
FastPM: An Approach to Pattern Matching via Distributed Stream Processing

Dingyu Yanga, Jianmei Guob, Zhi-Jie Wangc,d, Yuan Wange, Jingsong Zhangf, Liang Hug, Jian Yinc, Jian Caoh

aSchool of Electronics and Information, Shanghai Dian Ji University, Shanghai, China
bAlibaba Group, Hangzhou, China

cSchool of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
dGuangdong Key Laboratory of Big Data Analysis and Processing, Sun Yat-Sen University, Guangzhou, China

eDepartment of Industrial System Engineering, National University of Singapore, Singapore
fShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

gUniversity of Technology, Sydney & University of Shanghai for Science and Technology, Shanghai, China
hDepartment of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

Pattern matching over big data is gaining momentum in recent years. Many real-time applications are involved in
pattern matching over a high volume of data to discover potential tendencies, in which real-time responding and
concurrent processing are the key performance metrics. However, it is challenging to efficiently matching over live
streaming data due to: (i) the high volume of massive data, (ii) the real-time response requirement, and (iii) the
concurrent matching queries. To address these challenges, we introduce a pattern model by appending a timestamp
set to reduce the number of repeated patterns. We propose FastPM, a distributed stream processing framework to
address the high speed real-time data. Our framework combines synchronous and asynchronous mechanisms to
deal with multiple matching queries simultaneously, and it develops multiple techniques to enhance the efficiency of
pattern matching. We implemented FastPM and evaluated its performance on billions of real-world web-click data.
Our empirical results demonstrate the effectiveness of FastPM on matching queries and pattern updates. On average,
FastPM responds to a matching query in 0.2 second and to an update request in 0.03 second. Furthermore, FastPM is
able to support 5,000 matching queries simultaneously and the average query latency is 1.3 seconds.

Keywords: Pattern matching, distributed stream processing, dynamic partition, pattern update

1. Introduction

Pattern matching is a hot topic and has wide applications in many domains such as system monitoring, image
processing, social networks, and internet of things [1, 2, 3, 4, 5, 6, 7]. Given a pattern sequence, pattern matching is to
find sequences that are similar to the given one [8, 9]. In the past, many papers investigated pattern matching problem
over static data: some researchers developed special data structures and indices to discover useful patterns efficiently
(e.g., [8, 9, 10, 11, 12, 13]), while others attempted to improve the efficiency of pattern matching via distributed
frameworks (e.g., [14, 15, 16, 17, 18, 19]).

Nowadays, in many real-time applications, such as web click analysis, financial trend analysis, social sentiment
analysis, the data is generated quickly and is potentially unbounded in size. Several literatures have been dedicated to
find similar sequences or patterns over live data (e.g., [20, 21, 22, 23, 24, 25]). However, most of them process pattern
matching queries on a single machine, as shown in Figure 1. The matching efficiency of these methods is significantly
affected because of executing a single matching query at one time. In practice, it is challenging to support “high-
performance” pattern matching due to (i) the high volume of massive data and high velocity of event streams; (ii) the
real-time response requirement; and (iii) the concurrent pattern matching queries or tasks.

Email addresses: yangdy@sdju.edu.cn (Dingyu Yang), jianmei.gjm@alibaba-inc.com (Jianmei Guo), wangzhij5@mail.sysu.edu.cn
(Zhi-Jie Wang), iseway@nus.edu.sg (Yuan Wang), jasun@dmbio.info (Jingsong Zhang), rainmilk@gmail.com (Liang Hu),
issjyin@mail.sysu.edu.cn (Jian Yin), cao-jian@sjtu.edu.cn (Jian Cao)

Information Sciences

Live Data

D1D2D3D4D5. . .

t1

t2

Interesting Patterns

Computing Machine

Figure 1: An example of pattern matching over live data. One inputs a matching query, and the computing machine returns matched patterns.

A few researches (e.g., [14, 16, 17]) adopt distributed pattern matching by continuously loading the data in
memory. They can handle the high volume of massive data, but they are not well suitable for matching patterns
in real-time, since they have to reload the data to find the patterns when the new data is received. There are also some
approaches (e.g., [10, 12, 13]) that use various indexing techniques to improve performance. Yet, one can easily find
that, the data in real-time applications are generated continuously, and so the indices need to be updated frequently to
keep up-to-date; thereby, the maintaining cost (for such updates) is considerable in a high speed stream, which cannot
meet the real-time requirement. In addition, some methods (e.g., [20, 22, 26, 21]) are able to achieve real-time pattern
matching in streaming environments, however, they are difficult to execute the concurrent pattern matching tasks since
they are developed based on the model of “one query at one time”.

To achieve the real-time pattern matching over a high volume of live data, we design and implement a framework,
called FastPM, which enables distributed stream processing for real-time pattern matching. FastPM defines a new
pattern model, by appending a list of timestamps to record the occurrence time of a certain pattern, and thus in the
new model the patterns with the same data values are wrapped into a single pattern with different timestamps. That
means if one pattern is received and it has occurred before, we can append it in the old pattern by updating the
timestamp instead of constructing a new pattern. Thus, it is able to reduce the number of patterns in memory and
improve the efficiency of pattern matching. The timestamp update is processed incrementally and hence it allows us
to response real-time queries more conveniently, compared to traditional pattern models (e.g., [11, 27, 13, 28]).

To improve the efficiency of pattern matching, the architecture of FastPM consists of three components: (i)
the history pattern discovery component, which extracts patterns from history data and deploys these patterns in our
distributed system; (ii) the real-time pattern matching component, which is the processing core of FastPM; and (iii) the
real-time pattern update component, which is used to process the stream data in an online fashion (i.e., new patterns are
updated dynamically).

To facilitate the subsequent pattern matching tasks, the first component history pattern discovery integrates three
strategies (i.e., hierarchical pattern extraction, cluster-based partition, and frequency-aware deploy). These strategies are
developed to replace the random partition approach and the round-robin deploy method in traditional distributed
processing systems, by which the performance degrades when the data distribution is non-uniform. Our proposed
strategies collaboratively contribute to distributing different patterns according to their features and frequencies.

The second component real-time pattern matching combines asynchronous and synchronous mechanisms together to
collaborate with different steps in a pipeline job. It allows us to flexibly deal with multiple matching tasks simultan-
eously. Particularly, we design two index optimization techniques (i.e., local query index, and branch-prune approach)
that significantly improve the efficiency of distributed processing. The local query index can be viewed as the funda-
ment of our optimization, while the branch-prune approach provides a further enhancement, which is designed as an
optional choice for specific applications. We examine how to construct the local query index, and present the detailed
algorithm for pattern matching query via this index.

The third component real-time pattern update fully exploits the information stored in the master node (of our dis-
tributed system), and the key parts in this component are the dynamic partition and the pattern state update. We propose
targeted strategies for achieving these goals efficiently. Furthermore , we discuss the applications of FastPM. Particu-
larly, we examine how our framework can be immediately used to handle real-time pattern prediction.

In summary, we made the following main contributions:

2

Table 1: Notations and Symbols
S The data stream.
Q The data sequence in a certain time window ∆t.
t The occurrence time of a pattern.
xi The ith data item in a sequence.
T A set of occurrence time.
h The number of data items in a pattern.
NextP A set of patterns that have happened after pattern P.

• We define a new pattern model that reduces the storage space and facilitates pattern matching and update.
• We propose a framework, called FastPM, that allows us to achieve the real-time, distributed pattern matching

over live data.
• We implement FastPM based on a distributed stream processing platform, and evaluate FastPM using the real-

world streaming data including 5.4e+10 (i.e., 54 billion) web click tuples. Our empirical results demonstrate
that the effectiveness and efficiency of FastPM, is 8× faster than the baseline method(Random partition and
Round−Robin deploy). Moreover, FastPM supports 5,000 matching queries simultaneously.

The rest of the paper is organized as follows. We define basic concepts and problems in Section 2. The details of
FastPM are presented in Sections 3∼ 6. We also discuss some applications in Section 7. Comprehensive experimental
evaluation is conducted in Section 8. A comparison of our work and prior works is presented in Section 9, and we
conclude this paper in Section 10.

2. Problem Formulation

In this section, we first describe some concepts and then state our problem formally. For ease of reference, the
notations are summarized in Table 1.

Definition 2.1 (Data stream). A data stream S is an unbounded sequence of data used to send and receive informa-
tion, during the process of transmission [29].

In a data stream, the data is continuously produced from data sources and varied with time, and so it is challenging
to discover patterns from S. Usually, we use the time-dependent sequence to analyze and discover patterns from the
data stream.

Definition 2.2 (Time-dependent sequence). A time-dependent sequence Q is a n-length sequence of data items that
appears in S within time window ∆t. That is, Q = {x1,x2, · · · ,xn}, where each xi (i ∈ [1,n]) is a data item happened in
∆t.

Note that, in a time window ∆t, the variety in certain successive data can be formed as a tendency, or an inclination,
e.g., increment or decrement.

Definition 2.3 (Time-dependent pattern). A time-dependent pattern P is a tuple 〈pId, Data{x1, · · · ,xh}, T{t1, t2, · · ·},
NextP{P′,P′′, · · ·}〉, where h is the pattern length that indicates the number of data items contained in the pattern,
pId is the identity of the pattern, Data is the value set of all data items, T denotes the timestamp set that records all
the occurrence time for Data, and NextP is a set of patterns that have happened after the pattern P.

The Time-dependent pattern is proposed to extract patterns in a data sequence with timestamps, e.g., time series
data. It not only keeps the tendency of the data, but also records the occurrence time of this pattern and its following
pattern, which is significant for the applications such as web click analysis, financial trend prediction. The occurrence
time is a significant feature in such applications. Figure 2 is an example which shows a trading pattern in stock market
data. Figure 2(a) and 2(b) are the prices of one stock and pattern P appears at different timestamps. From our pattern
definition, the patterns with the same Data have been wrapped into a single pattern in which different timestamps are

3

Figure 2: A trading pattern example in stock market data

used to differentiate patterns. The pattern P can be formalized as 〈pId, Data, T{t1, t2}, NextP{P′,P′′}〉 to reduce the
number of patterns in memory.

Given two patterns P and P∗, we use the synthetic distance metric [2] to measure the similarity. The synthetic
distance metric combines Euclidean distance and tendency distance. Specifically, let d(P,P∗) denote the similarity
between P and P∗, it is computed as

d(P,P∗) =

√√√√ h

∑
i=1

(xi− x∗i)2 + γ× (
h

∑
i=1
|xi− x∗i |) (1)

where xi is the i−th attribute in the set P.Data, |xi− x∗i | is the tendency distance between patterns P and P∗ in term of
the i−th attribute, h is the pattern length, and γ is an adjustable weight. Remark that, although Euclidean distance is
widely used to measure the distance of points or patterns, it is unable to recognize the pattern direction or tendency,
which is important to discovery pattern fluctuation for applications such as web-click analysis and financial trading
analysis. In contrast, the synthetic distance metric can allows us to measure the trend similarity of patterns, which
calculates the internal directions (e.g., increment, decrement) of one pattern. Particularly, we find that the synthetic
distance equals to Euclidian distance when γ = 0. Essentially, one can view this distance metric as a more general
version of Euclidian distance metric.

With the above concepts in mind, we now formally define our problems as follows.

Definition 2.4. Given a “target” pattern P̂, and a pattern set P that includes all candidate patterns, we want to
retrieve a set Psim of k patterns, which are most similar to P̂, that means Psim = argmin

p∈P
kd(P,P∗)

Definition 2.5. Given a pattern set P and a new pattern P, we want to update P as follows: If pattern P does not
appear in P, P will be inserted into set P; otherwise, the pattern P∗ ∈ P whose Data is same to that of P will be
updated by adding only a new timestamp t in the timestamp set T of pattern P∗.

Our goal is to develop a distributed processing framework that can (i) finish pattern matching and update with
time as less as possible, and (ii) handle multiple matching tasks as many as possible, assuming the number of nodes
in the distributed system is given (e.g., 10).

3. System Overview

To support time-dependent pattern matching and incremental pattern update, we design a framework, dubbed as
FastPM. The architecture of FastPM is shown in Figure 3. It is composed of three major components.

. History pattern discovery component. It is used to extract patterns from history data, and to deploy these pat-
terns in our distributed system. This component essentially serves as the subsequent pattern matching tasks, and
can be regarded as our preprocessing unit. In this component a hierarchical pattern extraction method is developed

4

History

Data

Hierarchical

Pattern Extraction
Pattern Partition Pattern Deploy

Cluster

Pattern In-Memory

Storage

Optimization

Matching Engine

Node 1 Node N

...

Real-time Data
Real-time Pattern

Extraction
Dynamic Partition Dynamic Deploy

Update Engine

Pattern In-Memory

Storage

Optimization

Matching Engine

Update Engine

Matching

Adaptor
Target Pattern

Task

Deploy

P
ro

c
e
ss

in
g
 E

le
m

e
n
t P

ro
c
e
ssin

g
 E

le
m

e
n
t

Real-time Pattern Update

Real-time Pattern Matching

History Pattern Discovery

Matching Results

Figure 3: Architecture of FastPM. It is mainly composed of three components: (i) the history pattern discovery component, see the top part of the
figure; (ii) the real-time pattern matching component, see the middle part of the figure; and (iii) the real-time pattern update component, see the
bottom part of the figure.

to find persistent patterns from different granularities (e.g., every second, every minute, and every hour). Further-
more, it proposes two efficient algorithms for pattern partition and deployment to facilitate the matching efficiency,
respectively.

. Real-time pattern matching component. It is the core of our framework, which mainly serves as searching similar
patterns from history patterns. Once a new target pattern is received, a pattern matching job is generated instantly.
Next, the Matching Adaptor analyzes the job via the system parameters (e.g., the number of partitions/machines),
and parses it into multiple matching tasks. Our framework deploys these matching tasks to their corresponding
partitions by Task Deploy, where they can be executed in parallel. The Matching Engine combines synchronous and
asynchronous mechanisms together to execute the real-time pattern matching. It first searches the patterns stored in
memory and calculates the local top-k patterns, and then merges all the local similar patterns, obtaining the global top-
k similar patterns, i.e., the matching results. Particularly, our framework enhances the Matching Engine by developing
targeted optimization techniques (e.g., local query index, branch-prune approach), which will be expatiated in Section
5.2. Note that, although this paper mainly focuses on pattern matching in distributed systems, we would like to point
out that, the matching results can immediately serve as many other applications (e.g., pattern prediction), as discussed
in Section 7.)

. Real-time pattern update component. It is mainly used to process streaming data in an online fashion. In
this component, patterns from streaming data are extracted successively; the Dynamic Partition unit assigns partition
(more specifically, identifier of the partition) to the pattern. This is done in the master node of our distributed system,
in which the global partition information is stored. Afterwards, the Dynamic Deploy unit deploys the pattern to
the machine containing the “specified” partition. Essentially, this step is to find a machine or node in which the
update operation is to be executed. Finally, the Update Engine follows some rules to update the pattern’s status, by
either inserting the pattern, or appending the pattern’s timestamp to an existing pattern (recall Definition 2). For our
framework, the most key and relatively complicated parts in the real-time pattern update component are: Dynamic
Partition and Update Engine; Section 6 examines these two parts in more details.

4. History Data Processing

In this section, we first describe the hierarchical pattern extraction method, and then discuss how to partition these
“extracted” patterns and deploy the partitions on the processing machines (i.e., nodes in distributed systems).

4.1. Hierarchical pattern extraction
The granularity of the sequence generated directly by the original data items is fine-grained. Naturally, the pattern

generated based on such a sequence can express only the data tendency in a short time. This implies that, more hidden

5

0 1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30

35

40

Variable X

CP
U

Lo
ad

Original Data

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Variable X
CP

U
Lo

ad

Summary Data per 6 data

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

Variable X

CP
U

Lo
ad

Summary Data per 120 data

Level 0

Level 1

Level 2

Figure 4: An example of hierarchical pattern extraction. Level 1 is a summary of Level 0, and Level 2 is a further summary of Level 1.

patterns such as long-term patterns or summary patterns, cannot be acquired if one directly uses the fine-grained
sequences.

To detect hidden patterns, we propose a hierarchical pattern extraction method. The basic idea of our method is
to compress the original sequence(e.g., every second) into a coarse-grained data sequence (e.g., one minute or even
one hour). The compressing process essentially is to merge (original) multiple consecutive data into one value. This
can be achieved by employing an operator function, say Operator(). Here Operator() can be Average(), which is
calculating the average value as the coarse-grained data, or other user-defined methods.

Figure 4 illustrates an example of the hierarchical pattern extraction method. In this figure, Level 0 is an original
sequence containing 6000 data items, and the fundamental time unit is one second; Level 1 is a “compressed” sequence
by averaging every subsequence containing 6 data items in original sequence; and Level 2 is a further compressed
sequence by averaging more data items from original sequence. From this figure, one can easily understand that,
a “high-level” pattern (e.g., at Level 2) essentially implies a longer data tendency, which is important for pattern
prediction in a long-term.

Let X be a sequence with n-length data items, l be the number of items of each subsequence to be compressed,
and Y be the output sequence. The pseudo-codes of our method are shown in Algorithm 1.

Algorithm 1 hierarchicPatternExtraction
Input: X = {x1,x2, · · · ,xn} and l
Output: Y
1: for { i = 1; i <= (n− l); i = i+ l} do
2: T ←{xi, · · · ,xi+l};
3: j← di/le;
4: Yj← Operator(T);
5: Y = Y ∪Yj;

4.2. Cluster-based partition
In order to facilitate pattern matching in a distributed system, we need to partition the patterns into multiple

disjoint parts, which shall be deployed in different processing machines.
An immediate method for pattern partition is to separate the patterns randomly, e.g., using a hash function. Al-

though this method is easy-to-understand, and is widely used in distributed processing systems (e.g., Spark [30],
Storm [31]), its performance could be affected by the distribution of patterns. Imagine if one uses the random parti-
tion method, it is highly possible that most of similar patterns could be assigned to different partitions. In this case, it
could incur many repetitive traversals in the subsequent pattern matching tasks.

6

To alleviate the above issue, we propose using the cluster-based partition method. Our method not only separates
the patterns into disjoint parts, but also achieves good performance, as demonstrated in Section 8. The rationale behind
this method is that, the similar patterns are grouped into one cluster, and each pattern will be assigned to a cluster.
Specifically, we use the k-means algorithm [32] to group the patterns into clusters . Here each cluster can be viewed
as a partition, and in each partition we use the centroid (of the corresponding cluster) to represent the partition. By
this way, all patterns can have their corresponding partitions, and each pattern in a partition is closer to its centroid
than other centroids. The pseudo-codes of the cluster-based partition are shown in Algorithm 2.

Algorithm 2 clusterBasedPartition
Input: P= {P1,P2, · · · ,Pn} and k
Output: U t+1,Qt+1

1: t← 0;
2: U t ← Select randomly k centroids from P
3: while (True) do
4: for { j = 1; j <= n; j = j+1} do
5: for { i = 1; i <= k; i = i+1} do
6: Qt+1(j)← argmini d(U t

i ,Pj);
7: U t+1←Centroid(Qt+1);
8: if U t ==U t+1 then
9: Return;

10: t ++;

4.3. Frequency-aware deploy

After the patterns have been partitioned, we have to deploy them on the processing machines. The widely used
method is using the round-robin algorithm [33] to deploy the partitions to each node in distributed systems (e.g., Storm
[31], Spark [30], Kafka [34]). Yet, its performance could be significantly affected by the frequency of the patterns.
That is, some patterns could occur frequently while others appear occasionally. In this case, the “round-robin deploy
method” possibly incur the unbalanced deployment, damaging the performance.

To address the above limitation, we present a frequency-aware algorithm for deploying the partitions, which can
make the patterns located in each node as balanced as possible. Our method is based on the following intuition: the
frequency of patterns in each partition reflects the number of tasks to be handled, and it clearly affects the workload
of a node. (Note that, it is very convenient to calculate the frequency of pattern, since we have a timestamp set T to
record the occurrence time of one pattern, recall Definition 2.3). Given a partition, we use a simple heuristic: Scanning
the workloads of all nodes and deploying the partition on a node that is with the minimum workload currently.

Specifically, assume, without loss of generality, that the number of the nodes (in a distributed system) is M. Let k
be the number of partitions (obtained in the previous section), Qi be the pattern set in the ith partition, Number(Qi)
be the number of patterns in Qi, Num be an array used to record the number of patterns currently deployed in a node,
and QNode be the node index for Q. The details of our method are shown in Algorithm 3.

Algorithm 3 frequencyAwareDeploy
Input: Q = {Q1,Q2, · · · ,Qk}, M
Output: QNode[k]
1: Num[M]← 0;
2: QNode[k]← 0;
3: for { i = 1; i <= k; i++} do
4: index← Select the Node with Minimize(Num[M]);
5: QNode[i]← index;
6: Num[index]← Num[index]+Number(Qi);

7

Matching

TaskPE

Matching

Adaptor

Task

Deploy

Matching

PE

Matching

PE

Matching

PE

Matching

PE

Local

CombinePE

Local

CombinePE

Pattern

CombinePE
OutputPE

Target

Pattern

Asynchronization

Synchronization

Figure 5: The data flow of a matching task. In this figure the brown arrow refers to the asynchronous communications; asynchronous messages
are continuously received and processed in each PE with no latency. In contrast, the red arrow refers to the synchronous mechanism, and the
corresponding PE has to wait, until all the upstream subtasks are finished.

Note that, after partitions are deployed in their specific nodes. Each partition creates a processing element (PE),
which stores patterns in memory (cf., Figure 3), and is responsible for the subsequent pattern matching.

5. Distributed Pattern Matching

In this section, we first introduce the basic model included in the “real-time pattern matching” component (Section
5.1), and then present our optimization strategies to further improve the efficiency (Section 5.2).

5.1. Basic model for multiple matching tasks

. Overview. Figure 5 shows the basic model of distributed pattern matching. Our processing model can flexibly
deal with multiple matching tasks simultaneously. In general, the entire matching process is parsed into a data flow to
resolve the complex task, and our model combines asynchronous and synchronous mechanisms together to collaborate
with different steps in a pipeline job. The asynchronous mechanism is used to quickly handle “received matching
task”, “task deployment”, and “pattern matching”, while the synchronous mechanism is used to gather the “matching
results” from all upstream.

. Processing units. In what follows, we discuss major processing elements in detail.
• Matching TaskPE. When it receives a target pattern P̂, it checks the format of P̂, generates a matching job, and

sends the job to the next PE, i.e., Matching Adaptor.
• Matching Adaptor. It analyzes the cluster environments to obtain system parameters, and parses the matching

job into multiple matching tasks.
• Task Deploy. It is used to assign the (multiple) matching tasks to their exclusively partitions.
• MatchingPE. It is the core processing element of our system. It finishes pattern matching for each partition and

sends similar patterns to downstream PEs. We will discuss MatchingPE in more details.
• Local CombinePE. It receives similar patterns from MatchingPE, merges these results and calculates the top-k

similar patterns in each machine.
• PatternCombinePE. It is a centralized processing element, which merges all the local results from different

machines. We can use the Merge Sort algorithm [35] to sort them quickly. Afterwards, the global top-k similar
patterns are obtained.

. MatchingPE revisit. A machine or node can contain multiple MatchingPEs and each MatchingPE has no
intersection with others. Since a node can contain multiple disjoint partitions and each partition can create a PE
(recall Section 4). These multiple MatchingPEs can allow us to run tasks in parallel, and can receive messages
(e.g., temporary results) from their corresponding neighbors. In each MatchingPE, patterns are stored in memory and
arranged in a hash table T with key-value pairs < pID,Pattern >. One can iterate the local hash table T to find top-k
similar patterns. That is, it calculates the similarity between the target pattern P̂ and each local pattern in T , and then
sorts the patterns by their similarities, and finally selects similar patterns with the top-k smallest distances.

8

X1

7

8

34

X4 X3

4 5

3 5

12 32

48

46

40

55

23 27

17 25

10 41

12 54

PID

1

2

3

4

5

6

7

X2

2

6

32

53

40

10

11

(a) Patterns to be indexed

PID=7

PID=2 PID=5

PID=1 PID=6 PID=3 PID=4

X2

X2X3

(b) Local query index

Figure 6: A local query index construction example: (a) There are seven patterns in a partition to be indexed, and each pattern has four dimensions;
(b) the red texts “X2” or “X3” denotes the candidate (or splitting) dimension of the “corresponding” node.

5.2. Distributed processing optimizations
In this section, we examine the optimization techniques that improve the efficiency of distributed processing. Our

main optimization technique is to use local query index to speed up the matching efficiency. Besides, we cover a
branch-prune approach to prune some patterns, thereby reducing the storage space and also further improving the
matching performance.

5.2.1. Observation
Recall Section 5.1, we iterate all the “local” patterns to calculate the distances, in order to find top-k similar

patterns in each partition. Observe that, in many practical scenarios (e.g., web click monitoring, stock trading), the
number of local patterns could be very large. For example, the value of web click is arranged in [0,1000] and the
pattern length is 5. Then, the number of all potential patterns could reach 10005 = 1015. In this case, even if we
execute these patterns in multiple nodes as mentioned in Section 5.1, it is still very time consuming.

To attack this difficulty, we suggest a k-d tree based method that serves as the local query index, thereby speeding
up the matching efficiency. The central observation for our optimization is that, some patterns that are quite different
from the target pattern, should not be calculated the distances between these patterns and the target one. This way, the
search space can be reduced considerably.

Generally speaking, our method essentially extends the k-d tree algorithm [36] to a distributed stream framework.
In what follows, we first examine how FastPM builds the k-d tree for our pattern matching at each node, and then
explain how the matching algorithm works on the k-d tree.

5.2.2. Local query index construction
To understand the construction process, it is necessary to explain the concept of the whole distance cost, in terms

of a certain dimension. Assume, without loss of generality, that there are N patterns and each pattern contains h-
dimensional data. Then, for any dimension xi (i ∈ [1,h]), the whole distance cost, denoted by cost(x), is computed
as

cost(xi) =

√
N

∑
m=1

N

∑
n=1

(pm(xi)− pn(xi))2

+ γ× (
N

∑
m=1

N

∑
n=1
|pm(xi)− pn(xi)|) (2)

where γ is an adjust weight, pm(xi) denotes the value of the m−th pattern in dimension xi . Following conventional
k-d tree construction algorithms, FastPM builds a k-d tree in a greedy, top-down manner, by recursively splitting the
current node into two sub-nodes as follows:
• Step 1. Compute the whole distance cost for each dimension;
• Step 2. Choose a dimension whose whole distance cost is maximal as the candidate dimension;
• Step 3. Sort the values of patterns in terms of the candidate dimension, and pick the pattern, whose value in this

candidate dimension is at the middle, as the splitting node (notice that, hereafter, this candidate dimension is
referred to as the splitting dimension of this node);

9

• Step 4. Distribute the rest patterns whose values are less (resp., larger) than the above “middle” value to the left
(resp., right) child.

Notice that, picking the pattern (whose value is at the middle) as the splitting node can allow us to construct a
“balanced” k-d tree, in which the patterns are indexed. Thus, the height of the tree is bounded in O(logN), where N
is the number of all patterns. The followings show an example to construct a k-d tree in the context of our concern.

Example 1. Consider 7 patterns with 4 dimensions < X4,X3,X2,X1 > shown in Figure 6. First, to find the candidate
dimension, we calculate the whole distance cost for each dimension based on Equation (2). These costs are <
48.9,440.3,444.3,430.3 > when λ is set to 10. In this case, dimension X2 is the largest one, and thus it is picked
as the candidate dimension. Next, we sort the values of patterns in dimension X2, and acquire the “middle” value
11. Thus, we select the pattern pId = 7 as the splitting node. To balance the tree, patterns (pId = 1,2,6) (resp.,
(pId = 3,4,5)) are assigned to the left (resp., right) subtree. We iterate the above steps for each subtree until each
subtree is empty.

5.2.3. Pattern matching via local query index
Given a target pattern P̂ (also, known as a search point later), FastPM first starts at the root node of the k-d tree,

using the standard depth-first search (DFS) algorithm to find a candidate node. This node is a leaf node and can be
easily found through the splitting dimension at each branch node. Once the algorithm reaches a leaf node, it saves
that node point as the current node nd .

To facilitate the search, FastPM maintains a list of top-k nearest nodes during the searching process. Once the
algorithm reaches a node, it determines whether the current node is closer to P̂, compared to the nodes in the list. If
so, it saves the node and also updates the list (notice: at the initial stage, the number of nodes in the list is less than
k; and we always use the notation dmax to denote the maximal distance from P̂ to the nodes in the list, for short).
Otherwise, it does nothing.

After traversing the current node nd , the distance between a current pattern and the target pattern P̂ has been
calculated. FastPM checks whether there exist any nodes, on either side of the branches, that are closer to P̂ (compared
to the nodes currently in the list). This can be done by intersecting the splitting hyperplane with a hypersphere around
the search point and with a radius equal to dmax, which can be achieved using the splitting distance explained later.
Many subtrees far away from P̂ will not be traversed, which thus efficiently eliminates some portions of the search
space and speeds up the matching efficiency.

Remark that, the splitting distance is somewhat similar to Equation 2, yet it is mainly used to compute the distance
between the target pattern and a pattern in a node, and it considers only the splitting dimension (mentioned earlier).
Specifically, assume, without loss of generality, assuming that a node stores the pattern P, and the splitting dimension
of the node is κ (κ ∈ [1,h]). Let dspit(P̂,P) denote the splitting distance between P and the target P̂, it is computed as

dspit(P̂,P) = (P̂(xκ)−P(xκ))+ γ× (|P̂(xκ)−P(xκ)|) (3)

The pseudo-codes of the matching search algorithm are shown in Algorithm 4. We directly use nd as the current
node to denote the pattern in the tree. Similarly, we use nl

d (resp., nr
d) to denote the left (resp., right) child of nd . In

addition, Lrst is a sorted list used to store the matching patterns, and Nvst is a set of nodes having been visited. Lines
1-4 are used to determine whether a node nd has been visited, and Lines 5-8 are used to handle whether the pattern
in the node should be put into the result list Lrst , where dcur is used to store the distance between P̂ and the pattern
in node nd , and dmax is the maximal distance in Lrst . In addition, Lines 9-12 are used to process the left child, while
Lines 13-16 are for handling the right child.

Correctness of Algorithm 4. Suppose nd be the current node of the k-d tree, nl
d is the left child of nd , dnl

d
is the

distance between node nl
d and target pattern P̂, dsplit is the splitting distance between node nl

d and target pattern P̂, and
dmax is the maximal distance in the result list Lrst . If dsplit > dmax, assume that nl

d is a candidate nearest pattern and
dnl

d
< dmax. According to Equations 1 and 3, since the splitting distance is calculated based on one dimension(e.g., κ),

it is easy to infer that dsplit < dnl
d
, which leads to a contradiction as dsplit > dmax and dnl

d
< dmax, that is, there exists

no candidate nearest pattern if dsplit > dmax. Therefore, our algorithm traverses the left branch only if it is unvisited
and the splitting distance is less than dmax (Lines 9− 12). Similar to traversing left child, the right child is searched
only if the splitting distance is more than dmax (Lines 13−16). �

10

Algorithm 4 matchingSearch

Input: P̂, nd , k, Lrst , Nvst
Output: Lrst
1: if Nvst∩nd==Ø then
2: Nvst ← Nvst∪nd ;
3: else
4: Return;
5: dcur← d(nd ,P̂);
6: if (|Lrst | < k) || (dcur <dmax) then
7: put pattern in nd into Lrst ;
8: dmax = Max(dcur,dmax);
9: if nl

d , null & Nvst∩nl
d , Ø then

10: Nvst ← Nvst∪nl
d ;

11: if dspit(P̂,nl
d)<= dmax then

12: matchingSearch(P̂,nl
d ,k,Lrst ,Nvst);

13: if nr
d , null & Nvst∩nr

d , Ø then
14: Nvst ← Nvst∪nr

d ;
15: if dmax<= dsplit(P̂,nr

d) then
16: matchingSearch(P̂,nr

d ,k,Lrst ,Nvst);

5.2.4. Branch-prune optimization
Normally, if a pattern has occurred in the history sequence, it should be stored as a node in the tree. This implies

no matter the pattern is frequent or rare, it shall occupy one if we employ the conventional way. Image if the number
of rare patterns (a.k.a., the patterns that happen occasionally) is large, the storage space increases rapidly. This could
incur a performance slowdown of the system. To alleviate the above issue, we introduce a branch-prune approach.
Our approach is simple and easy-to-understand, yet definitely efficient, as evaluated in Section 8.

The approach is depending upon the following observation: in many applications such as web click analysis and
financial trending analysis, the “rare” pattern (a.k.a., the pattern that happens occasionally) usually cannot represent
the actual characteristics of the data, and has little influence on data analysis. Note that, pattern matching usually
serves as the backbone of these applications. The observation above immediately inspires us to re-consider the storage
of the patterns. The rationale behind our approach is to remove some branches that are with rare patterns, while
retaining the main features of the entire data.

Owe to that the (time dependent) pattern has recorded the occurrence time, we can count the frequency of each
pattern easily. Specifically, we discard some rare patterns based on the pattern frequency. The criteria for pruning
is that, the pattern with less frequency is more likely to be removed, and the pattern with more frequency should be
reserved as much as possible.

Let ε (0 ≤ ε ≤ 1) be an approximation ratio, and f be the summarized frequency of patterns. The above criteria
can be easily achieved: one can sort the patterns by the frequency, preserve f ∗ ε patterns and remove the rest f ∗
(1− ε) patterns. In this way, some patterns ranked behind and their corresponding branches in the tree are to be
continuously removed until reaching the watershed. In the end, the k-d tree is largely compressed, consuming less
storage. Naturally, the matching query can benefit with less search space, since the number of the overall nodes (stored
in the tree) decreases.

6. Real-time pattern update

Recall Section 3, we have mentioned that Dynamic Partition and Update Engine are two key and relatively com-
plicated parts in the real-time pattern update component. In what follows, we examine how our framework achieves
dynamic partition and the pattern state update in detail.

. Dynamic pattern partition. Since our framework stores the global partition information in master node (cf.,
Section 3) and each partition is represented by the centroid of the patterns in the partition (cf., Section 4.2), our

11

Dynamic

Partition

83 5 6

One Pattern P

515 36 12

One Pattern P'

Old Pattern P2

New Pattern P6

P4

P5

P1 P2

P3 State Update

P4

P3P5

P2 P6P1

Partition

In-Memory Sotrage

Figure 7: Example of real-time pattern update.

dynamic pattern partition approach fully exploits these available information.
Assume that there are n partitions in total. This implies that there are also n centroids. Our framework organizes

these centroids using a spatial indexing structure R-tree, and this structure is maintained in the master node of the
distributed system. It mainly serves as the speedup of dynamic pattern partition. With this structure, one can find
the nearest centroid for the real-time pattern. The partition corresponding to the “found” centroid shall be used as
the ”specified” partition. That is, pattern state update in the subsequent step shall be done in this partition (more
specifically, it is done in the k-d tree corresponding to this partition). Note that, after new patterns join in the partition,
the original centroid might be not optimal any more. Theoretically speaking, we may need to update the centroid
whenever a new pattern is received. However, this manner may cause a very high cost. Instead, in our framework
we update the centroid periodically. This update manner reduces the cost, and can still achieve the dynamic partition
task, since a real-time pattern is still roughly near to the centroid of the original partition for a relatively long time.

. Pattern state update. Given a real-time pattern P, we assume that its partition has already assigned and has been
dynamically deployed on a machine (usually, such a machine is a slave node of the distributed system), the operation
process of the pattern state update is essentially to search on the k-d tree, and to see whether there is pattern that is
same to P (except the timestamp). If found, it means this pattern has occurred; we only need to update this node (in
the k-d tree) by appending the pattern P’s timestamp to the pattern on this node. Otherwise, we need to insert this
pattern as a node in the k-d tree.

The search algorithm (for checking whether P has happened or not) is similar with Algorithm 4. A major difference
is that, we here search the top-1 similar pattern in the tree. In brief, the search starts also at the root node of the tree,
and it moves to either the left branch of the root node or the right one. This is determined by checking whether the
pattern to be inserted is on the left or right side of the splitting dimension (recall Section 5.2.3). In the process of
searching, if we find a node (in the tree) has “0” distance with the real-time pattern P, we append the timestamp to
the node. On the other hand, when we need to move to the left (resp., right) branch of the current node, yet the left
(resp., right) branch is null; in this case, it implies that the pattern P is new. The ‘null’ child of the current node is the
potential position for storing P, thereby we add P as a new node here. Note that, adding the real-time pattern P as a
new node may cause the tree to be unbalanced, which could lead to a slowdown in terms of the performance of the
k-d tree. For this issue, we periodically detect whether the tree is balanced. If not, we trigger a task to re-balance the
tree. This way, the performance of the k-d tree can be guaranteed appropriately.

Example 2. Consider two patterns P and P′ and a partition with 5 nodes shown in Figure 6. Assume that this partition
is the “specific” partition found by the dynamic partition method. The search algorithm finds a pattern P2 (in the tree)
that is same to P, the system updates P2 by appending the occurrence time of P. In contrast, for searching P′, the
search algorithm wants to move to the left node P6 of P3 (according to the splitting dimension), yet it is empty. The
system updates the tree by inserting P′ as a new node P6.

7. Applications

Our framework, FastPM, has many immediate applications, e.g., pattern prediction (i.e., predict future patterns),
anomaly detection, social feeling analysis, and so on. These applications can be easily applied in our framework. In
what follows, we use two examples to illustrate how they can be applied in our framework.

12

. Application example 1: pattern prediction. Pattern Prediction is trying to forecast the future tendency based
on the target pattern. Given a target pattern, if the target pattern or some similar patterns has occurred before, then
these potential information can guild us to finish the prediction. Essentially, once the similar patterns are found, some
existing pattern prediction algorithms can be straightforwardly used for pattern prediction, such as pattern weighting
strategy (PWS) [2], random walk (RW) [37], Bayesian data analysis (BDA) [38], and so on. Consider the PWS
algorithm as an example. The prediction can be calculated from the similar patterns by Equation 4 (known as the
weight equation) and Equation 5 (known as the prediction equation) below.

ωi = 1− tP̂− tPi

∑
k
j=1 (tP̂− tPj)

(4)

P′ =
k

∑
i=1

(ωi×NextPPi) (5)

where tP̂ (resp., tPi) is the occurrence time of the target pattern P̂ (resp., a similar pattern Pi), and NextPPi is the
next pattern of Pi. Note that, our pattern contains some attributes such as NextP and the occurrence time T (recall
Definition 2.3), and so these values are easy-to-obtain.

. Application example 2: anomaly detection. Anomaly detection refers to the problem of discovering patterns
in history data that do not conform to the expected behaviors. It has extensive use in a wide variety of application
domains, including fraud detection for credit cards, insurance or health care, intrusion detection for cyber-security,
fault detection in safety critical systems, and military surveillance for enemy activities [39]. We can achieve anomaly
detection in real-time, based on FastPM. For example, when we receive a pattern P, we can search P on the local
query index, using top-1 similar search with “0” distance (which is the same as that in 6). If P is not found, then
it can be regarded as an outlier pattern (notice: the branch-based prune approach in Section 5.2.4 only removes the
patterns happened occasionally; those patterns themselves are also outlier patterns). Furthermore, if P is found but
its occurrence time (e.g., 8:00 pm) is inconsistent with its occurrence time set T ’s distribution (e.g., 6:00 am ∼ 12:00
am), it can be also an anomaly pattern. Last but not least, if P is found (here we use P∗ to denote the pattern has
occurred before P, for clearness), but P does not conform to the expected pattern P∗.NextP, it can be also supposed
to an anomaly pattern.

8. Experimental Evaluation

In this section, we cover our experimental results in detail. Specifically, Section 8.1 presents experimental settings.
Sections 8.2 and 8.3 evaluate the performance of pattern matching and of pattern update, respectively. Finally, as extra
experiments, Section 8.4 examines the performance of FastPM from another perspective, using pattern prediction as
a sample of applications. Note that, besides pattern prediction, FastPM has many other immediate applications, e.g.,
anomaly detection, social feeling analysis (recall Section 7). In this paper, we do not exhaustively conduct all these
experiments, since they are not the focuses of this paper.

8.1. Experimental settings
We cover our experimental settings from several perspectives such as implementation, dataset, method and metric.
. Implementation. Apache S4 [40] is a general-purpose, distributed, scalable, fault-tolerant, and pluggable plat-

form. It allows programmers to develop applications for processing continuous unbounded streaming data easily.
Same to our prior work [41], we implemented FastPM also on top of Apache S4. Our FastPM is event-driven, and
the query processing in each PE (i.e., processing element) can be triggered periodically, or by an incoming event. (It
is worth noting that, although we implemented FastPM on Apache S4, it can be also implemented on other stream
platforms such as Twitter Storm [31], Spark Streaming [30] and Flink [42].) Our distributed system we deployed is a
cluster with ten nodes. Each node has one Xeon E5607 Quad Core CPU (2.27GHz), 32GB memory, running CentOS
6.2. We select one node for Zookeeper as our master node and data source adapter in the customization of S4.

. Dataset. The data used in our experiments is the real-world web click data produced by a game company. The
dataset consists of 54 billion tuples generated in one month, namely, it has about 20 million visits every day. We

13

calculate the visiting data every 5 seconds for each page. In particular, we use 80% of the data as our historical data
and 20% as the streaming data. The visit bound of each page within a time window is 0∼ 103, where the type of visit
is integer. Notice that, it is hard to find an optimal value for the pattern length h; its determination is usually problem-
specific and data-sensitive [43, 44]. That is, the pattern length is determined by domain experts and experienced data
analyzers. In our paper, we also follow this rule. Specifically, the length of a pattern is set to 5 in our experiments.
This way, the number of potential patterns could reach 103∗5, i.e., 1015.

. Methods. As we know, traditional pattern matching methods are designed based on sophisticated indexing tech-
niques to achieve good performance, which have to update the indices with tremendous overhead in a high speed
stream. In view of this, we adopt the following more competitive methods for comparison. They are: RR (random
partition+round-robin deploy), CR (cluster partition+round-robin deploy), CF (cluster partition+frequency-aware de-
ploy), CFL (i.e., CF + local query index), and CFLB (CFL + branch-prune approach). Here RR is a widely used method
to process distributed pattern matching in big data platforms (e.g., Storm[31], Spark[30], Kafka[34]) and thus we
apply RR as our baseline method. Other four methods optimize the method RR in terms of partition, deployment, local
index and pattern pruning to improve the efficiency and scalability; and all these methods employ the hierarchical pat-
tern extraction. Furthermore, we also implement a method called CFLB-H, which does not use the hierarchical pattern
extraction, and shall be evaluated in Section 8.4.

. Metrics. We measure the performance of FastPM in terms of several metrics. The first metric is the running
time, which is the time interval between the time when a target pattern arrives at the system and the time when
FastPM outputs the matching result. For the update tasks, it refers to the time of both updating the status of pattern
and maintaining the local query index. In our experiments we report the average running time and update time. The
second metric is throughput, which is measured by the number of tasks processed in a time unit. In our setting, the
time unit is one minute. The third metric is used for our extra experiments (i.e., pattern prediction), and is related
to the prediction accuracy. Specifically, we use the mean relative error (MRE) and the mean average error (MAE)
to evaluate the prediction accuracy. Support P and P̃ are the real pattern and prediction pattern respectively, h is the
pattern length, {x1,x2, · · · ,xh} is the data set in a pattern, and N is the number of pattern prediction, then we can
calculate MRE and MAE through the following formulas:

MRE =
1
N
×

N

∑
i=1

(
1
h
×

h

∑
i=1

|P(xi)− P̃(xi)|
P(xi)

) (6)

MAE =
1
N
×

N

∑
i=1

(
1
h
×

h

∑
i=1
|P(xi)− P̃(xi)|) (7)

. Other settings. Since experimental parameters often affect the performance of FastPM, in our experiments we
evaluate the performance of FastPM by varying several parameters.
• Nsn: the number of slave nodes in a cluster. It is ranging from 2 to 9, and 9 is the default number.
• Npp the number of pattern partitions. It is assigned with [10,100,500,1000], and 100 is the default number.
• Nmt : the number of matching tasks. It is assigned with [100,500,1000,5000,10000], and 100 is the default

number.

8.2. Performance of pattern matching

To conduct a comprehensive study on the performance of pattern matching, we vary Nsn, Npp, Nmt , respectively.
Notice that, in this paper, when we explicitly mention the performance of FastPM, we refer to CFLB, since it employs
all the optimizations proposed in the paper.

. Varying Nsn. We examine the performance of pattern matching by varying the number of (slave) nodes firstly.
The experimental results are reported in Figure 8. It can be seen from Figure 8(a) that, CR is superior to RR (which is
a common implementation in distributed processing systems such as Spark, Storm, Flink). This is mainly because CR
adopts the cluster-based partition, which groups similar patterns together, benefiting to searching k similar patterns.
Yet, CR is inferior to CF. This is due to that CR uses the round-robin algorithm to deploy the partitions on physical
nodes, it may incur unbalanced deploy, while CF overcomes this limitation by considering the frequency of patterns.
Also, one can see that, CFL and CFLB perform better than CF. This is because both of them adopt the optimization
technique (i.e., local query index) to improve the matching efficiency. In particular, CFLB requires 0.2 seconds for a

14

matching task (notice: there are about 0.8 ∗ 1015 potential patterns in the history data). On the other hand, one can
see that, with more available nodes (i.e., more computing resources) , the average running time decreases (cf., Figure
8(a)) and the throughput increases (cf., Figure 8(b)).

2 3 4 5 6 7 8 9
Node

0

500

1000

1500

2000

2500

3000

3500

4000

4500

R
u
n
ti

m
e
 (

m
s)

RR
CR

CF
CFL

CFLB

(a) Running time

2 3 4 5 6 7 8 9
Node

0

2000

4000

6000

8000

10000

12000

T
h
ro
u
g
h
p
u
t

RR
CR

CF
CFL

CFLB

(b) Throughput

Figure 8: Matching performance: varying Nsn

. Varying Npp. We study the performance of pattern matching by varying the number of pattern partitions. Figure
9 reports the results. It can be seen that, among the set of numbers [10,100,500,1000], the best number of partitions
is 100. In this case, it gives rise to the least runtime and the highest throughput. When the number of partitions is
too small (e.g., Npp = 10), each of these methods has the poor performance, this is mainly because the number of
patterns in each single partition is relatively large, damaging the parallelism ability. On the other hand, as the number
of partitions increases, the number of patterns deployed in each partition is decreased. Naturally, the performance of
parallelism is improved. Yet, when the number of partitions is too large, it has also the poor performance as shown
in this figure. This is mainly due to that the communication cost among different PEs (i.e., processing elements)
increases significantly, incurring the poor performance. In addition, the results also show that CFLB achieves the best
performance, regardless of the runtime or the throughput.

10 100 500 1000
Partition

0

1000

2000

3000

4000

5000

R
u
n
ti

m
e
 (

m
s)

RR
CR

CF
CFL

CFLB

(a) Running time

10 100 500 1000
Partition

0

2000

4000

6000

8000

10000

12000

T
h
ro
u
g
h
p
u
t

RR
CR

CF
CFL

CFLB

(b) Throughput

Figure 9: Matching performance: varying Npp

. Varying Nmt . This set of experiments studies the performance of pattern matching by varying the number
of (matching) tasks. We send all the tasks to our system at one time to test the parallelism ability in depth. The
experimental results are shown in Figure 10. We find that, CFLB achieves the best performance, respecting both the
runtime (cf., Figure 10(a)) and the throughput (cf., Figure 10(b)). Particularly, when the number of matching tasks is
equal to 10000, the runtime of CFLB is about 5 seconds. In addition, as we expected, the throughput improves when
there are more matching tasks. This implies that FastPM is scalable to more tasks.

15

100 500 1000 5000 10000
Task

102

103

104

105
R

u
n
ti

m
e
 (

m
s)

RR
CR

CF
CFL

CFLB

(a) Running time

100 500 1000 5000 10000
Task

103

104

105

T
h
ro
u
g
h
p
u
t

RR
CR

CF
CFL

CFLB

(b) Throughput

Figure 10: Matching performance: varying Nmt

8.3. Performance of pattern update

The results reported in the previous section have shown CFLB has the best performance. In this section, we mainly
focus on studying CFLB in terms of the update performance. Yet, in the rest of experiments, we also report the results
related to CFL, for ease of presentation. We study the update performance by varying the parameters Nsn and Npp,
respectively. Note that, the parameter Nmt used in previous experiments is the number of matching tasks, and thus
cannot used here.

. Varying Nsn. We study the update performance by varying Nsn firstly. Figure 11 shows the experimental results.
It can be seen from Figure 11(a) that, the update time of FastPM decreases when more nodes are available. Particularly,
it updates a pattern in less than 0.03 seconds (see CFLB with 9 slave nodes, which is the default value of our FastPM).
This satisfies the common requirement for real-time applications. Compared to FastPM (i.e., CFLB), the update time
of CFL is inferior; this is because the local query index in CFL manages more entries (i.e., nodes), and thus it takes
more time (for searching the place to be inserted and for inserting the new pattern). On the other hand, one can see
from Figure 11(b) that, the throughput of FastPM increases when more resources are available. This demonstrates the
saleability of FastPM from another perspective.

2 3 4 5 6 7 8 9
Node

0

10

20

30

40

50

60

70

80

R
u
n
ti

m
e
 (

m
s)

CFL CFLB

(a) Update time

2 3 4 5 6 7 8 9
Node

0

10000

20000

30000

40000

50000

60000

T
h
ro
u
g
h
p
u
t

CFL CFLB

(b) Throughput

Figure 11: Update performance: varying Nsn

. Varying Npp. We vary the number of pattern partitions to study the update performance. Figure 12 reports
the experimental results. On one hand, Figure 12(a) shows that, more partitions benefit to the update performance.
When Npp is small (e.g., 10), the update performance is pretty poor (larger than 200 ms even for the CFLB method).
And we find that “Npp = 100” is a turning point, its update time is less than 50 ms. Interestingly, when Npp >
100, the improvement in terms of update performance is minor. (Note that, our update task first finds the patterns

16

through traversing the k-d tree and then updates the content of this pattern, thus the update time should consider
both aspects. With more partitions, although the traversal can be improved, the time for updating the content is
almost static, i.e., about 10 ms. That is why the update efficiency does not vary much. Essentially, as shown in our
experiments, the update time of CFLB at Npp = 1000 is almost 30 ms.) On the other hand, as shown in Figure 12(b),
the throughput increases when more partitions are used, and reaches 105 when Npp = 1000. (Note that, different
from pattern matching, pattern update has no communication cost, and thus the update task can be performed more
efficiently with more partitions.)

10 100 500 1000
Partition

0

50

100

150

200

250

300

350

R
u
n
ti

m
e
 (

m
s)

CFL CFLB

(a) Update time

10 100 500 1000
Partition

0

20000

40000

60000

80000

100000

T
h
ro
u
g
h
p
u
t

CFL CFLB

(b) Throughput

Figure 12: Update performance: varying Npp

8.4. Other experimental results

As mentioned in previous sections, FastPM can be immediately applied to pattern prediction. We study the
performance of pattern prediction in this section. We report the results for both CFL and CFLB. Since the results
related to runtime and throughput are similar to that of pattern matching, in what follows we do not exhaustively
show all results (e.g., varying Npp). Besides, we also test the performance of CFLB-H, which does not employ the
hierarchical pattern extraction (recall Section 8.1).

. Accuracy of pattern prediction. Since the accuracy is very important for pattern prediction, we first examine
the accuracy. Figure 13 shows the results. From Figure 13(a) and Figure 13(b) we can see that, CFL and CFLB have
the (almost) same MAE and MRE value. This implies that, the branch-based prune approach (cf., Section 5.2) has
almost no negative impact on the prediction accuracy, on average. Also, from the same figure, we can see that, FastPM
achieves a MRE of 10% on average, indicating that a prediction accuracy of around 90%. This satisfies the common
requirements for most of prediction applications.

2 3 4 5 6 7 8 9
Node

0

1

2

3

4

5

6

7

8

9

M
A
E

CFL CFLB

(a) MAE

2 3 4 5 6 7 8 9
Node

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
R
E
(%

)

CFL CFLB

(b) MRE

Figure 13: Prediction performance: accuracy.

17

. Runtime and throughput of pattern prediction. To finish pattern prediction, we also need to execute the pattern
matching firstly, and then use the PWS algorithm to achieve prediction (recall Section 7). In the following results,
the runtime refers to the time interval between the time when a target pattern arrives at the system and the time when
the system outputs the prediction result. Also, we report the throughput of the prediction. Figure 14 reports the
experimental results. Similar to the results of pattern matching, when more computing resources are available, the
average running time decreases (cf., Figure 14(a)) and the throughput increases (cf., Figure 14(b)). Note, however, that
the runtime is slightly longer than that of pattern matching, since we needs to execute the PWS algorithm. Positively,
the whole time for finishing a pattern prediction task is still pretty small — just about 0.4 seconds.

2 3 4 5 6 7 8 9
Node

0

200

400

600

800

1000

1200

R
u
n
ti

m
e
 (

m
s)

CFL CFLB

(a) Running time

2 3 4 5 6 7 8 9
Node

0

2000

4000

6000

8000

10000

12000

T
h
ro
u
g
h
p
u
t

CFL CFLB

(b) Throughput

Figure 14: Prediction performance: runtime and throughput.

. Comparing CFLB and CFLB-H. Figure 15 shows the comparison results of CFLB and CFLB-H. It can been seen
that, both the MAE and MRE values of CFLB-H are obviously larger than that of CFLB. This essentially reflects the
effectiveness of the hierarchical pattern extraction approach, and thus further justifies the effectiveness of FastPM.

2 3 4 5 6 7 8 9
Node

0

5

10

15

20

M
A
E

CFLB CFLB-H

(a) MAE

2 3 4 5 6 7 8 9
Node

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
R
E
(%

)

CFLB CFLB-H

(b) MRE

Figure 15: The results of CFLB and CFLB-H.

9. Related Work

Pattern matching, as a well-known problem, has been investigated extensively in the past decades [8, 9, 10, 11,
12, 13]. For example, Faloutsos et al. [11] proposed a fast pattern matching method based an indexing structure,
instead of sequential matching. Argyros et al. [27] proposed a matching algorithm to find similar patterns under the
transformation of time and amplitude. Agrawal et al. [28] studied the problem of frequent pattern mining on uncertain
data. All these methods focused on matching or mining for the static data. They did not consider the real-time pattern

18

matching and dynamic update (where the new matching tasks and the new patterns are received continuously), which
are the focuses of our work. In addition, these works mainly studied pattern matching on a single machine.

. Distributed pattern matching. In order to process large-scale dataset, a few systems have been developed for
distributed pattern matching in a cluster. For example, Ahmed and Boutaba [14] formalized the problem of distributed
pattern matching and presented a peer-to-peer architecture, called DPMS. DPMS uses a Bloom filter to construct a
hierarchy of indices and supports flexible queries involving partial and multiple keywords. Cubit [15] is a scalable
peer-to-peer system that can efficiently find the k closest data items for any search key. Liu et al. [16] designed
a pattern-finding algorithm based on the MapReduce [45] framework, in order to improve the efficiency in motif
detection for prescription compatibility network. DI-matching [17] addressed the problem of incomplete pattern
matching in a distributed mobile environment. It matched similar pattern using a distributed weighted Bloom filter.
These existing distributed frameworks or systems [14, 15, 16, 45, 17] can perform parallel matching tasks efficiently.
Nonetheless, these frameworks are also not suitable for real-time pattern matching and dynamic update (similar to
those methods discussed at the beginning of this section), and thus they are difficult to be extended to real-time
applications.

. Real-time pattern matching. There are already many papers studying the real-time pattern matching for stream-
ing data. For example, Agrawal et al. [20] studied the pattern matching over event streams in RFID-based inventory
management. They proposed a formal query evaluation model to offer precise semantics of event pattern queries. Yu
et al. [25] proposed efficient algorithms (known as DIMine and CooMine) to discovery frequent co-occurrence pat-
terns across multiple data streams. Vistream [22] supported interactive visual exploration of neighbor-based patterns
in data streams. It provided a rich set of visual interfaces and interactions to enable real-time pattern exploration.
Zhong et al. [13] developed a pattern discovery technique to extract patterns from text documents and address the pat-
tern evolving problem. They designed a concept-based model to find similar text patterns. CEPR [21] demonstrated
a system to capture the semantic meanings of the matching results. It ranked the results in near real-time as a con-
tinuously refreshing view and helped users interact with the system. These existing “real-time methods” are usually
processed in a single machine and execute a single matching query at one time. However, the matching efficiency
might be significantly affected, due to the increasingly high velocity of event streams and the rising number of pattern
matching queries. Our system is carefully designed to support a large volume of data updates and many simultaneous
online matching tasks (e.g., 5000 matching queries).

10. Conclusion

In this paper, we developed a framework, called FastPM, for real-time pattern matching over a high volume of
live data. Our framework defines the time dependent pattern, and uses the hierarchical pattern extraction approach to
extract the patterns. These patterns are partitioned and deployed via the cluster-based algorithm and the frequency-
aware algorithm. To process multiple matching tasks efficiently, FastPM integrates asynchronous and synchronous
mechanisms together to collaborate with different steps in a pipeline job. Particularly, FastPM manages patterns using
the local query index and employs a branch-based prune approach to enhance the matching efficiency. In addition,
FastPM develops targeted strategies for pattern update in real-time. Furthermore, we examined the applications of
FastPM. Empirical results based on real-world data (i.e., 54 billion web click tuples) demonstrated the efficiency
and effectiveness of our system. Specifically, on average, FastPM responds to a matching query in 0.2 second,
which is much more efficient than traditional methods. Moreover, FastPM is able to deal with 5,000 online matching
queries simultaneously and still gains an average prediction accuracy of 90%. Also, the pattern update usually takes
0.03 second. In future, we plan to implement FastPM for more applications and verify its performance using more
streaming data.

Acknowledgements

We would like to thank anonymous reviewers for their insightful comments. This research was partially suppor-
ted by National Natural Science Foundation of China (No. 61702320, 61772200, 61602460, 61472453, U1401256,
U1501252 and U1611264), Shanghai Pujiang Talent Program (No. 17PJ1401900), Shanghai Municipal Natural Sci-
ence Foundation (No. 17ZR1406900), Shanghai Municipal Education Commission Funds of Young Teacher Training

19

Program (No. ZZSDJ17021), China Postdoctoral Science Foundation (No. 2016M600338), Specialized Fund of
Shanghai Municipal Commission of Economy and Informatization (No.201602008).

References

[1] E. J. Keogh, P. Smyth, A probabilistic approach to fast pattern matching in time series databases., in: KDD, Vol. 1997, 1997, pp. 24–30.
[2] D. Yang, J. Cao, J. Fu, J. Wang, J. Guo, A pattern fusion model for multi-step-ahead cpu load prediction, Journal of Systems and Software

86 (5) (2013) 1257–1266.
[3] J. Thornton, M. Savvides, B. V. Kumar, A bayesian approach to deformed pattern matching of iris images, IEEE Transactions on Pattern

Analysis and Machine Intelligence 29 (4) (2007) 596–606.
[4] M. Li, N. Cao, S. Yu, W. Lou, Findu: Privacy-preserving personal profile matching in mobile social networks, in: Proceedings IEEE

INFOCOM 2011, IEEE, 2011, pp. 2435–2443.
[5] W. Fan, Graph pattern matching revised for social network analysis, in: ICDT, ACM, 2012, pp. 8–21.
[6] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, D. Savio, Interacting with the soa-based internet of things: Discovery, query, selection, and

on-demand provisioning of web services, IEEE transactions on Services Computing 3 (3) (2010) 223–235.
[7] S. An, H. Yang, J. Wang, N. Cui, J. Cui, Mining urban recurrent congestion evolution patterns from gps-equipped vehicle mobility data,

Information Sciences 373 (2016) 515–526.
[8] P. Weiner, Linear pattern matching algorithms, in: SWAT’08, IEEE, 1973, pp. 1–11.
[9] J. H. Friedman, J. L. Bentley, R. A. Finkel, An algorithm for finding best matches in logarithmic expected time, ACM Transactions on

Mathematical Software (TOMS) 3 (3) (1977) 209–226.
[10] F. Cohen, R. Abarbanel, I. Kuntz, R. Fletterick, Turn prediction in proteins using a pattern-matching approach, Biochemistry 25 (1) (1986)

266–275.
[11] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subsequence matching in time-series databases, in: SIGMOD, Vol. 23, ACM, 1994.
[12] C. M. Bishop, Pattern recognition, Machine Learning 128.
[13] N. Zhong, Y. Li, S.-T. Wu, Effective pattern discovery for text mining, IEEE Transactions on Knowledge and Data Engineering 24 (1) (2012)

30–44.
[14] R. Ahmed, R. Boutaba, Distributed pattern matching: a key to flexible and efficient p2p search, IEEE Journal on Selected Areas in Commu-

nications 25 (1) (2007) 73–83.
[15] B. Wong, A. Slivkins, E. G. Sirer, Approximate matching for peer-to-peer overlays with cubit.
[16] Y. Liu, X. Jiang, H. Chen, J. Ma, X. Zhang, Mapreduce-based pattern finding algorithm applied in motif detection for prescription compatib-

ility network, in: International Workshop on Advanced Parallel Processing Technologies, Springer, 2009, pp. 341–355.
[17] S. Liu, L. Kang, L. Chen, L. M. Ni, How to conduct distributed incompletepattern matching, IEEE Transactions on Parallel and Distributed

Systems 25 (4) (2014) 982–992.
[18] D. Deng, G. Li, S. Hao, J. Wang, J. Feng, Massjoin: A mapreduce-based method for scalable string similarity joins, in: ICDE, IEEE, 2014,

pp. 340–351.
[19] M. M. Rashid, I. Gondal, J. Kamruzzaman, Dependable large scale behavioral patterns mining from sensor data using hadoop platform,

Information Sciences 379 (2017) 128–145.
[20] J. Agrawal, Y. Diao, D. Gyllstrom, N. Immerman, Efficient pattern matching over event streams, in: SIGMOD, ACM, 2008, pp. 147–160.
[21] J. Gu, J. Wang, C. Zaniolo, Ranking support for matched patterns over complex event streams: The cepr system, in: ICDE, IEEE, 2016, pp.

1354–1357.
[22] D. Yang, Z. Guo, Z. Xie, E. A. Rundensteiner, M. O. Ward, Interactive visual exploration of neighbor-based patterns in data streams, in:

SIGMOD, ACM, 2010, pp. 1151–1154.
[23] Z. Zhang, J. Jiang, X. Liu, R. Lau, H. Wang, R. Zhang, A real time hybrid pattern matching scheme for stock time series, in: ADC, Australian

Computer Society, Inc., 2010, pp. 161–170.
[24] L. Woods, J. Teubner, G. Alonso, Real-time pattern matching with fpgas, in: ICDE, IEEE, 2011, pp. 1292–1295.
[25] Z. Yu, X. Yu, Y. Liu, W. Li, J. Pei, Mining frequent co-occurrence patterns across multiple data streams., in: EDBT, 2015, pp. 73–84.
[26] M. Zihayat, A. An, Mining top-k high utility patterns over data streams, Information Sciences 285 (2014) 138–161.
[27] T. Argyros, C. Ermopoulos, Efficient subsequence matching in time series databases under time and amplitude transformations, in: IEEE

ICDM, IEEE, 2003, pp. 481–484.
[28] C. C. Aggarwal, Y. Li, J. Wang, J. Wang, Frequent pattern mining with uncertain data, in: SIGKDD, ACM, 2009, pp. 29–38.
[29] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: PODS, ACM, 2002, pp. 1–16.
[30] Spark, http://spark.incubator.apache.org/.
[31] Storm, https://github.com/nathanmarz/storm.
[32] J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.
[33] M. T. Özsu, P. Valduriez, Principles of distributed database systems, Springer Science & Business Media, 2011.
[34] Kafka, http://kafka.apache.org/.
[35] T. H. Cormen, Introduction to algorithms, MIT press, 2009.
[36] M. D. Berg, O. Cheong, M. V. Kreveld, M. Overmars, Computational geometry: algorithms and applications, Third Edition, Springer, Berlin,

2008.
[37] P. Révész, Random walk in random and non-random environments, World Scientific, 2005.
[38] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian data analysis, Vol. 2, Chapman & Hall/CRC Boca Raton, FL, USA, 2014.
[39] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM computing surveys (CSUR) 41 (3).
[40] S4, http://incubator.apache.org/s4/.

20

[41] D. Zhang, D. Yang, Y. Wang, K.-L. Tan, J. Cao, H. T. Shen, Distributed shortest path query processing on dynamic road networks, VLDB
Journal 26 (3) (2017) 399–419.

[42] Flink, http://flink.apache.org/.
[43] J. Lijffijt, P. Papapetrou, K. Puolamäki, Size matters: Finding the most informative set of window lengths, in: Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, Springer, 2012, pp. 451–466.
[44] S. Wang, K. Kam, C. Xiao, S. Bowen, W. A. Chaovalitwongse, An efficient time series subsequence pattern mining and prediction framework

with an application to respiratory motion prediction, in: AAAI, 2016.
[45] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, in: OSDI, 2004, pp. 10–10.

21

