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Abstract—Oceans are important for scientific research and also
for global economic and military security. Usually, wireless ad
hoc networks are chosen to transform real-time data collected by
ocean monitoring sensors (nodes). Due to the random motion of
waves or the random direction of the wind, nodes in the network
might become detached from the coverage of the network. In
this case, the detached nodes can either send the collected data
directly to the base station at the cost of consuming more energy
or wait for a period of time to rejoin the network with the
price of sacrificing the real time of the collected data. In this
paper, we model the optimal waiting time for detached nodes
before directly sending the data in the dynamic environment
of ocean monitoring. For this purpose, we need to address two
problems. The first is how to calculate the rate of coverage
with a different number and different broadcast radii of nodes.
The second is when a node detaches from the coverage of the
network, how much time will it need to wait before it rejoins the
network. We first establish the motion model of nodes, which
is the basis to deduce the probability distribution of a certain
time when the detached node rejoins the network. Based on the
probability distribution, the waiting time of the detached nodes
can be optimally determined, aiming to achieve a good balance
between energy consumption and data timeliness. Finally, a series
of simulations is conducted to validate the effectiveness of our
proposed method.

Index Terms—delay tolerant network, waiting time, mobile ad-
hoc network, ocean information collection

I. INTRODUCTION

The real-time observation of oceans is a very important
research topic. In this scenario, various sensors (nodes) are
widely used to collect ocean data for different applications
[1] [2]. The collected data is usually communicated between
sensors and gathered by one or more head nodes which send
all the data to the base station or the satellite.

However, the randomness of the ocean environment makes it
challenging to provide stable communications between nodes.
To deal with this dynamic, it is effective to use a mobile ad-hoc
network (MANET) to build up the connections between nodes
when the communication environment is mobile [3], but the
frequent reorganization of the network caused by the changing
ocean conditions is catastrophic to the energy consumption

of the whole network. In addition, a delay tolerant network
(DTN) can support an intermittent connectivity demand, which
means that each node can save the collected data temporarily
and wait until the node moves into the network and the
connection is rebuilt [4].

The movement of nodes in the ocean can be simulated
as a random walk in two dimensions, which can represent
the changing ocean conditions to some extent [5]. If a node
moves out of the network and back in, there are actually two
possibilities. One is that the node returns to communicate
with the original head node, and the other is that it may
build up connections with other head nodes in the network.
We can easily see that with a different number and various
broadcast radii of nodes, the proportion of the effect of the
two possibilities on the result, namely the time spent to rejoin
the network, changes as well.

Therefore, when a node is detached from the network, there
are two actions that can be taken. The first is that the node
can directly send the collected data to the base station but at
the cost of consuming more energy. The second is that the
node waits for some time to rejoin the network and sends the
data to a head node, which may affect the real time of data. In
the dynamic ocean environment, each detached node needs to
make a decision as to how long it should wait before directly
sending the data in order to strike a balance between energy
consumption and data timeliness.

In this paper, we model the relationship between the re-
joining time and the number and broadcast radius of the
nodes in the network, which is utilized to optimally determine
the waiting time for nodes when they are detached from the
network. In addition, based on the timeliness model of data,
this paper proposes a way to determine the maximum waiting
time before the detached node gives up waiting to rejoin the
network and sends the data directly to the base station.

The main contributions of this paper are summarized as
follows:

• We build a random walk model to mimic the motion
of nodes, and simulate the time spent on restoring a



connection with the original cluster for detached nodes. A
formula (model 1) is provided to calculate the possibility
that a node rejoins the original cluster in a designated
time.

• We use statistic results to represent the coverage rate of
the network with a different number and broadcast radius
of nodes. A relationship (model 2) is discovered between
the coverage rate and these two variables.

• We introduce a new concept, called equivalent scale, to
describe the shape and size of the areas that are not
covered by the network. We calculate the proportion of
model 1 and model 2 in the effect of rejoining time, and
build up the relationship between this proportion and the
equivalent scale.

• We choose exponential decay characteristics as the model
of data timeliness [6] and propose a method to optimally
determine the waiting time under consideration of both
energy consumption and data timeliness.

The rest of the paper is organized as follows. Section
II briefly introduces the background knowledge. Section III
reviews the related work. Section IV provides details on three
proposed models and determines the optimal solution to the
waiting time. Section V presents the simulation results. Section
VI concludes the paper.

II. BACKGROUND

To ensure this paper is self-contained, we briefly introduce
the background knowledge of wireless sensor networks.

A. Basic Terms

A mobile ad hoc network (MANET) is a continuously
self-configuring, infrastructure-less network of mobile devices
connected by a wireless link [7]. In a MANET, sensors (nodes)
are divided into different groups and the group to which nodes
belong may adjust dynamically according to the clustering
rules and their positions [8]. In a cluster, nodes can act
in different roles which means they are assigned different
functions and the role of nodes also changes over time. In the
ocean scenario, there are three roles which nodes can perform.

• Slave node: Sends the collected data to a head node.
• Head node: Gathers the data sent by the slave nodes and

forwards the gathered data to a gateway node.
• Gateway node: Sends the gathered data to a base station

or satellite.

B. The Network Protocol

Many routing protocols have been proposed for MANETs
[9], but this is not our main point, so we do not discuss this in
detail. After the network has been built and the nodes start to
work, the head node of a cluster will broadcast its identity to
the slave nodes at intervals, in order to let the slave nodes know
whether they are still in the network or not. If a slave node
does not receive the information from the head node, it moves
out of the network and it waits until it finally receives the
broadcast from the head nodes. During the waiting time, the
slave node can choose to send data directly to the base station

or continue waiting. Our later work is to propose a method to
optimally determine the waiting time for the detached slave
nodes with the aim of balancing between energy consumption
and data timeliness.

III. RELATED WORK

Current work related to this paper includes mobile ad hoc
networks and delay tolerant networks, which are discussed in
the following two subsections.

A. Mobile Ad hoc Networks

The mobile ad-hoc network (MANET) is a kind of wire-
less sensor network. There are many routing protocols or
algorithms for different networking purposes [10] [11] [12],
including the consideration of energy consumption. In ad-
dition, the influence of the number of nodes and broadcast
radius to connectivity has been studied frequently [13], and
several studies have investigated the coverage of MANETs
[14], focusing on the design of node deployment to improve
coverage. However, when the motion of nodes is random,
deployment becomes meaningless, so we propose a model
to calculate the coverage of nodes in MANETs with random
distribution.

B. Delay Tolerant Networks

The delay tolerant network (DTN) was firstly proposed
because of the unstable communication in mobile or extreme
environments [15]. Of the different alternatives, the spray and
wait routing protocol is widely used in DTN [16]. In most
works, when a DTN node is waiting, there are often two
strategies. One is to wait until the connection is rebuilt, and
the other is to abandon the information if no connection is
rebuilt after waiting a certain time [17]. But it is the best
of authors’ knowledge that few studies have focused on the
optimal waiting time of nodes in different situations, and no
research has proposed that the waiting node can increase the
transmit power to enlarge the broadcast radius to build up
the connection with base stations, instead of just waiting or
abandoning the information.

Different from existing works, in our scenario, when a node
detaches from the network and loses its connection with the
head node, it has two choices. The first is to change itself
into a head node or even a mobile ad-hoc network and send
data directly to the base station on its own. The other is
to wait for the connection request from the head node of
the network and rebuilding the connection. This decision is
basically whether to split a new small mobile ad-hoc network
from the original one or to change part of it into a delay
tolerant network. Of course, there are many advantages of this
MANET-DTN combination and many research studies have
contributed greatly to its development and refinement, some of
which is strongly related to our work. [18] shows the protocols
to switch between MANET and DTN; [19] shows how to
select nodes in MANET-DTN to build a stable connection.
Many studies have contributed significantly to the basic theory
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of this hybrid network, and our paper can be seen as a way
of implementing this network application.

It should be noted that no matter which strategy is chosen,
either waiting or sending, the decision making is always based
on data timeliness, energy consumption and other costs. The
core is to compute the optimal waiting time for detached
nodes for a given optimization objective. This paper provides
a method to calculate the waiting time for detached nodes
and comprehensively considers energy consumption and data
timeliness.

IV. OPTIMAL SOLUTION TO WAITING TIME

Aiming to strike a good balance between energy consump-
tion and data timeliness, we propose a method to find the
optimal waiting time of detached nodes before they directly
send data to the base station. As shown in Fig. 1, we first
establish the motion model of nodes, which is the basis to
deduce the time probability distribution when the detached
node rejoins the network. Based on the probability distribution,
the waiting time of the detached nodes can be optimally
computed.

A. Random Walk Model of Nodes

To simulate the motion of nodes in the dynamic ocean
environment, we introduce a two-dimensional random walk
model, which can distinguish different ocean conditions by the
changing parameters. The model is that, in each time interval,
the node chooses a random direction and moves a step towards
the direction. For example, assume that the time interval is 1,
the length of each step is also 1, and the number of steps is
100. Fig. 2(a) shows the scatter plot of nodes originally located
at the origin (0, 0) by repeating 10,000 simulations, which can
reflect the probability distribution to some extent.

There are two ways to simulate the motion speed of nodes.
One is to change the number of steps N , and the other is
to vary the length of each step l. Suppose the maximum
displacement of nodes is dmax, which is equal to the product
of N and l, dmax = N ∗ l. We can see that dmax can be
seen as a parameter to measure the motion speed, but a same
dmax with different N and l can cause different probability
distribution, such as shown in Fig. 2(b) and Fig. 2(c), which
respectively depict the probability distribution for N = 1, 000,
l = 1 and N = 100, l = 10.

This can be explained by the difference of variance of the
two probability distributions. Assume that the variance in Fig.

2(a) is D1, where each step is recorded as a random variable
Xi, and Y1 represents the whole random walk, we have

Y1 =

N∑
i=1

Xi.

For Fig. 2(b), N is increased 10 times, so the formula changes
to

Y2 =

10N∑
i=1

Xi =

10∑
i=1

Y1i.

As the variance of Y1 is D1, so the variance of Y2 is 10D1.
For Fig. 2(c), l is increased 10 times, so the formula changes
to

Y3 =

N∑
i=1

10Xi = 10Y1.

so the variance of Y3 is (10D1)
2 = 100D1.

In this paper, the model in Fig. 2(b) is used to describe
different motion speeds. That is, the length of each step l is
constant, but the number of steps N is changing, considering
the factor that influences the speed of the nodes is mostly
the ocean condition. When the ocean condition is rough, the
direction of the waves or the wind may change more frequently
and the force can be stronger, making the node move in the
same distance in a shorter time compared with a calm ocean
condition. We assume that in a certain time interval, the node
goes through a whole random walk process: moves N steps
and the length of each step is l, which means that the node
moves l with 1/N time intervals. Therefore, changing N can
better reflect the different motion speeds of nodes in a dynamic
ocean environment.

B. Rejoining Network Model

To calculate the rejoining time probability distribution of
the detached nodes, we first assume two extreme conditions,
shown in Fig. 3, which compares networks with low and high
values of n and r, where n denotes the number of nodes and
r represents the broadcast radius of nodes. We can see that if
n and r have small values, the coverage of networks is low
as well, and vice versa. From Fig. 3(a), if a node leaves a
cluster, its surroundings are probably empty without any other
clusters, so the time probability distribution of nodes to rejoin
the network in this condition is similar to that of rejoining the
original cluster of the node, which will be discussed in section
IV-B1. Simultaneously, from Fig. 3(b), if n and r are large,
because the scale of the uncovered area is much smaller than
the motion range of the node, then whether the node can rejoin
the network is equivalent to scattering a node in the area to
observe whether the node is covered by the network, which
will be discussed in section IV-B2.

After analyzing the two extreme models (or we can see
them as two factors), we can infer that when calculating the
normal conditions where n and r are neither too low nor too
high, it can be seen as the sum of the two models after each
of which is multiplied by a given weight that is determined
by the coverage of the network, and this relationship will
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Fig. 4. Framework of the rejoining network model

be discussed in section IV-B3. The framework to build the
rejoining network model for detached nodes is depicted in
Fig. 4.

Of course, directly calculating the rejoining time probability
distribution seems a simple solution to this problem, but it has
several disadvantages. Firstly, the simulation time might be
much longer by considering a large number of combinations
of n and r. Secondly, the simulation may not directly build
specific relationships with n or r of networks easily. Thirdly,
the results can be discrete because there are still many dif-
ferences between networks with the same n and r. Therefore,
we choose to use an extreme condition weighting method to
calculate the rejoining time of detached nodes.

1) Rejoining the Original Cluster:
In cases where the network coverage is low, when a node

moves out of the cluster, the following will show how many
time intervals have passed before the node is detected to rejoin
the original cluster. Based on the motion model of nodes
described in section IV-A, a series of simulations is conducted
where the number of steps N varies from 1 to 100 to represent
different motion speeds. 100,000 nodes are accounted for in
each speed, and the results are shown in Fig. 5.
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Fig. 6. Probability distribution for a certain rejoining time

This figure shows the number of rejoined nodes in different
time intervals ranging from 1 to 49, where different curves
indicate different motion speeds. However, in this figure,
we cannot distinguish between different curves, because the
rejoining time probability distribution has little relevance to
the node speed, which can also be seen in Fig. 6, which
respectively represents the number of rejoined nodes with
different speeds for 3 and 30 time intervals.

Fig. 6 shows that the probability distribution has little
relevance to the speed. Of course, this conclusion is not to
say that no matter how fast the node moves, the time that
a detached node takes to rejoin the original cluster does
not change any more. When the speed is quite fast (N is
much larger than 100), this conclusion may not be effective.
However, the speed cannot reach such a high level in the real
condition, so we can consider that the probability distribution
has no relevance with the speed in this paper.

Data fitting is used to express the probability distribution of
the rejoining time more specifically. After we know that speed
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Fig. 7. Fitting of the rejoining original cluster model

is not one of parameters influencing the results, the fitting data
is the average of different speeds for a certain rejoining time.
The target function is

num = Atp

where num is the number of rejoined nodes, and t is the
rejoining time. The fitting results are

A = 35496.9, p = −1.4210,

and the determination coefficient is 0.97, which means the
relationship is very clear. Fig. 7 shows the fitting results.
Dividing parameter A by the total number of nodes, namely
100,000, gets

prob = 0.354969t−1.4210 (1)

where prob represents the probability that a detached node
rejoins the original cluster in a certain time t.

To reach a conclusion, parameters A and p are also calcu-
lated with different speeds (number of steps N ), and the results
are shown in Fig. 8. We can see that even if the speed changes,
the fitting results of A and p do not show much difference.
Thus, the conclusion is effective.

2) Network Coverage Model:
In this section we discuss the other extreme case where n

and r have large values. It is apparent that as n and r increase,
the coverage rate increases as well. Suppose the nodes are
scattered in a 100*100 area, the number of nodes ranges from
10 to 50 and the broadcast radius also ranges from 10 to 50.
We use a statistical method to calculate the coverage rate of
the network. With a given n and r, we first generate 100
networks. Then, in each network, we randomly scatter 1,000
nodes, count the number of nodes in the network and calculate
the average number for different networks with the same n and
r. The quotient of the average number divided by 1,000 is seen
as the coverage rate of the network.

Fig. 9 shows part of the simulation results. Fig. 9(a)- 9(d)
show the relationship between the coverage rate and n (r) with
constant r (n). From Fig. 9, we can see that the relationship
between coverage rate and both the number of nodes and the
broadcast radius can be described by the function

Cov = 1− eax+b
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Fig. 8. Fitting results of parameters

where Cov represents the rate of coverage and x is either the
number of nodes or the broadcast radius. Taking a logarithm
of the two ends of the equation gets

ln(1− Cov) = ax+ b

Then, the binary function should be introduced to let n and r
be expressed in a whole equation

ln(1− Cov) = krN + sN +mr + t

where k, s,m, and t are the parameters waiting to be fitted.
The fitting results are

k = −0.007137156, s = −0.023377563

m = −0.05977249, t = 0.514174569

and the determination coefficient is 0.996, which means that
the fitting results are excellent. The function of the coverage
rate to the number of nodes and the broadcast radius is
expressed as

Cov = 1− ekrN+sN+mr+t (2)

where k, s,m and t are shown above.
To better reveal the fitting results, Fig. 10 makes a com-

parison between the scatter plot of the simulation data and
the surface of the fitting function. From this, we can see that
the two are very similar, which proves the effectiveness of the
fitted function.

3) Rejoining Time Calculation:
In this subsection we discuss the calculation of the weight

of the two proposed models when they are synthesized to a
general model. First, we need to identify the reason why the
coverage of networks can influence the weights of the two
models proposed in section IV-B1 and IV-B2. As the coverage
rate increases, the uncovered area becomes smaller and more
crowded, which means that the detached node can only move
in a shorter distance to rejoin the network. Obviously, the
distance is directly related to the rejoining time of the node. So,
we create the concept equivalent scale to describe the distance
the node will move, which is defined as

L =
√
1− Cov (3)

where L is the equivalent scale, and Cov is the coverage rate
of network. 1−Cov means the uncovered area, and its square
root reflects the distance the detached node moves before it
rejoins the network, as explained above.
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Now, we have two models. The first is Equation (1),
characterizing the probability distribution of a detached node
rejoining the original cluster in a certain time t. The second is
Equation (2), modeling the relationship between the coverage
rate of networks and the number or broadcast radius of nodes.
Based on these two models, the probability of a detached node
rejoining the network can be generalized as

PROB = W ∗ prob+ (1−W ) ∗ Cov

where W is the weight of the first model, and 1 −W is the
weight of the second model. From the equation above we can
get W

W =
PROB − Cov

prob− Cov

and the ratio of the two weights

K =
1−W

W
=

prob− PROB

PROB − Cov
(4)

From the analysis above, the larger the equivalent scale, the
fewer the existing clusters surrounding the detached node. In
this case, the weight of the first model becomes larger, and the
ratio defined in Equation (4) becomes smaller. Therefore, we
assume that the ratio is highly related to the equivalent scale,
and obviously, they are negatively correlated.

With the given number of nodes {10, 20, 30, 40, 50}, and
the broadcast radius {10, 20, 30, 40, 50}, 10 networks are
constructed in each condition to calculate the rejoining time of
the detached nodes, and the whole process is repeated 2,000
times. It is worth noting that if a node reaches the boundary
of the 100*100 area, its movement will meet the reflection
law. Fig. 11(a) and Fig. 11(b) respectively show the ratio of
weights K and the reciprocal of the equivalent scale when the
rejoining time is set to 1.
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The linear relationship is obvious, so the fitting equation is

K =
a

L
+ b (5)

where K is the ratio of weights and L is the equivalent scale.
The fitting results are

a = 3.8250, b = −5.30412

Fig. 12 shows the fitting results, and the correlation coefficient
is 0.87, so they are highly correlated.
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After discussing the probability when the rejoining time is
equal to 1, this paper also discusses the probability when t >
1. When t > 1, this means the distance between the boundary
and the detached node becomes larger and the influence of
the shape of the uncovered area reduces. That is, if the node
has not rejoined in a short time, the probability distribution
of the rejoining time has little relationship with the rate of
coverage. So, we assume that when t > 1, the probability
of the rejoining time conforms to the probability distribution
of the detached node rejoining the original cluster, which is
modelled in Equation (1).



It should be noted that when t > 1, PROB divided by the
whole t > 1 probability (1 − PROBt=1) is equal to prob
divided by (1− probt=1), instead PROB is directly equal to
prob when t > 1. This means PROBt=i is equal to probt=i

under conditions where the detached node has not rejoined
when t = 1. Here is an example: If PROB is 0.8 and prob
is 0.354969 when t = 1; when t = 2, prob is 0.132564, and
PROB is calculated as below:

PROBt=2 = 0.132564 ∗ 1− 0.8

1− 0.354969

To sum up, when t > 1, the probability can be written as

PROB = prob ∗ 1− PROBt=1

1− probt=1
(6)

C. Optimal Solution of Waiting Time

Considering energy consumption and data timeliness, this
part proposes a method to get the optimal solution of waiting
time as a reference. The data timeliness conforms to the
exponential decay model, where V alue represents the value
of data with time t.

V alue = Ae−at

Assume that the time the detached node decides to send data
directly to the base station is T , and sending data collected
in one time interval to the head node is assumed to be 1.
At the same time, data is continuously collected during the
waiting time, so if the node has waited for T , then the energy
consumption of sending all this data to the head node is T ,
and to the base station is M times that to the head node, which
is MT . Of course, the timeliness of data is the sum of all the
values of data which have not been sent in T , which is

V alueT =

T∑
i=1

Ae−ai

After comprehensively considering both the timeliness of
data and energy consumption, the whole profit PT for waiting
time T can be seen as

PT = V alueT − ET

where V alueT and ET respectively represent the timeliness
of data and the energy consumption when the waiting time is
T . Then we can get the expectation of the whole profit when
the waiting time is T

E(PT ) =

T∑
i=1

PROBt=i(V aluei − i)+

(1−
T∑

i=1

PROBt=i)(V alueT −MT )

(7)

V. SIMULATIONS

A. Simulation of Rejoining Network Model

To prove the effectiveness of the rejoining network model
detailed in section IV-B, the simulation assumes that the
number of nodes is 25, and the broadcast radius is 25 as well.

In this condition, the rate of coverage Cov = 0.8661 and the
equivalent scale L =

√
1− Cover = 0.3659. We calculate the

probability distribution of the rejoining time and compare it
with the simulation results. The simulation is repeated 1,000
times in MATLAB R2016a, and the results are compared with
the 1000 corresponding calculation results, as shown in Table
I. Fig. 13(a) compares the calculation curve and the simulation
scatter plots, and Fig. 13(b) shows the partial enlargement of
Fig. 13(a) ranging RejoiningT ime from 5 to 49.

TABLE I
COMPARISON RESULTS

t Calc Simu t Calc Simu
1 782.9 780.8 26 1.165325 1.2
2 44.60266 51.1 27 1.104476 0.6
3 25.06889 28.8 28 1.048849 1.2
4 16.65701 19.3 29 0.997831 0.7
5 12.13076 14.4 30 0.9509 0.8
6 9.36206 11.2 31 0.90761 0.9
7 7.520384 9.6 32 0.867573 1.1
8 6.220617 6.8 33 0.830455 0.8
9 5.261938 5 34 0.795963 1

10 4.530273 5.6 35 0.763842 0.8
11 3.956447 4.8 36 0.733869 0.4
12 3.496293 3.8 37 0.705846 0.4
13 3.120404 4.5 38 0.679598 0.5
14 2.808513 3.2 39 0.65497 0.6
15 2.546236 2.8 40 0.631825 0.7
16 2.32311 2.3 41 0.61004 0.1
17 2.131358 2.4 42 0.589504 0.2
18 1.965088 1.6 43 0.570119 0.6
19 1.819766 2.1 44 0.551795 0.2
20 1.691846 1.8 45 0.534453 0.5
21 1.578522 1.3 46 0.518019 0.7
22 1.477548 1.7 47 0.502427 0.9
23 1.387104 1.4 48 0.487619 0.4
24 1.305702 0.9 49 0.473539 0.6
25 1.232116 1
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Fig. 13. Simulation results of rejoining network model

B. Simulation of Waiting Time Decision

From the relationship in Equation (7), let n = 25 and
r = 25 as an example, and we undertake a simulation to
verify the method to compute the optimal waiting time for
the detached nodes. Assume the parameters A, a, M and
the prediction of waiting time are shown in Table II.

The simulation is repeated 1000 times for each case. The
average profits of different T from 1 to 10 are respectively
shown in Fig. 14. From the results, we can see that T = 6, 3, 2
and 4 are all optimal solutions of the waiting time in those
conditions which conform to the prediction results in Table II.
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Fig. 14. Simulation results of optimal waiting time

TABLE II
SIMULATION PARAMETERS

A a M Prediction
100 0.1 100 6
80 0.1 100 3
100 0.2 100 2
100 0.1 120 4

From the results, we can draw several conclusions:
• As A decreases, the optimal waiting time becomes shorter

because a decrease in A means more energy consumption,
so the data should be sent earlier to prevent accumulating.

• As a increases, the optimal waiting time becomes shorter,
which means the value of the data decreases rapidly, so
it should be sent earlier.

• From the rejoining time probability distribution, we can
see that if the node has not rejoined in T = 1, then its
rejoining probability is much lower later. So, after T = 1,
if M increases, the data should be sent more quickly,
because once the node has not rejoined after a long time,
then the energy consumption will be huge because of the
accumulation of data.

VI. CONCLUSION

In this paper, we propose a method to characterize the
rejoining time probability distribution of a node that moves
out of the network. Then, considering the timeliness of data
as well as the energy consumption, we use the probability
distribution to compute the optimal waiting time for a detached
node before the node sends data directly to the base station or
satellite instead of continuing to wait to rejoin the network and
send data to the head node. This paper utilizes a new strategy
to calculate the waiting time of the delay tolerant network,
which is to separately calculate the simple factors influencing
the waiting time, and to endue them with proper weights.
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