
Geo-ALM: POI Recommendation by Fusing Geographical Information and
Adversarial Learning Mechanism

Wei Liu1,2 , Zhi-Jie Wang1,2 , Bin Yao3 and Jian Yin1,2

1 Guangdong Key Lab. of Big Data Anal. and Proc., Sun Yat-Sen University, Guangzhou, China
2National Engineering Laboratory for Big Data Analysis and Applications, Beijing, China
3 Department of Comp. Sci. and Eng., Shanghai Jiao Tong University, Shanghai, China

{liuw259, wangzhij5, issjyin}@mail.sysu.edu.cn, yaobin@cs.sjtu.edu.cn

Abstract
Learning user’s preference from check-in data is
important for POI recommendation. Yet, a user
usually has visited some POIs while most of POIs
are unvisited (i.e., negative samples). To lever-
age these “no-behavior” POIs, a typical approach
is pairwise ranking, which constructs ranking pairs
for the user and POIs. Although this approach is
generally effective, the negative samples in rank-
ing pairs are obtained randomly, which may fail to
leverage “critical” negative samples in the model
training. On the other hand, previous studies also
utilized geographical feature to improve the rec-
ommendation quality. Nevertheless, most of previ-
ous works did not exploit geographical information
comprehensively, which may also affect the perfor-
mance. To alleviate these issues, we propose a ge-
ographical information based adversarial learning
model (Geo-ALM), which can be viewed as a fu-
sion of geographic features and generative adver-
sarial networks. Its core idea is to learn the discrim-
inator and generator interactively, by exploiting two
granularity of geographic features (i.e., region and
POI features). Experimental results show that Geo-
ALM can achieve competitive performance, com-
pared to several state-of-the-arts.

1 Introduction
Nowadays, location-based services are widely used in our
daily life [Bao et al., 2015]. For instance, Yelp and Meituan
can help individuals discover favourite foods, shopping malls,
hotels, etc. Foursquare and Webchat can assist people
in discovering fun places, friends’ footprint, etc. Almost
all these applications incorporate the function of Point-of-
Interest (POI) recommendation. Particularly, POI recommen-
dation can help these applications understand individuals’
favourites more deeply, and so it has the potential to provide
personalized services for individuals. Besides, it can also help
merchants to solicit more potential customers. All in one, POI
recommendation is an important task in LBSNs [Cheng et al.,
2012; Liu et al., 2016a].

In the real world, it is common that a user may have vis-
ited few POIs while most of POIs are unvisited (i.e., negative

samples) [Li et al., 2015; He et al., 2018]. This phenomenon
makes it difficult to learn user’s preference, which is impor-
tant in POI recommendation [Li et al., 2017; Li et al., 2015;
Wang et al., 2017b]. To alleviate such an issue, one of rep-
resentative approaches is the pairwise ranking, which con-
structs ranking pairs for the user and POIs (including no-
behavior POIs) [Li et al., 2015]. A major rule or assump-
tion in constructing ranking pairs is that, users prefer to vis-
ited POI than unvisited POIs. Although such a method is
generally effective, the negative samples in ranking pairs
are obtained randomly, which may fail to leverage “critical”
negative samples in the model training, affecting the over-
all performance [Zhang et al., 2013; Wang et al., 2017a].
On the other hand, previous studies have also attempted
to leverage geographical information to strengthen the rec-
ommendation performance, since geographical information
is closely related to individual behaviors [Ye et al., 2011;
Feng et al., 2017; Lian et al., 2014]. Nevertheless, most of
previous works exploit geographical information in a single
granularity, which may affect the quality of recommendation.

To alleviate the above issues, in this paper we propose a
new approach, called geographical information based adver-
sarial learning model (Geo-ALM). At a high level, our model
can be viewed as a fusion of geographical features and gen-
erative adversarial networks (GAN). Our model contains also
a discriminator and a generator, which are the core of the ad-
versarial learning mechanism (ALM). The major benefit to
use the ALM in our model is that, the generator allows us
to obtain more critical negative samples to challenge the dis-
criminator, which can make the model training more effec-
tive. One the other hand, the geographical features are used
to learn the extra information to improve embedding from the
sample pairs. To well exploit the geographical information,
we suggest a two-granularity preference embedding strategy,
which considers POI feature and region feature. To summa-
rize, the main contributions of this paper are as follows.

• We propose a new approach, Geo-ALM, for POI rec-
ommendation. To the best of our knowledge, this is the
first work to fuse geographical features with generative
adversarial networks to achieve POI recommendation.
• We conduct extensive experiments based on two public

datasets. The experimental results consistently demon-
strate the competitiveness of our proposed method, com-
pared against state-of-the-art methods.



The rest of the paper is organized as follows. Section 2
presents our proposed method. Section 3 discusses and ana-
lyzes the experimental results. In Section 4, we review previ-
ous works, and finally Section 5 concludes the paper.

2 The Proposed Method
2.1 Preliminaries
We have a set U of users {u1, u2, ..., u|U |}, and a set V of
POIs {v1, v2, ..., v|V |}, where | · | denotes the cardinality of
the corresponding set. For a user ui (resp., POI vj), we use−→ui (resp.,−→vj ) to denote its corresponding vector. Given users’
check-in behaviors on POIs with geographical information,
we aim to recommend each user with n favorite POIs that
(s)he has not visited.

In POI recommendation, to leverage the missing data to
learn user’s preference between visited POIs and unvisited
POIs, a representative method is the pairwise ranking [Li et
al., 2015], in which one usually assumes POI vj visited by
user ui should be scored larger than unvisited POI vj′ . In ad-
dition, the ranking loss function is based on maximum likeli-
hood estimation, and is defined as

L(θ) =
∏

ui∈U,vj ,vj′∈V
p(x̂i,j > x̂i,j′ |θ) (1)

where x̂i,j (resp., x̂i,j′ ) means the estimation of user ui’s
preference to POI vj (resp., vj′ ), θ represents embedding
parameters of users and of POIs. As for user ui’s prefer-
ence to some POI vj , it can be learned by sophisticated deep
neural networks. Usually, for simplicity it is computed as
x̂i,j =

−→ui−→vj [He et al., 2017b].
For a user ui, its visited POIs are usually called the posi-

tive samples. In contrast, the unvisited POIs are usually called
the negative samples. To maximize the ranking loss function
L(θ), an important step of the pairwise ranking is to con-
struct sample pairs. For example, for a user ui, its sample
pair could be < (ui, vj), (ui, vj′) >, where vj is a visited
POI, while vj′ is an unvisited POI. For the pairwise ranking
method, it constructs sample pairs by randomly choosing the
negative samples. We argue that such an approach may fail to
leverage “critical” negative samples in the model training. To
understand, see an example shown in Fig. 1.

2.2 Solution Overview
At a high lever, our proposed model fuses the merits of the
generative adversarial network (GAN) and geographical fea-
tures seamlessly, in which geographical information is bene-
fit to provide high-quality negative samples (as shown in Fig.
1). Our model contains two modules: discriminator and gen-
erator. These two modules, however, are essentially different
from that in the conventional GAN. It can be understood from
the overall framework shown in Fig. 2.

In brief, in the model pairwise ranking is regarded as dis-
criminator, which tries to predict the ranking relationship be-
tween generated sample pairs, and is trained to maximize
ranking samples’ likelihood (recall Eq. 1). On the other hand,
the generator continually generates critical negative samples,
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Figure 1: A running example. After several epochs of training, the
model can distinguish positive sample from most of negative sam-
ples (see the right part). With random sampling, it is hard to choose
the critical negative samples (see the ones in the red circle). More-
over, without geographical information GI , similar sample vectors
may be hard to differentiate, e.g., the ones in the red circle. Yet, with
GI , it is easier to distinguish them (see the black dot).

which are then coupled with positive samples, forming train-
ing instances. The adversarial framework interchangeably
learns the parameters between two different modules.

Generally, at each training epoch it iterates over the train-
ing set to train the generator, while the parameters of the dis-
criminator are fixed. Then, it iterates over the training set
again to train the discriminator, while the parameters of the
generator is fixed. When the model converges, the embed-
dings learned by the discriminator are used as user and POI
representations for the POI recommendation. Next, we dis-
cuss our model in detail. The training process of our proposed
model alternately learns the discriminator and the generator.

2.3 The Discriminator Module
The discriminator tries to rank well-matched user-POI tuples
(ui, vj) before ill-matched ones (ui, vj′). In other words, its
goal is to distinguish between visited POIs and unvisited POIs
for user ui as accurately as possible. Essentially, it is a maxi-
mum likelihood estimate problem such that we can make the
probability, fθ(vj > vj′ |ui), as maximal as possible. Specif-
ically, the probability is computed as

fθ(vj > vj′ |ui) = σ(x̂i,j,j′)

x̂i,j,j′ = x̂i,j − x̂i,j′
(2)

where σ(x) = 1
1+e−x , x̂i,j and x̂i,j′ represents user ui’s pref-

erence to POI vj and vj′ , respectively.
Different from the previous models whose negative sam-

ples vj′ are obtained by randomly sampling from the whole
POI set V , our discriminator uses the negative samples vj′
picked by the generator (described later). The optimal pa-
rameters for the discriminator can be obtained as follows.

θ∗ = argmax
θ

∑
ui∈U

(Evj∼ptrue,vj′∼fφ [log fθ(vj > vj′ |ui)])

(3)
where ptrue means the user’s true preference distribution on
POIs; vj ∼ ptrue (resp., vj′ ∼ fφ) denotes vj (resp., vj′ ) is
sampled from positive samples, i.e., visited POIs, (resp., the
generator fφ); E(·)[·] denotes the expection of the log likeli-
hood on the sampled pairs < (ui, vj), (ui, vj′) >.
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Figure 2: Framework of Geo-ALM, where D is Discriminator, G is
Generator. Discriminator is for learning POI pair’s ranking for each
user. Generator provides critical negative samples for discriminator.

As mentioned earlier, geographical information is impor-
tant when predicting user’s preference to POI. We thus fuse
geographical information into the discriminator. Specifically,
we employ the following equation to compute x̂i,j :

x̂i,j =
−→ui
−−→
Rvj +

−→ui−→vj (4)

where Rvj denotes a region containing POI vj , −→· denotes
the feature vector of the corresponding item. Different from
many previous works, we here consider two granularities:
POI feature and region feature. The POI feature −→vj depicts
the user’s preference to POI. The region feature

−−→
Rvj can char-

acterize the sketch of the POIs in the corresponding region,
its dot product with user’s embedding can depict user’s ge-
ographical and general preference to the region. Meanwhile,
the region feature can make the user’s preference to POI more
discriminative, which is benefit to the subsequent steps. The
intuition of the above idea is that, a user usually picks a POI
by two steps: firstly, (s)he may choose a candidate region to
visit; and secondly, (s)he may choose a POI in the region to
visit. Particularly, in the real world it is common that users
usually choose the regions and POIs near to them, or the ones
familiar to them, as shown in Fig. 3.

On the other hand, one can easily understand that, when
user’s activity data at a POI vj or a region ri is sparse, the
POI feature−→vj (resp., region feature−→ri ) may not be estimated
accurately. To address this issue, we exploit the geographical
correlation to enhance the prior knowledge, i.e., the model pa-
rameters −→vj and −→ri (a.k.a.,

−−→
Rvj in Eq. 4). Generally, our idea

is inspired by the Skip-gram model [Mikolov et al., 2013]
proposed in the natural language processing community. In-
tuitively, if two POIs vj and vk are proximate in the geograph-
ical space, then their feature −→vj and −→vk should be similar to
each other. This observation allows us to leverage the Skip-
gram model to characterize feature similarity. Specifically,
given a POI vj , let Cvj denote a set of POIs nearest to vj .
The objective is to minimize the loss function of predicting
the context, based on the embedding of the POI. The loss

function is formulated as

L(Cvj ) = −
∑

vk∈Cvj

log p(vk|vj)

= −
∑

vk∈Cvj

log(−→vj−→vk − log
∑
vk′∈V

exp(−→vj−→vk′))
(5)

where vk is one of the nearest neighbors to vj .
Similarly, given a region ri, let Cri denote a set of regions

nearest to ri. Sometimes, we also call them the surrounding
regions of ri. Let R denote the set of all regions. Then, the
loss function for region is formulated as

L(Cri) = −
∑

rj∈Cri

log p(rj |ri)

= −
∑

rj∈Cri

log(−→ri−→rj − log
∑
rj′∈R

exp(−→ri−→rj′))
(6)

where rj is one of nearest regions (i.e., surrounding regions)
to ri. With the above two loss functions (one is for POIs, the
other is for regions), it can allow us to learn discriminator’s
parameter θ easier and more accurate. Note that, the parame-
ter φ can be also learned using the above functions.

2.4 The Generator Module
The generator tries to generate high-quality unvisited POI for
a given user ui. It hopes to approximate user’s true preference
distribution over POIs as much as possible. In other words,
the essence of the generative module is to provide the dis-
criminator with high-quality negative samples, which helps
the discriminator improve the training performance. Specifi-
cally, it can be formulated as follows.

fφ(vj |ui) =
exp(x̂i,j)∑

vj′∈V \Vui
exp(x̂i,j)

(7)

where Vui is the POI set visited by user ui, x̂i,j can be com-
puted as in Eq. 4. Note that, the generator in our model has
its own embeddings for users, POIs and regions. The optimal
parameters for the generator can be obtained as follows.

φ∗ = argmin
φ

∑
ui∈U

(Evj∼ptrue,vj′∼fφ [log fθ(vj > vj′ |ui)])

(8)
where the notations such as vj ∼ ptrue and E(·)[ ] have the
similar meanings in Eq. 3.

Since the output of the generator is a discrete index of the
POIs, in our model we use the policy gradient based rein-
forcement learning [Yu et al., 2017] to optimize the gener-
ator. Thus, the whole network can be essentially viewed as
a policy network in the field of reinforcement learning. For
a newly generated negative pair (ui, vj′) together with the
positive pair (ui, vj), the reward function calculated by the
discriminator is defined as

R = log(1 + exp(fθ(vj > vj′ |ui))) (9)
Usually, the reward is large, when the generated negative

sample and the corresponding positive sample confuse the



Figure 3: Preference with Geographical Information. User’s pref-
erence to POI concludes: user’s geographical interest to the region
where the target POI is located and user’s general interest to the tar-
get POI; POI’s embedding is related with the nearest POIs’, region’s
embedding is related with the adjacent regions’.

discriminator in Eq. 2. This situation essentially encourages
to obtain a better negative samples. In our model, the fol-
lowing loss function tries to maximize the expected reward.

L(φ) = Efφ(vj |ui)(R) (10)

One can see from the above equation that, in order to
achieve a higher reward, the policy used by the generator
punishes the negative samples by lowering down their cor-
responding probability, and encourages the network to dis-
tribute more probability to the samples that can perplex dis-
criminator. In addition, when the generator updates, it uses
the policy gradient below.

∇φL(φ) = ∇φ log fφ(vj |ui) · R (11)

3 Empirical Study
3.1 Datasets
In the experiments, we employ two widely-used datasets,
one is Foursquare (https://pan.baidu.com/s/1hrYNwJM), the
other is Gowalla (https://pan.baidu.com/s/1i4DgFmX). There
are 194,108 check-ins made within Singapore in Foursquare
dataset. They are made by 2,321 users on 5,596 POIs from
August 2010 to July 2011. The average check-ins of each
user is 83.6 and the data sparsity is 1.49%. As for the Gowalla
dataset, there are 456,988 check-ins produced within Califor-
nia and Nevada in America. They are produced by 10,162
users on 24,250 POIs from February 2009 to October 2010.
The average check-ins per user is 44.9 and the data sparsity
is 0.185%. The details about datasets are listed in Table 1.

3.2 Evaluation Metrics
Following [Li et al., 2017; Wang et al., 2018], we use two
well-known metrics to evaluate the performance. One is
precision@n, the other is recall@n, where n is the number

Dataset #User POI #Check-in #Avg.check-in Density
Foursquare 2,321 5,596 194,108 83.6 1.49%

Gowalla 10,162 24,250 456,988 44.97 0.18%

Table 1: Details of Two Datasets
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Figure 4: Effect of two newly introduced hyper parameters.

of recommended POIs. For short, we denote them by Pre@n
and Rec@n, respectively. They are computed as

Pre@n =
1

|U |

|U |∑
u=1

|Lnu ∩ Tu|
n

Rec@n =
1

|U |

|U |∑
u=1

|Lnu ∩ Tu|
|Tu|

.

(12)

where Lnu denotes the top-n POIs recommended by the model
for user u, Tu denotes the POI set that user u really visited.
For each experiment, we conduct 5 independent tests and re-
port the average value.

3.3 Hyper Parameters
In our experiments, we mainly focus on investigating the im-
pact of two newly introduced parameters: (i) |Cvj |, which is
the number of nearest POIs to vj , and (ii) w, which is the size
of the square region. As for these two hyper parameters, in the
rest of experiments we choose the values that can achieve the
best performance as the default settings. Other hyper param-
eters follow the settings of previous works. Specifically, for
both datasets, we set the dimension number to 16, the learn-
ing rate to 0.001, the regularization coefficient of L(Cvj ) and
L(Cri) to 0.01.
Effect of |Cvj |: Fig. 4(a) plots the results when we vary |Cvj |
from 2 to 20. It can be seen that, for both datasets, when
|Cvj | is too small, the performance is poor. This could be
mainly because the nearest POIs’ features are too similar in
this case, incurring the over-fitting. On the other hand, we
observe that, when |Cvj | is too large, the performance turns
poor. This could be mainly because, when |Cvj | exceeds a
threshold (e.g., |Cvj | = 10 in Foursquare, |Cvj | = 14 in
Gowalla), the set of nearest POIs introduces some unrelated
data, which is contrary to the nearest property.
Effect of w: Fig. 4(b) shows the results when we varyw from
0.2 to 2.0 km. One can see that both curves first go up and
then go down, with the increase of w. One possible reason
is that, when the size of region is less than some threshold,
the number of spatial regions will be too much, and so data
sparsity may cause the parameters under-fitting. In contrast,
when the size of region becomes too large, the region vector−→rj could introduce too much noise, which is not benefit for
depicting spatial features accurately.
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Figure 5: Performance results of various techniques.

3.4 Effectiveness of Techniques
To study the effectiveness of various techniques integrated in
our model, we compare our model with (i) the basic BRP
model [Rendle et al., 2009]; and (ii) ALM, which doesn’t
consider geographical factor and is the adversarial learning
part of Geo-ALM; (iii) NP-ALM, which only considers the
Nearest POIs of candidate POI as context, without using the
region context; and (iv) NR-ALM, which only considers the
region context when depicting user’s preference to POI, and
the Nearest Regions of target region are used as the region
context, without using the POI context.

Fig. 5 shows the compared results. It can be seen that our
adversarial learning model with dynamic negative sampling
can achieve a great improvement, compared against the BPR.
It reflects that a high-quality negative sampling is beneficial
for general preference learning. Besides, NP-ALM and NR-
ALM perform better than ALM, it proves geographical infor-
mation is significant in POI recommendation. Moreover, NP-
ALM is better than NR-ALM, it shows instance granularity
is more powerful than region granularity. At last, Geo-ALM
is better than all the other models, it demonstrates our model
with adversarial learning and two granularity of geographical
information is effective.

3.5 Comparing with State-Of-The-Arts
We compare our model with the following state-of-the-art
models: (i) BPR, a classic model that optimizes the order-
ing relationship of user’s preferences for the visited POI and
the unvisited POI [Rendle et al., 2009]; (ii) IRenMF, which
incorporates neighboring characteristics into weighted matrix
factorization [Liu et al., 2014]; (iii) Rank-GeoFM, which
is a ranking-based MF model that learns users’ preference
rankings for POIs, and includes the geographical influence of
neighboring POIs [Li et al., 2015]. It is one of the strongest
state-of-the-art top-n recommendation model. (iv) PACE,
which is a general and principled semi-supervised learning
framework. It alleviates data scarcity via smoothing among
neighboring POIs, and it treats the geographical context by
regularizing POI feature, based on context graphs [Yang et
al., 2017]; and (v) GeoIE, which exploits geographical infor-
mation by asymmetry and high variation geographical influ-
ence, and constructs a cross-entropy object function to learn
model parameters [Wang et al., 2018].

Fig. 6 shows the compared results. It can be seen that,
our proposed method, Geo-ALM, outperforms other models

for all these cases, demonstrating the competitiveness of our
method. Particularly, when it is compared with the strong
competitor, it still obtains about 7% relative improvements
on the Foursquare dataset, and more than 5.8% improvements
on the Gowalla dataset, respectively. These results essentially
demonstrate that dynamic negative sampling with adversarial
learning and multiple view geographical features is feasible
and effective to improve the recommendation accuracy.

On the other hand, when we look a bit deeper into the re-
sults, we find that BPR is poorer than other models. This
essentially further validates that geographical information is
important in POI recommendation, which is ignored in BPR.
In addition, Geo-ALM and GeoIE perform better than PACE,
Rank-GeoFM and other baselines, it demonstrates that a fine
geographical information representation can improve POI
recommendation greatly. Last but not least, Geo-ALM out-
performs best in all the models, even better than GeoIE and
PACE, it verifies, from another perspective, that the adver-
sarial learning mechanism is helpful to improve POI recom-
mendation performance. Another reason for the improvement
could be the high-quality negative samples, which are filtered
by the multiple granularity of geographical information.

4 Related Work
This section reviews previous works most related to ours. For
clarity, we classify them into three categories.
Negative Sampling: Negative sampling technique has been
widely used in natural language processing (NPL) commu-
nity [Stergiou et al., 2017; Soleimani and Matwin, 2018;
Guo et al., 2018; Zhang and Zweigenbaum, 2018]. Recently,
it has been also applied to recommendation community, ben-
efiting to the alleviation of data sparsity. The main idea of
the negative sampling technique in recommendation commu-
nity is to leverage not only implicit positive samples but also
implicit negative samples when learning user’s preference.
For example, [Li et al., 2015] proposed a method, called
Rank-GeoFM, which learns the factorization by ranking the
POIs correctly. Particularly, both behavior and no-behavior
POIs are used to learn the ranking and thus the data spar-
sity problem can be alleviated. Moreover, they also incor-
porated geographical information to learn the factorization.
Yet, their method chooses negative samples in ranking pairs
randomly. In contrast, our approach employs the adversarial
learning mechanism in which the discriminator and genera-
tor are learned interactively, and so our model is iteratively
updated, guaranteeing the overall performance. Essentially,
the early work [Zhang et al., 2013] have proposed to dynam-
ically choose negative training samples from the ranked list
and iteratively update the model. Nevertheless, their work is
obviously different from ours in several aspects: (i) they fo-
cused on item recommendation, instead of POI recommenda-
tion. (ii) we leverage the adversarial learning mechanism and
geographical features, which are not covered in their work.
Besides, other methods (e.g., SSL [Yang et al., 2017]) that
are obviously different from ours, can be also used to lever-
age negative samples (i.e., unlabelled data).
Adversarial Learning Mechanism: Recently, a widely used
adversarial learning model is the generative adversarial net-
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Figure 6: Performance results of comparing with several state-of-the-art models.

work (GAN) [Goodfellow et al., 2014]. Existing studies
have demonstrated the effectiveness of GAN in various tasks
such as sequence generation [Yu et al., 2017], image cap-
tioning [Chen et al., 2017]. In the recommendation com-
munity, [Wang et al., 2017a] proposed a method called IR-
GAN that iteratively optimize a generative retrieval compo-
nent and a discriminative retrieval component. Moreover,
[Zhao et al., 2018] presented a solution that combines GAN
with the matrix factorization (MF) and the recurrent neural
network (RNN). Recently, [He et al., 2018] proposed an opti-
mization framework, namely Adversarial Personalized Rank-
ing (APR), that enhances the Bayesian personalized rank-
ing (BPR) approach by performing adversarial training. Al-
though we used also the adversarial learning mechanism in
our solution, our work is obviously different from the above
works in several points: (i) Our work focuses on POI recom-
mendation, instead of sequence generation, image captioning,
and/or item recommendation. (ii) Our method fuses the ge-
ographical information features into the adversarial learning
mechanism, which is not covered in the above works.

Geographical Features:. To improve the recommendation
accuracy, previous studied have attempted to capture vari-
ous information [He et al., 2017a], including social and ge-
ographical influence [Li et al., 2016], temporal effect [Liu
et al., 2016b], and sequential check-ins’ influence [Feng et
al., 2017], etc. Among them, the most widely used could
be geographical information. For example, [Ye et al., 2011]
modelled the geographical influence by power law distribu-
tion. [Cheng et al., 2012] suggested to fuse matrix factor-
ization with geographical and social influence. [Lian et al.,
2014] proposed to fuse weighted matrix factorization with ge-
ographical influence. [Liu et al., 2013] proposed a geograph-
ical probabilistic factor analysis framework which strategi-
cally takes various factors into consideration. [Li et al., 2015]
proposed a ranking based geographical factorization method.
[Feng et al., 2017] presented geographical latent representa-
tion for predicting future visitors. [Li et al., 2017] proposed
user intrinsic and extrinsic interest to POIs, distinguished by
user’s geographical activity area. [Wang et al., 2018] Ex-
ploited POI-Specific geographical influence. Among these
works, the ones highly closest to ours could be [Li et al.,
2015], since (i) both of us consider POIs’ geographical fea-
ture with neighboring POIs, and (ii) both of us leverage the
negative samples. Nevertheless, our work is different from
theirs in several aspects at least: (i) Their method chooses

negative samples randomly [Zhao et al., 2016; Chang et al.,
2018], while our work introduces the adversarial learning
mechanism, which interactively and dynamically chooses the
negative training samples. (ii) We model not only POI’s ge-
ographical feature but also the region’s feature, which is not
adopted in their works.

5 Conclusion
In this paper we have presented a new method, called Geo-
ALM, for POI recommendation. Our method absorbs the
merits of adversarial learning mechanism and geographical
information. The central idea of our method is to learn the
discriminator and generator interactively, by exploiting two
granularity of geographic features. Extensive experiments
based on two public datasets have demonstrated the feasi-
bility and competitiveness of our method. In the future, we
would like to incorporate more context information to further
improve our method.
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