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Abstract

Sentence similarity modeling lies at the core of
many natural language processing applications, and
thus has received much attention. Owing to the suc-
cess of word embeddings, recently, popular neural
network methods have achieved sentence embed-
ding, obtaining attractive performance. Neverthe-
less, most of them focused on learning semantic
information and modeling it as a continuous vec-
tor, while the syntactic information of sentences has
not been fully exploited. On the other hand, prior
works have shown the benefits of structured trees
that include syntactic information, while few meth-
ods in this branch utilized the advantages of word
embeddings and another powerful technique — at-
tention weight mechanism. This paper makes the
first attempt to absorb their advantages by merg-
ing these techniques in a unified structure, dubbed
as ACV-tree. Meanwhile, this paper develops a
new tree kernel, known as ACVT kernel, that is
tailored for sentence similarity measure based on
the proposed structure. The experimental results,
based on 19 widely-used datasets, demonstrate that
our model is effective and competitive, compared
against state-of-the-art models.

1 Introduction
Sentence similarity is a fundamental metric to measure the
degree of likelihood between a pair of sentences [Mikolov
et al., 2013; Kenter et al., 2016; Conneau et al., 2017],
and plays an important role for many applications [Pilehvar
and Navigli, 2015; Iyyer et al., 2015; Jiang and Wu, 2017;
Jiang et al., 2015]. Measuring sentence similarity is chal-
lenging due to the ambiguity and variability of linguistic
expression, and thus has received much attention in re-
cent years [Wieting et al., 2016; Pennington et al., 2014;
Yu and Dredze, 2015]. A large number of prior works fo-
cused on feature engineering, and several types of sparse fea-
tures have been shown to be useful, such as knowledge-based
[Fellbaum, 1998] and corpus-based [Guo and Diab, 2012].
Some methods also used the combination of various features
and multi-task learning [Xu et al., 2014].

Recently, owing to the success of word embeddings [Ben-
gio et al., 2003; Mikolov et al., 2013], researchers have
attempted to study sentence similarity modeling via sen-
tence embeddings. This approach has become a success-
ful paradigm in natural language processing (NLP) commu-
nity [Kenter et al., 2016; Wang et al., 2017]; and partic-
ularly some studies have used the attention weight mecha-
nism to further enhance the performance [Wang et al., 2017;
Arora et al., 2017]. In this line of works, most previous
studies focused on learning semantic information and mod-
eling it as a continuous vector, while the syntactic infor-
mation of sentences are not fully exploited. On the other
hand, prior works have shown the benefits of structured
trees that include syntactic information [Croce et al., 2011;
Severyn et al., 2013]. Yet, few works in this branch utilized
the advantages of word embeddings and the attention weight
mechanism.

Inspired by the above observations, in this paper we at-
tempt to absorb the advantages of the above mentioned tech-
niques, and develop a more efficient method. In a nutshell,
our model uses a structured manner for sentence similar-
ity modeling. It seamlessly integrates semantic informa-
tion, syntactic information, and the attention weight mech-
anism. To measure similarity, we develops a new tree ker-
nel, known as the ACVT kernel, that is tailored for our pro-
posed structure and is designed for high operability. Our
model can be used as a general framework, since one can
view word embedding and attention weight as the build-
ing blocks of the framework, allowing users to replace them
using other on-shelf (or more powerful, developed in the
future) word embedding techniques and attention weight
schemes. Besides, unlike most of sentence embedding-based
models, our model can be free from time-consuming learn-
ing/training, once word embeddings are available. In this re-
gard, it is the same as the methods in [Wieting et al., 2015;
2016], which are word embedding-based models. Neverthe-
less, our model can achieve better performance on almost all
datasets used in our experiments, compared against the word-
embedding based models.

To summarize, the main contributions of this paper are:

• We propose a new structure for sentence similarity mod-
eling. Our model wisely combines syntactic informa-
tion, semantic features, and attention weight mechanism
together, absorbing the merits of various techniques.



Our model is easily understood and implemented, but
without loss of effectiveness (Section 3.1).

• We developed the ACVT kernel that can allow us to ef-
ficiently perform similarity measure based on the pro-
posed structure (Section 3.2).

• We conduct extensive experiments based on widely-used
benchmark datasets (Section 4). The experimental re-
sults consistently demonstrate the superiorities and com-
petitiveness of our proposed model.

2 Background
In this section we review several main techniques, for ease of
understanding our proposed model.
Constituency-based parse tree. It is known as the con-
stituency tree. The interior nodes are labelled by non-terminal
categories of the grammar, while the leaf nodes are labelled
by terminal categories [Carnie, 2012]. Each node in the tree
is either a root node, a branch node, or a leaf node. A root
node doesn’t have any branches on top of it. Within a sen-
tence, there is only ever one root node. A branch node is
a parent node that connects to two or more child nodes. A
leaf node, however, is a terminal node that does not dominate
other nodes in the tree. The fundamental trait of the con-
stituency tree is that we view sentence structure in terms of
the constituency relation. Consider a sentence “Love makes
man grow up” as an example, the constituency tree that repre-
sents the syntactic structure of this sentence is shown in Fig-
ure 1. Note that, by convention, the constituency tree usually
uses some abbreviations. For example, “S for sentence”, “N
for noun”, “NP for noun phrase”, “V for verb”, “VP for verb
phrase”, and so on.
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Figure 1: Constituency tree .

Word embedding. Recently, a popular framework can allow
users to represent words as continuous vectors that capture
lexical and semantic properties of words [Bengio et al., 2003;
Mikolov et al., 2013]. Usually, this technique is known
as word embedding (a.k.a., distributed vector representation
of words). Figure 2 shows an example of this framework
(notice: for ease of understanding, the readers can rotate
the figure 90 degrees). In brief, in this framework every
word is mapped to a unique vector that is represented by
a column in a matrix W . The column is indexed by po-
sition of the word in the vocabulary. The concatenation
or sum of the vectors is then used as features for predic-
tion of the next word in a sentence. More formally, given
a sequence of training words w1,w2,w3, ...,wT , the objec-
tive of the word vector model is to maximize the average

up

W W W

love makes man

Word Matrix

Concatenate/Average

Classifier

W
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Figure 2: Framework of word embedding.

log probability 1
T

∑T−k
t=k log p(wt|wt−k, ..., wt+k). The neu-

ral network based word embeddings are usually trained us-
ing stochastic gradient descent where the gradient is obtained
via backpropagation. After the training converges, words
with similar meaning are mapped to a similar position in
the vector space. For example, “pretty” and “beautiful” are
close to each other, whereas “beautiful” and “cup” are more
distant. The prediction task is typically done via a multi-
class classifier, such as softmax. It can be formulated as
p(wt|wt−k, ..., wt+k) = eywt∑

t e
yi

. Each of yi is un-normalized
log probability for each output word i, and it is computed as
y = b + Uh(wt−k, ..., wt+k;W ), where U , b are the soft-
max parameters, and h is constructed by a concatenation or
average of word vectors extracted from matrix W .

Attention weight mechanism. Most of neural network
based sentence representation models treat each word in sen-
tences equally [Le and Mikolov, 2014; Kiros et al., 2015;
Wieting et al., 2016]. This mechanism could be ineffective
since it is inconsistent with the way that human read and un-
derstand sentences (i.e., reading some words superficially and
paying more attention to others). So far, extensive studies
have proven that word attributes, as represented by frequency,
POS tag, length, Surprisal, etc., are all correlated with human
reading time [Barrett et al., 2016]. Thereby, researchers have
considered to assign words with different weights (known as
attention weight mechanism), and there are many schemes
to assign attention weights to words, such as smooth inverse
frequency (SIF), term frequency-inverse document frequency
(TF-IDF), Surprisal (SUR), POS tag (POS), CCG supertag
(CCG) [Wang et al., 2017; Arora et al., 2017].
Tree kernel. Tree kernel is used to compute the similarity
between structured trees. The main idea of tree kernels is to
compute the number of common substructures between two
trees T1 and T2 without explicitly considering the whole frag-
ment space [Moschitti, 2006]. A tree kernel function over T1
and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (1)

where NT1
and NT2

denote the set of nodes in T1 and T2, re-
spectively. Note that, the ∆(·) function determines the rich-
ness of the kernel space and thus can yield different tree ker-
nels. A representative tree kernel, known as partial tree ker-
nel (PTK) [Moschitti, 2006], is highly related to our proposed
tree kernel. Specifically, the ∆(·) function of PTK is com-



puted as

∆(n1, n2) =

 0, n1 6= n2

µ(λ2 +
lm
Σ

p=1
∆p(cn1

, cn2
)), otherwise

(2)

where µ and λ are two decay factors: µ for the height of
the tree, and λ for the length of the child sequences; cn1

(resp., cn2
) refers to the list of children nodes of n1 (resp.,

n2); lm = min{length(cn1
), length(cn2

)}; and ∆p(·) refers
to the number of common subsequence whose length is p.

3 Model
In this section, we first cover the proposed structure, and then
expatiate the new tree kernel tailored for computing similarity
based on our structure.

3.1 ACV-tree
At a high level, the ACV-tree (Attention Constituency Vector-
tree) is similar to the so-called constituency tree, since (1) it is
also tree-like structure with only a root denoting the sentence;
(2) the internal nodes are some abbreviations for various con-
stituencies such as NP and VP; and (3) the leaf nodes contain
also the words. A major difference is that, the leaf nodes of
ACV-tree contain also two other elements besides the words:
one is a vector storing the semantic information of the corre-
sponding word, the other is a real number denoting the weight
of the corresponding word. In what follows, we address how
to construct the ACV-tree in detail.

To construct the ACV-tree, one can follow several steps be-
low. First, we determine “part of speech” for each word in the
sentence. Second, we associate each word with (1) the word
vector, which can be trained from unlabelled texts in large
corpus, and (2) the attention weight, which can distinguish
the contribution of different words to the semantic meaning
of sentences. Third, we find the modification relations of
each word in the sentence (e.g., in the sentence “a beauti-
ful girl is over there”, the word beautiful modifies the word
girl). Finally, we link items according to the modification re-
lation found by the previous step, until all the modifiers are
attached to the modified constituents. Note that, in the pro-
cess of “linking”, different rules shall be used (e.g., when a
modifier (or word) modifies a noun, the NP rule is to be used).
As such, we obtain our ACV-tree as shown in Figure 3.

3.2 ACVT Kernel
As mentioned before, tree kernel is used to compute simi-
larity between structured trees. Yet, few existing tree ker-
nels consider both the semantic information and the attention
weight. To alleviate this issue, we develop a new tree kernel
known as ACVT kernel (Attention Constituency Vector Tree
kernel). Our tree kernel is tailored for computing similarity
based on the proposed ACV-tree.

As same as almost all existing tree kernels, our ACVT ker-
nel uses also the general framework. That is, Equation 1 is
also used. The major difference between our tree kernel and
existing tree kernels is the ∆(·) function. Let vec1 and wt1
(resp., vec2 and wt2) be the word vector and attention weight
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Figure 3: An example of ACV-tree

of node n1 (resp., n2). Our ∆(n1, n2) function is inspired by
that of PTK (recall Section 2). Specifically, it is defined as

∆(n1, n2) =
0, n1 and/or n2 are non-leaf nodes ∧ n1 6= n2
Attweight × SIM(vec1, vec2), n1 and n2 are leaf nodes
µ(λ2 +

∑lm
p=1 ∆p(cn1

, cn2
)), otherwise

(3)

where cn1
, cn2

, lm, µ and λ have the same meaning as men-
tioned in Section 2; vec1 and vec2 are the word vector of n1
and n2, respectively; SIM(·, ·) is a function to measure the
cosine similarity between vectors; Attweight = wt1 × wt2.

It remains to explain how to compute ∆p(·) as far as our
tree kernel. To understand, consider cn1

= s1a and cn2
= s2b

(a and b are the last children, s1 and s2 are subsequences of
cn1

and cn2
, respectively), then one can solve ∆p(cn1

, cn2
)

by constructing a “recursive” function as follows.

∆p(s1a, s2b) =∆(a, b)
|s1|
Σ
i=1

|s2|
Σ
r=1

(λ|s1|−i+|s2|−r

×∆p−1(s1[1 : i], s2[1 : r]))

(4)

where s1[1 : i] (resp., s2[1 : r]) is the subsequence of s1
(resp., s2) ranging from 1 to i (resp., from 1 to r); |s1| (resp.,
|s2|) is the length of s1 (resp., s2). Note that, here ∆(a, b)
is computed using Equation 3, while ∆p−1(·) is recursively
computed using Equation 4, and the recursive process stops
when it reaches at the leaf node.

Algorithm 1 COMPSIM(T1,T2)
1: for each node ni in T1 do
2: if isLeaf(ni) = true then
3: for each node nj in T2 do
4: if isLeaf(nj) = true then
5: K[ni][nj ]← Attweight × SIM(vec1, vec2);
6: else
7: K[ni][nj ]← 0;
8: else
9: for each node nj in T2 do

10: if isLeaf(nj) = true then
11: K[ni][nj ]← 0;
12: else
13: if ni has the same structure with nj then
14: K[ni][nj ]← COMPSIM(ni, nj );
15: else
16: K[ni][nj ]← 0;
17: ST1T2

← compute the sum of K and normalize it;
18: return ST1T2

Algorithm. The pseudo-codes of our algorithm for comput-
ing similarity score between two trees T1 and T2 are shown



in Algorithm 1. Our algorithm follows the paradigm in [Mos-
chitti, 2006]. In a nutshell, it works as follows. First, it con-
structs a matrix K, and then compute the similarity of each
node pair based on the rules in Equation 3. Note that, for the
case of “otherwise” mentioned in Equation 3, our algorithm
treats these two nodes as two new trees and compute their
similarity (see Line 14). The final step is the same as that in
[Moschitti, 2006], namely, we compute the sum of all values
in K and normalize it, obtaining the similarity score.

4 Experiments
This section covers our experimental results. Our codes are
available at the open-source code repository (https://github.
com/yuquanle/Sentence-similarity-modeling.git).

4.1 Datasets and Experimental Settings
Datasets. Following prior works, we conduct experiments on
19 textual similarity datasets (http://ixa.si.ehu.eus/) that con-
tain all the datasets from Semantic Textual Similarity (STS)
tasks (2012-2015), except the SMT dataset in 2013 due to no
permission. Each dataset contains many pairs of sentences
(e.g. MSRvid dataset contains 750 pairs of sentences). These
datasets cover a wide range of domains such as news, web
forum, images, glosses, twitter. Table 1 summarizes these
datasets (grouped by year). Please note that datasets with the
same name in different years include different data.
Compared methods. In our experiments, we compare two
sets of baselines (note that, most of models in the second cat-
egory are classic and earlier than those in the first category):

(1) The models that use word embedding and/or sentence
embedding techniques, including Glove [Pennington et al.,
2014], PSL [Wieting et al., 2015], ST [Kiros et al., 2015],
SCBOW [Kenter et al., 2016], PROJ [Wieting et al., 2016],
PP-tfidf [Wang et al., 2017], DAN [Iyyer et al., 2015], LSTM
[Gers and Schraudolph, 2002], RNN and iRNN [Wieting et
al., 2016]. The results of the above methods are collected
from [Wieting et al., 2016] except SCBOW from [Kenter et
al., 2016] and PP-tfidf from [Wang et al., 2017].

(2) The models that are developed based on other tech-
niques, including WUP [Wu and Palmer, 1994], RES
[Resnik, 1995], LIN [Lin and others, 1998], JCN [Jiang and
Conrath, 1997], and LCH [Leacock and Chodorow, 1998],
ESA [Gabrilovich and Markovitch, 2007], ADW [Pilehvar
and Navigli, 2015]. For ESA and ADW, they have many
variants, we choose the best of them for comparison. The
results of these classic methods are collected from [Pilehvar
and Navigli, 2015].
Other settings. In our paper we use the Pearson’s correlation
between the predicted scores and the ground-truth scores as
the evaluation criterion, which is the same as that in [Pile-
hvar and Navigli, 2015; Wang et al., 2017; Kenter et al.,
2016]. The similarity score of sentence pair is from 0 to 5,
where a scale of 5 means semantically equivalence, whereas
0 means complete unrelated. In our experiments, the hyper-
parameters µ=[0.1,0.2,...,0.9,1.0], and λ =[0.1,0.2,...,0.9,1.0],
where the numbers in bold denote the default settings, un-
less otherwise stated. In our experiments, we implement
our ACV-tree by using the Stanford Parser [Manning et al.,

Table 1: Datasets for the SemEval Semantic Textual Similarity Tasks
(year 2012 — year 2015).

STS’12 STS’13 STS’14 STS’15

MSRpar headline deft forum answers forums
MSRvid OnWN deft news answers students

SMTeuroparl FNWN headline belief
OnWN SMT images headline

SMTnews OnWN images
tweet news

2017] to generate the constituency tree of the sentence, and
then attach the word vectors (i.e., lexical vectors) and the
attention weights to the words in leaf nodes, for the sake
of simplicity. Following prior works [Arora et al., 2017;
Wang et al., 2017], we use the term frequency-inverse doc-
ument frequency (TF-IDF) scheme to generate the attention
weights. In the computation, we view each sentence as a
document. The lexical vectors we used are provided by
PARAGRAM-SL999 vectors, which is learned by PPDB and
is the 300 dimensional Paragram embeddings tuned on Sim-
Lex999 dataset [Wieting et al., 2015].

4.2 Experimental Results
In what follows, we first compare with the methods that used
word/sentence embedding techniques, since these methods
are closest to our proposed model. Then, we check whether
our model can beat classic methods. Finally, we study the
impact of important parameters.
Word/sentence embedding-based methods. Table 2 shows
the comparison results. It can be seen from this table that our
proposed method (shorted as ACVT) gets favourable perfor-
mance. Specifically, ACVT achieves the best performance on
12 out of 19 datasets (notice: in NLP community “12 out of
19” is an attractive result [Wieting et al., 2016]). Besides, we
observe that for some datasets, although our method is not
the best one, it is close to the best result (e.g., 12’ OnWN,
14’ tweet news, 15’ image). These evidences demonstrate
that our proposed model is effective and competitive. Es-
sentially, it implies that a combination of syntax, semantics
and word attention mechanism could be a good choice for
sentence similarity modeling. Nevertheless, we find that, on
several datasets including 12’ SMTeuroparl, 12’ SMTnews,
14’ deft forum, and 15’ belief, our method is inferior than the
strongest competitor and the performance gap is larger than
0.05. It is interesting to understand why our method cannot
performs well on these datasets.

As for 12’ SMTeuroparl and 12’ SMTnews datasets, it
could be due to that some particular properties such as a
large number of numerical items or special characters in these
datasets weaken the performance of our model. For exam-
ple, in the 12’ SMTeu dataset items like “5.30pm” and “(A5-
0323/2000)” account for around 10% of the total test sample;
in the 12’ SMTnews dataset, items like “5.2%” and “24 May”
account for around 8% of the total test sample. Note that, our
model currently lacks for the strong ability to model numer-
ical items and special characters (e.g., the sentence pair for
phone numbers and email addresses).



Table 2: The comparison results; the bold number highlights one of strongest results in each dataset.

Year Dataset Compared methods Our method
PROJ PP-tfidf DAN RNN LSTM ST GloVe PSL iRNN SCBOW ACVT

2012

MSRpar 0.44 0.47 0.40 0.19 0.09 0.17 0.48 0.42 0.43 0.44 0.58
MSRvid 0.74 0.79 0.70 0.67 0.71 0.42 0.64 0.60 0.73 0.45 0.83

SMTeuroparl 0.49 0.52 0.44 0.41 0.44 0.35 0.46 0.42 0.47 0.45 0.43
OnWN 0.70 0.73 0.66 0.63 0.56 0.30 0.55 0.63 0.70 0.64 0.70

SMTnews 0.63 0.66 0.60 0.51 0.51 0.31 0.50 0.57 0.58 0.39 0.54

2013
headline 0.73 0.74 0.71 0.60 0.49 0.35 0.64 0.69 0.73 0.65 0.77
OnWN 0.68 0.75 0.64 0.55 0.50 0.10 0.49 0.48 0.69 0.50 0.85
FNWN 0.47 0.50 0.43 0.31 0.38 0.30 0.34 0.38 0.45 0.23 0.50

2014

deft forum 0.51 0.54 0.49 0.42 0.46 0.13 0.27 0.37 0.49 0.41 0.48
deft news 0.72 0.74 0.72 0.54 0.39 0.24 0.68 0.67 0.72 0.59 0.74
headline 0.71 0.71 0.69 0.58 0.51 0.38 0.60 0.65 0.70 0.64 0.72
images 0.78 0.81 0.77 0.68 0.63 0.51 0.61 0.62 0.78 0.65 0.81
OnWN 0.80 0.81 0.76 0.68 0.62 0.23 0.58 0.61 0.79 0.61 0.87

tweet news 0.76 0.77 0.74 0.58 0.48 0.40 0.51 0.65 0.77 0.73 0.75

2015

answers-forums 0.65 0.68 0.63 0.33 0.51 0.36 0.31 0.39 0.67 0.22 0.69
answers-students 0.78 0.79 0.78 0.65 0.56 0.33 0.63 0.69 0.78 0.37 0.79

belief 0.75 0.78 0.72 0.52 0.53 0.25 0.41 0.53 0.76 0.48 0.70
headline 0.75 0.77 0.74 0.65 0.57 0.44 0.62 0.69 0.75 0.22 0.79
images 0.80 0.84 0.78 0.71 0.64 0.18 0.68 0.70 0.81 0.26 0.82

Table 3: The comparison between our method and classic methods.

Dataset Compared methods Our method
JCN WUP LCH LIN RES ESA ADW ACVT

MSRvid 0.65 0.64 0.67 0.70 0.73 0.74 0.80 0.83
MSRpar 0.44 0.44 0.45 0.45 0.46 0.44 0.56 0.58
SMTeuroparl 0.20 0.21 0.18 0.23 0.25 0.48 0.55 0.43
OnWN 0.53 0.55 0.53 0.57 0.59 0.62 0.63 0.70
SMTnews 0.26 0.28 0.27 0.28 0.30 0.40 0.40 0.54

Meanwhile, we find that the 14’ def forum dataset contains
the forum post sentences, and the 15’ belief dataset contains
the Belief pairs for which their source documents are English
Discussion Forum data. It is easy to understand that peo-
ple usually write sentences in forums without using rigorous
syntactic format, and so the grammars used in these sentences
could be not guaranteed; and particularly sentences are also
doped with a large number of colloquial terms and network
abbreviations. These factors lead to the construction of syn-
tactic structure inaccurate, weakening the performance of our
model.
Classic methods. As same as to [Pilehvar and Navigli, 2015],
we here also use the SemEval-2012 Semantic Similarity task
to compare these classic methods. Table 3 lists the com-
pared results. It can be seen from the table, our method beats
all these methods for almost all these datasets. This further
demonstrates the competitiveness of our model. Note that,
as for the SMTeuroparl dataset, our model is significantly in-
ferior than ADW (i.e., the performance gap is about 0.12).
The reason is the same as our previous analysis. That is,
this dataset contains much more numerical items and special
characters for which our model lacks for the strong ability to
model.
Impact of parameters. Recall Section 3.2, our model is in-
volved with two important parameters µ and λ, where µ is a
decay factor for the height of the tree, and λ is a decay factor
for the length of the child sequences. We here study the im-
pact of these two parameters on the accuracy of our model.
Note that, in this set of experiments, we also test two other
methods: one is known as CT which did not incorporate the
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Figure 4: Varying µ and λ on the 13’ OnWN dataset.

word embedding technique and the attention weight mecha-
nism; the other is known as CVT, which did not incorporate
the attention weight mechanism. This way, it might be help-
ful for us to study the effectiveness of various techniques used
in our model. To compute the similarity, CT uses PTK, while
CVT uses the simple version of ACVT kernel in which the
“weight” part is removed by setting “Attweight = 1 in Equa-
tion 3”. Next, we use the representative results to analyze
the performance. Specifically, Figure 4 shows the compared
results, these results are obtained by using the 13’ OnWN
dataset.

It can be seen from Figure 4 that ACVT basically outper-
forms CVT, and CVT basically outperforms CT. This demon-
strates that the word embedding technique and the attention
weight mechanism are useful when we combine them to-
gether. As for ACVT, we can see from Figure 4(a) that, it
has the best performance when we set µ = 0.2 or 0.1 (com-
pared to other settings such as µ = 0.9). On the other hand,
from Figure 4(b) we can see that our model can obtain best
performance when we set λ = 0.1. These facts justify our
default settings for parameter µ and λ, recall Section 4.1.

One could be curious why the curve of ACVT goes down
when µ (resp., λ) increases. The main reason could be the fol-
lowings. When the parameter µ (resp., λ) turns smaller, nodes
near to the leaf level (resp., nodes with long child sequences)
shall be penalized much more. This way, it makes our model
pay more attention to the key information of sentences, which



usually located at the upper layers of the ACV-tree. As such,
it has higher probability to match people’s reading habit (i.e.,
when people compare two complex sentences, most of people
tend toward comparing the main components and essential
meaning of the sentences), and thus improves the accuracy.

5 Related Work
As mentioned before, own to the success of word embed-
dings [Bengio et al., 2003; Mikolov et al., 2013; Pennington
et al., 2014; Wieting et al., 2015], much attention has been
devoted to sentence similarity modeling via sentence embed-
dings in NLP community. For example, [Yu and Dredze,
2015] used the simple additional composition of the word
vectors to achieve sentence embeddings. [Arora et al., 2017]
obtained the sentence embeddings by a weighted average of
the word vectors. [Kiros et al., 2015] proposed an encoder-
decoder method that can reconstruct the surrounding sen-
tences of an encoded passage. [Wieting et al., 2016] studied
the general-purpose sentence embeddings by using the super-
vision from paraphrase databases. [Le and Mikolov, 2014;
Wang et al., 2016] focused on learning “extra” sentence em-
beddings. [Wang et al., 2017] introduced the attention mech-
anism to improve sentence embeddings. [Kenter et al., 2016]
presented the Siamese CBOW model for efficiently obtaining
the high-quality sentence embeddings. In this line of works,
complex nonlinear functions like convolutional neural net-
works [Kalchbrenner et al., 2014; Gan et al., 2017], and re-
current neural networks [Tai et al., 2015] were already widely
used. Compared to this line of works, our work shares several
common features with theirs: (1) our work is also attributed
to the development of word embeddings, and (2) our work
also addresses the issues related to sentence similarity. Nev-
ertheless, our work is different from theirs in several features
at least: (1) most of these works focused on learning semantic
information and did not fully take the syntactic information of
sentences into account, and (2) tree kernels are not covered in
these works. In this paper we take full use of the syntactic
information (besides the semantic information). Our model
uses a structured manner for sentence similarity modeling;
it integrates semantic information by word embeddings and
syntactic information by constituency trees, and develops the
ACV-tree kernel to measure similarity, achieving favourable
performance (as shown in our experiments).

Another line of works that discussed syntactic and se-
mantic kernels are also related to our work, since our work
also encodes syntactic/semantic information represented by
means of tree structures [Wu and Lowery, 2006; Moschitti,
2006; Severyn et al., 2013]. For example, [Moschitti, 2006]
proposed a new tree kernel, namely the partial tree kernel;
their method encodes syntactic parsing information repre-
sented by tree structures. [Collins and Duffy, 2001] discussed
kernel methods for various natural language structures such
as strings, trees, graphs or other discrete structures. [Croce et
al., 2011] proposed efficient and powerful kernels for measur-
ing the similarity between dependency structures. [Severyn et
al., 2013] proposed a powerful feature-based model that re-
lies on the kernel-based learning and simple tree structures.
Compared with this line of works, although our work also
uses tree structures, our work is different from theirs, since

(1) word embeddings are not used in these works, and (2) the
attention weight mechanism is not covered in these works. In
our paper, the ACV-tree and the corresponding tree kernel are
designed to address these issues.

6 Conclusions
This paper proposed a new method for sentence similarity
modeling. The central idea of the proposed model is to com-
bine syntactic information, semantic features, and attention
weight mechanism together, absorbing the merits of vari-
ous techniques. We compared our model with classic and
state-of-the-art models on multiple STS tasks, and the results
demonstrated that our model can achieve favourable perfor-
mance. The major merits of our model are: (1) it can be
used as a general framework, since techniques integrated in
our model can be viewed as building blocks, allowing users
to replace them using other on-shelf techniques or more pow-
erful techniques developed in the future; and (2) unlike most
of sentence embedding-based models, our model can be free
from time-consuming learning/training, once word embed-
dings are available; some existing models essentially have
also this merit, yet our model outperforms them in terms of
performance, further reflecting the superiorities of our model.
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