 are to calculate the preassigned energy
consumption for each task. Lines 9-22 are to select processor
and frequency for each task. In Lines 13-22, all processors
and frequencies are traversed for mapping the task to the
processor with the minimum EFT. Finally, Lines 23-24 are
to calculate the actual energy consumption E(G) and the
final schedule length SL(G).

Theorem 2: The time complexity of the ISAECC Algo-
rithm is O(|N |2 × |U | × |F |), where |F | represents the
maximum number of discrete frequencies from fk,low to
fk,max.

Proof: For each task in the list, selecting the processor
with the minimum EFT has complexity O(|N |× |U |× |F |),
and traversing all tasks needs a time complexity of O(|N |).
Thus, the total time is O(|N |2 × |U | × |F |).

Algorithm 1 The ISAECC Algorithm
Input: G=(N,M,C,W),U,Egiven(G)
Output: SL(G),E(G)

1: Sort tasks in a list dl by descending order of ranku;
2: for (∀i, ni ∈ N) do
3: Compute Emin(ni) and Emax(ni); // Eqs. 6 and 7
4: Compute Eave(ni);
5: Compute Emin(G) and Emax(G); // Eqs. 4 and 5
6: Compute Eave(G);
7: for (∀i, ni ∈ N) do
8: Compute Epre(ni); // Eq. 14
9: while (dl is not empty) do

10: ni = dl.out();
11: AFT (ni) =∞;
12: Compute Egiven(ni); // Eq. 10
13: for all (uk ∈ U) do
14: for all h,fk,h ∈ [fk,low, fk,max] do
15: Compute E(ni, uk, fk,h); // Eq. 1
16: if E(ni, uk, fk,h) > Egiven(ni) then
17: continue;
18: Compute EFT (ni, uk, fk,h); // Eq. 2
19: if (EFT (ni, uk, fk,h) < AFT (ni)) then
20: Let pr(i) = k, and fpr(i),hz(i) = fk,h;
21: E(ni, upr(i), fpr(i),hz(i)) = E(ni, uk, fk,h);
22: AFT (ni) = EFT (ni, uk, fk,h);
23: Compute actual energy consumption E(G); // Eq. 3
24: Compute the schedule length SL(G) = AFT (nexit);
25: return E(G), SL(G)

I A running example. We still consider the application
example described in Fig 1. For the fair comparison, all
parameters are the same as in II-C. Table IV shows the task
scheduling results generated by ISAECC.

From Table IV, we can see that the total energy con-
sumption E(G) = 75.3619, which is less than Egiven(G)
and the value 80.9939 got by MSLECC. The final schedule
length SL(G) = 86.4233, which is better than 129.3600
obtained by MSLECC. In addition, compared with Table III,
the “extra energy” of different tasks with different priorities
does not show large differences. All these results show us
that our method should be effective and relatively fair for
all tasks.

IV. EXPERIMENTS

A. Experimental Settings

We compare the performance of our algorithm with the
HEFT [24] and the MSLECC [19] using the metrics E(G)
and SL(G). The HEFT is a precedence-constrained applica-
tion scheduling algorithm for minimizing the schedule length
on heterogeneous systems. Note that, this method does not
consider the power consumption constraint. In contrast, the
MSLECC is much more close to our algorithm, since both

Table IV
TASK ASSIGNMENT OF APPLICATION IN FIG.1 USING ISAECC

ni Egiven(ni) u(ni) f(ni) AST (ni) AFT (ni) E(ni) 4Eex(ni)
n1 7.7815 u3 0.84 0.0 10.7143 7.6789 0.0000
n3 9.4689 u1 1.0 22.7143 33.7143 9.1300 0.1027
n4 9.1651 u2 1.0 19.7143 27.7143 6.7200 0.3389
n2 11.9277 u3 0.67 10.7143 37.5800 11.7521 2.4451
n5 6.6457 u2 0.68 27.7143 46.8320 6.5964 0.1577
n6 7.5945 u3 0.83 37.5800 48.4233 7.5645 0.0493
n9 11.3104 u2 1.0 53.5800 65.5800 10.0800 0.0300
n7 7.0785 u1 1.0 33.7143 40.7143 5.8100 1.2304
n8 7.4362 u1 1.0 63.4233 68.4233 4.1500 1.2685
n10 11.5131 u2 1.0 79.4233 86.4233 5.8800 3.2862

E(G) = 75.3619, SL(G) = 86.4233

1

3

4 5 6 7

8 9 10 11

12 13 14 15

2

(a) FFT application with ρ = 4

1

3 4 5

6

7 8 9

10

11

13

14

2

12

(b) GE application with ρ = 5

Figure 2. Example of real parallel applications.

of us solve the same problem (with the same constraints),
recall Section II-C.

In our experiments, we select two real parallel applica-
tions: fast Fourier transform (FFT) and Gaussian elimination
(GE) for tests. Fig. 2 (a) shows an example of FFT parallel
application with ρ = 4, where ρ is a parameter representing
the size of application. For the FFT graph, the total number
of tasks is |N | = (2×ρ−1)+ρ× log2 ρ, where ρ = 2y for
some integer y. Note that, the FFT parallel application with
the size ρ has ρ “exit” tasks; see e.g., the tasks numbered
as 12, 13, 14 and 15 in Fig. 2 (a). In order to match the
application model (recall Section II-A), we add a “dummy”
exit task, whose execution time is zero; and we connect
the dummy exit task to the last ρ exit tasks, and set their
communication time to 0. On the other hand, the size of a
GE application is |N | = ρ2+ρ−2

2 . Fig. 2 (b) shows a GE
parallel application example with ρ = 5.

The simulated heterogeneous platform contains 64 pro-
cessors. The application and processor parameters are:
10ms ≤ wi,k ≤ 100ms, 10ms ≤ ci,j ≤ 100ms,
0.03 ≤ Pk,ind ≤ 0.07, 0.8 ≤ Ck,ef ≤ 1.2, 2.5 ≤ mk ≤ 3.0,
and fk,max = 1.0 GHZ. The frequency precision is 0.01
GHz. For ease of observing the effectiveness of ISAECC,
in our experiments we vary the sizes of energy consumption
constraints and the scales of applications, respectively.

Table V
SCHEDULING RESULTS OF FFT APPLICATION WITH ρ = 32.

Egiven(G)
HEFT MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G)
2167.97 5374.18 742 2167.96 1190.73 2167.92 854.53
2648.41 5190.55 730 2648.40 1128.38 2647.24 828.31
3445.54 5221.23 737 3445.54 1027.69 3443.03 825.61
3823.87 4804.34 719 3823.87 972.00 3795.81 750.00
4561.67 5464.16 669 4561.67 830.00 4431.41 691.92

3.5 4.5 5.5 6.5 7.5

700

800

900

1000

1100

1200

l

 HEFT MSLECC ISAECC

S
L
(
G
)

(a)

0 50 100 150 200 250 300

1000

2000

3000

4000

5000

S
L
(
G
)

r

 HEFT MSLECC ISAECC

(b)
Figure 3. The schedule lengths of FFT parallel application. (a) vary-
ing λ (essentially, the energy consumption constraint Egiven(G));
(b) varying ρ (essentially, the scale of application).

B. Experimental Results for FFT Application

Exp-1. In this experiment, we compare the E(G) and SL(G)
of the FFT application under different Egiven(G). The
application size is set to ρ = 32 (i.e.,|N | = 233). Egiven(G)
is set to Emin(G)× λ. We vary λ from 3.5 to 7.5.

Table V shows the scheduling results. We can see that
although HEFT obtains the smaller schedule length, it ex-
ceeds the energy consumption constraint in each case. As
for MSLECC and ISAECC, they are always able to satisfy
the given energy consumption constraint even if the given
energy consumption is small. For the sake of intuition, Fig.
3(a) shows the final schedule length for varying λ (no-
tice: it essentially varies the energy consumption constraint
Egiven(G), since Egiven(G) = λ × Emin(G)). It can be
seen that, compared to MSLECC, our algorithm has the
obvious advantage on the final schedule length, especially
when the given energy consumption is small. This is because
both the preassignment policy of MSLECC and the small
Egiven(G) make the available energy consumption of low
priority tasks turn less, which leads to the long schedule
length. In addition, as we expected, the larger Egiven(G) is,

Table VI
SCHEDULING RESULTS OF FFT APPLICATION WITH λ = 4.5.

ρ |N | Egiven(G)
HEFT MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G)
16 95 1190.79 2216.57 566 1190.78 795.46 1186.68 625.85
32 233 3119.76 5479.67 749 3119.75 1067.00 3115.05 828.00
64 511 6751.48 10741.35 903 6751.48 1484.46 6747.45 1052.53
128 1151 16639.31 22912.71 1060 16639.30 2353.92 16621.53 1165.85
256 2559 31245.50 45115.35 1184 31245.50 4585.00 31241.40 1302.45

Table VII
SCHEDULING RESULTS OF GE APPLICATION WITH ρ = 21.

Egiven(G)
HEFT MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G)
1588.53 3967.66 1992 1588.53 2966.25 1588.48 2383.98
2235.07 4281.90 1929 2235.07 2769.04 2234.13 2214.94
2885.79 4339.69 1922 2885.79 2646.75 2881.44 2166.12
3449.71 3981.84 1910 3449.71 2407.57 3449.53 2061.08
3936.61 4247.82 1850 3936.61 2233.73 3901.48 1972.72

2.5 3.5 4.5 5.5 6.5
1800

2000

2200

2400

2600

2800

3000

S
L
(
G
)

l

 HEFT MSLECC ISAECC

(a)

10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000

S
L
(
G
)

r

 HEFT MSLECC ISAECC

(b)
Figure 4. The schedule lengths of GE parallel application. (a)
varying λ; (b) varying ρ.

the better schedule length we can obtain.

Exp-2. In this experiment, we fix λ to 4.5 (i.e., Egiven(G) =
Emin(G)× 4.5), and then vary the scale of the application.
Specifically, we vary ρ from 16 (i.e., |N | = 95, small scale)
to 256 (i.e.,|N | = 2559, large scale).

Table VI shows the scheduling results. Similar to Exp-1,
although HEFT can obtain the smaller schedule length while
it exceeds the energy consumption constraint in each case.
Also, both MSLECC and ISAECC can always satisfy the
energy consumption constraint. On the other hand, Fig. 3(b)
depicts the variation tendency of the final schedule length.
It can be seen that, for the MSLECC algorithm, the final
schedule length dramatically increases when the scale grows,
while the final schedule length obtained by our algorithm
only increases slightly. This essentially illustrates that our
algorithm has the better scalability.

C. Experimental Results for GE Application

Exp-3. This experiment compares the E(G) and SL(G)
of GE parallel application under different Egiven(G). The
application size is limited to ρ = 21 (i.e.,|N |=230), which

Table VIII
SCHEDULING RESULTS OF GE PARALLEL APPLICATION WITH λ = 4.5.

ρ |N | Egiven(G)
HEFT MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G)
13 90 1064.63 1793.1 1135 1064.62 1735.31 1061.57 1294.65
21 230 2879.52 3952.13 2092 2879.52 2899.03 2863.37 2442.64
31 495 6090.62 9607.13 3144 6090.62 4361.69 6090.43 3291.08
47 1127 13516.70 23625.26 4566 13516.70 7090.65 13513.44 5598.46
71 2555 30591.75 52439.49 7634 30591.75 12042.50 30591.49 8757.40

is roughly equal to that in Exp-1. We vary Egiven(G) from
Emin(G)× 2.5 to Emin(G)× 6.5.

Fig. 4(a) plots the final schedule lengths of all cases, and
Table VII shows the detailed scheduling results. Both of
them indicate that ISAECC achieves better schedule lengths
than MSLECC. Similar to Exp-1, MSLECC and ISAECC
can always satisfy energy consumption constraints while
HEFT always exceeds the given constraints. On the other
hand, combining Exp-3 and Exp-1, it shows that our solution
is feasible for different types of applications.
Exp-4. We fix Egiven(G) to Emin(G)×4.5, and vary ρ from
13 (i.e., |N | = 90, small scale) to 71 (i.e., |N | = 2555, large
scale). These scales are roughly equal to those in Exp-2 for
FFT parallel application.

Table VIII shows detailed scheduling results, and Fig.
4(b) plots the variation tendency of final schedule length
when varying ρ. Similar to Exp-2, the actual energy con-
sumption using ISAECC and MSLECC is still within the
given constraint, and our algorithm can generate the shorter
schedule length, compared against the MSLECC algorithm.
Additionally, by comparing Figs. 4(b) and 3(b), we find
an interesting phenomenon. That is, when ρ increases, the
schedule lengths obtained by our method and HEFT increase
slightly in Fig. 3(b), while they increase dramatically in Fig.
4(b). This phenomenon could be due to that the FFT par-
allel application has better parallelism than the GE parallel
application.

V. CONCLUSION

In this paper, we proposed a new scheduling algorithm to
minimize the schedule length for energy consumption con-
strained parallel applications on heterogeneous distributed
systems. The central idea of our algorithm is using a weight-
based mechanism to preassign the energy consumption for
unassigned tasks. Extensive experiments based on two real
applications consistently demonstrated that our proposed
algorithm is effective and competitive, compared against
state-of-the-art algorithms.

REFERENCES

[1] V. Venkatachalam and M. Franz, “Power reduction techniques
for microprocessor systems,” ACM Comput. Surv., vol. 37,
no. 3, pp. 195–237, 2005.

[2] K. Li, “Scheduling precedence constrained tasks with reduced
processor energy on multiprocessor computers,” IEEE Trans.
Computers, vol. 61, no. 12, pp. 1668–1681, 2012.

[3] P. Macken, M. Degrauwe, M. V. Paemel, and H. Oguey., “A
voltage reduction technique for digital systems,” in ISSCC,
1990, pp. 238–239.

[4] M. Weiser, B. B. Welch, A. J. Demers, and S. Shenker,
“Scheduling for reduced CPU energy,” in OSDI, 1994, pp.
13–23.

[5] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang, “En-
hanced energy-efficient scheduling for parallel applications in
cloud,” in CCGRID, 2012, pp. 781–786.

[6] K. Gharehbaghi, F. Kocer, and H. Kulah, “Optimization of
power conversion efficiency in threshold self-compensated

UHF rectifiers with charge conservation principle,” IEEE
Trans. on Circuits and Systems, vol. 64-I, no. 9, pp. 2380–
2387, 2017.

[7] S. Albers, “Energy-efficient algorithms,” Commun. ACM,
vol. 53, no. 5, pp. 86–96, 2010.

[8] F. Sandoval, G. Poitau, and F. Gagnon, “Hybrid peak-to-
average power ratio reduction techniques: Review and perfor-
mance comparison,” IEEE Access, vol. 5, pp. 27 145–27 161,
2017.

[9] M. R. Stan and K. Skadron, “Guest editors’ introduction:
Power-aware computing,” IEEE Computer, vol. 36, no. 12,
pp. 35–38, 2003.

[10] F. F. Yao, A. J. Demers, and S. Shenker, “A scheduling model
for reduced CPU energy,” in FOCS, 1995, pp. 374–382.

[11] W. Kwon and T. Kim, “Optimal voltage allocation techniques
for dynamically variable voltage processors,” ACM Trans.
Embedded Comput. Syst., vol. 4, no. 1, pp. 211–230, 2005.

[12] J. R. Lorch and A. J. Smith, “PACE: A new approach to
dynamic voltage scaling,” IEEE Trans. Computers, vol. 53,
no. 7, pp. 856–869, 2004.

[13] M. Li and F. F. Yao, “An efficient algorithm for computing
optimal discrete voltage schedules,” SIAM J. Comput., vol. 35,
no. 3, pp. 658–671, 2005.

[14] D. P. Bunde, “Power-aware scheduling for makespan and
flow,” J. Scheduling, vol. 12, no. 5, pp. 489–500, 2009.

[15] S. Cho and R. G. Melhem, “On the interplay of paralleliza-
tion, program performance, and energy consumption,” IEEE
Trans. Parallel Distrib. Syst., vol. 21, no. 3, pp. 342–353,
2010.

[16] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under different operating
conditions,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8,
pp. 1374–1381, 2011.

[17] S. U. Khan and I. Ahmad, “A cooperative game theoretical
technique for joint optimization of energy consumption and
response time in computational grids,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 3, pp. 346–360, 2009.

[18] K. Li, “Power and performance management for parallel
computations in clouds and data centers,” J. Comput. Syst.
Sci., vol. 82, no. 2, pp. 174–190, 2016.

[19] X. Xiao, G. Xie, R. Li, and K. Li, “Minimizing schedule
length of energy consumption constrained parallel applica-
tions on heterogeneous distributed systems,” in ISPA, 2016,
pp. 1471–1476.

[20] G. Zeng, Y. Matsubara, H. Tomiyama, and H. Takada,
“Energy-aware task migration for multiprocessor real-time
systems,” Future Generation Comp. Syst., vol. 56, pp. 220–
228, 2016.

[21] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An
energy-efficient task scheduling algorithm in dvfs-enabled
cloud environment,” J. Grid Comput., vol. 14, no. 1, pp. 55–
74, 2016.

[22] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under different operating
conditions,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8,
pp. 1374–1381, 2011.

[23] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy
efficiency and reliability enhancements in real-time appli-
cations with precedence constraints,” ACM Trans. Design
Autom. Electr. Syst., vol. 18, no. 2, pp. 23:1–23:21, 2013.

[24] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous com-
puting,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3,
pp. 260–274, 2002.

	Introduction
	Preliminaries
	Models
	Problem Description
	State-Of-The-Art

	Our Solution
	Preassigning Energy Consumption
	Feasibility of The Preassignment Mechanism
	The Proposed Algorithm

	Experiments
	Experimental Settings
	Experimental Results for FFT Application
	Experimental Results for GE Application

	Conclusion

