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Abstract

In this paper we study the reachable region queries for objects moving in obstacle space. Loosely speaking,
given any one of moving objects and many other information, we are asked to return the whole region in which each
location has the non-zero probability to be reachable for the moving object. To solve this problem, this paper presents
an efficient algorithm that runs in O(n log n) time and consumes O(n log n) space, where n is the number of vertices
of obstacles. Moreover, this paper establishes the lower bound for the proposed problem, showing that our solution
essentially is optimal in terms of random access memory (RAM) model. Empirical study based on both real and
synthetic datasets demonstrates the effectiveness and efficiency of our solution.
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1. Introduction

Consider a set O of disjoint obstacles and a set M of moving objects in a two-dimensional space R2. For any
moving object m ∈M, it has a latest known location s, and it can move freely (within its maximum speed Vmax) in R2

except that it cannot directly pass through any obstacle o ∈ O. See Figure 1(a). Given any object m ∈ M, its elapsed
time Te, and a point p in R2, we say p has the non-zero probability to be reachable for m such that π(s, p) ≤ Vmax×Te,
where π(·) denotes the Euclidean shortest path distance (i.e., obstructed distance). The reachable region query (RRQ)
refers to that, given any object m ∈M, it is asked to return the reachable region R (of m), where R denotes the whole
region in which each location has the non-zero probability to be reachable for the object m.

Often the latest known location s might be not always constant, namely, s might be updated later. See Figure 1(b).
In this paper, we are mainly interested in algorithms without precomputation; notice that precomputing all (or some)
reachable regions (or other entities) and updating them efficiently could be an independent and more interesting topic,
we leave it as the future work. For simplicity of discussion, in the following we make an assumption that the obstacles
are line-segments. This assumption is only for ease of exposition, and our algorithm can be easily extended to the
case of polygonal obstacles, as shown in Section 5.

1.1. Applications

Our study is motivated by the increasing popularity of location-based service [21] and probabilistic processing on
uncertain data [20]. Nowadays, many mobile devices, such as cell phones, PDAs, taxis are equipped with GPS. It is
common for the service provider to keep track of the user’ s location, and provide many location-based services, for
instance finding the taxies being located in a query range, finding the nearest supermarkets or ATMs, etc. The database
server, however, is often impossible to contain the total status of an entity, due to the limited network bandwidth and
limited battery power of the mobile devices [5]. This implies that the current location of an entity is uncertain before
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Figure 1: The settings of our problem. (a) Polygons denote obstacles, and black dots denote the latest known locations of moving
objects. (b) The latest known locations might be updated later.

obtaining the next specific location. In this case, it is meaningful to use a closed region to represent the possible
location of an entity [5, 22, 25]. In database community, most of results usually assumed this region is available
beforehand, which is impractical. Although the recent work [28] considered the evaluation of such a region, it mainly
assumed that the distance-based location update policy is adopted, in which the obstructed distance is not considered.
A more justified manner to obtain such a region could be generally based on the following information: geographical
information around the entity, say GI , the (maximum) speed of the entity, and the elapsed time. By substituting GI

with obstacles O, it corresponds to our problem. We remark that, our reachable region is different from the uncertain
region in [29], and the obstructed distance is different from other distance metrics such as Mahalanobis distance [19],
energy distance [6] and semantic distance [30].

The RRQ problem can also find applications in the so-called moving target search [16, 24]. Traditionally, moving
target search is the problem where a hunter has to catch a moving target, and they assumed the hunter always knows
the current position of the moving target [24]. In many scenarios (e.g., when the power of GPS - equipped with the
moving target- is used up, or in a sensor network environment, when the moving target walked out of the scope of
being monitored), it is possible that the current position of the moving target cannot be obtained. In this case, we can
infer the reachable region based on some available knowledge, such as the geographical information and the previous
location. The reachable region here can contribute to the reduction of search range.

1.2. Related Work

The RRQ problem is similar to many problems in computational geometry, e.g., visibility polygon problem [4],
visibility graph problem [11], art gallery problem [3], watchman route problem [7], shortest path problem [26],
and so forth. We refer the interested readers to recent works and textbooks [2, 4, 10, 26] for entry points into the
literature. Among these problems, the ones most related to ours could be (1) the visibility polygon problem for a point
in a polygon with holes, and (2) the shortest path problem in the presence of obstacles. For (1), optimal algorithms
with Θ(n + h log h) time can be found in [13], where h is the number of holes. Correspondingly, for (2) the optimal
algorithm with O(n log n) time is presented in [14].

On the other hand, our problem is also similar to many problems in spatial databases, e.g., obstructed nearest
neighbor queries [9], reasoning moving objects in symbolic indoor spaces [15], visible nearest neighbour queries
[18, 27], group nearest neighbor queries with obstacles [23], range queries with obstacles [31], and so forth. To solve
these problems, various heuristic algorithms were developed. It is not hard to see that these problems and algorithms
proposed in the literature are more or less different from ours.

Although our problem is easily stated and can find many applications, to the best of our knowledge, few attention
has focused on this problem. To understand the challenges in-depth, it would be helpful to examine the traps into
which a number of readers will likely fall. At the first glance, our problem seemingly can be solved using a surprisingly
simple method — draw circles at the endpoints of obstacles using appropriate radii, and then merge these circles with
a region that is reachable without the need of making a turn. Our analysis, however, breaks this delusion. See Figure
2 for some illustrations. Another intuitive method is, for each point located in a circle with the center s and the radius
Vmax ×Te, to check if it has the non-zero probability to be reachable; by collecting all the qualified points and merging
them, it seemingly can obtain the result. This straightforward solution, however, is prohibitively expensive, as the
number of points located in a closed region can be infinity.
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Figure 2: Illustrations of a simple but incorrect method. The radius of the biggest circle denotes Vmax × Te Segments ab and cd
denote obstacles, other solid or dashed lines are the auxiliary lines. One can naturally get the reachable region for the left example,
using this surprisingly simple method. However, such a method cannot get the correct result for the right example. See the black
region, m (with the starting point s) obviously cannot reach any point located in this region.

1.3. Our Contributions

To solve the RRQ problem, we present a solution in which several novel notions, e.g., control point, circular kernel
region (CKR) and circular ordinary region (COR), are employed. Our solution favourably relies on some insights into
the nature of shortest path map (SPM) [14, 17], which was previously used to compute the Euclidean shortest path
among polygonal obstacles. The key idea of our solution is to reduce the RRQ problem to computing the union of the
CKR and a set of CORs. The fact above heavily relies on an insight formulated in Theorem 1 (see Section 3.2). It is
challenging to prove Theorem 1 directly, our scheme is to reduce it to proving another intuitive version. In our proof,
we utilize various classical tools, such as contradiction, and also several observations, e.g., any point in the ordinary
region is visible to its control point. Besides, we establish the lower bound of the RRQ problem by reduction from the
problem of sorting n integers. In summary, our main contributions are as follows.

• We show the RRQ problem can be reduced to computing the union of the CKR and a set of CORs.
• We show the RRQ problem is solvable in O(n log n) time, using O(n log n) space.
• We show the lower bound of the RRQ problem is Ω(n log n).
• We conduct experiments to demonstrate the effectiveness and efficiency of our solution.

In the remainder of the paper, Section 2 introduces the preliminaries. Sections 3 and 4 present our solution and
prove the lower bound of the RRQ problem, respectively. Section 5 discusses the case of polygonal obstacles and
other issues. Section 6 presents our experimental results and analyses. Finally, we conclude this paper in Section 7.

2. Preliminaries

Given two points p and p′ in R2, we denote by ^(p, p′) they are visible to each other, by ¬(^(p, p′) the opposite
case, by π(p, p′) the shortest path distance between them, by dist(p, p′) the Euclidean distance between them when
^(p, p′), and by pp′ the straight line segment joining the two points. Given any set, we use the notation “| · |” to
denote the cardinality of the set. |O| denotes the number of obstacles, for example. In addition, since Vmax × Te can be
computed in O(1) time, in the rest of the paper we use l to denote Vmax × Te for short, and refer to it as the maximum
travel distance.

Definition 1. (SHORTEST PATH MAP) The shortest path map of a source point s′ with respect to a set O of obstacles is a
decomposition of the free space R2\O (R2 minus the space occupied by O) into regions, such that the shortest paths
in the free space from s′ to any two points in the same region pass through the same sequence of obstacle vertices.
See Figure 3.

The shortest path map can store the shortest path distance π(s′, v) for all the vertices v [17], and the map itself is
usually stored using the quad-edge data structure [12]. Denote by S PM(s′) the shortest path map of the source point
s′. It has the following properties.
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Figure 3: The S PM(s′) with respect to five polygonal obstacles.

Lemma 1. Once the S PM(s′) is obtained, the map can be used to answer the single-source Euclidean shortest path
query in O(log n) time [17].

Lemma 2. The map S PM(s′) has complexity O(n), it consists of O(n) vertices, edges, and faces. Each edge is a
segment of a line or a hyperbola [17].

Lemma 3. Given a subdivision of a plane into more regions, to determine which of regions contains a query point p
can be finished in O(log n) time [8].

An elegant algorithm to compute S PM(s′) among polygonal obstacles can be found in [14]. It has the following
property.

Lemma 4. Given a source point s′, and a set O of polygonal obstacles with a total number n of vertices in R2, the
S PM(s′) can be computed in O(n log n) time, consuming O(n log n) space.

Remark that, from Lemma 4 one can have the immediate corollary below (since the line-segment obstacle can be
viewed as the special or degenerate case of the polygonal obstacle — it has only 2 sides and no area)

Lemma 5. Given the latest known location s, and a set O of n line-segment obstacles in the plane (i.e., R2), the map
S PM(s) can be correctly constructed in O(n log n) time, using O(n log n) space.

3. Our Solution

First, we describe our solution at a high level (Section 3.1), and then examine the central observation (Section 3.2),
which serves as the cornerstone of our solution. Moreover, we detail the evaluation of major elements such as circular
ordinary and kernel regions (Section 3.3). Finally, we analyze the time/space complexity of our solution (Section 3.4).

3.1. Solution Overview

Our solution favourably relies on some new insights into the nature of shortest path map, which was previously
used to compute the Euclidean shortest path among polygonal obstacles. To understand our solution, we need some
preliminaries; so we start by introducing several notions.

Recall that, in Definition 1 we mentioned that for two different points p and p′ in the same region of a shortest
path map, their shortest paths pass through the same sequence of obstacle vertices. With this concept in mind, we
define

Definition 2. (CONTROL POINT) Given a region of the shortest path map S PM(s), and the sequence of obstacle vertices
with regard to this region, we refer to the final obstacle vertex (among the sequence of obstacle vertices) as this
region’s control point, denoted by ec.

Definition 3. (VALID/INVALID CONTROL POINT) Given a control point ec, we refer to it as a valid control point if π(s, ec) <
l; otherwise, we say it is an invalid control point.
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Figure 4: The work-flow of our solution.

Definition 4. (KERNEL-REGION, ORDINARY REGION) Given the shortest path map S PM(s), we refer to the region containing
the latest known location s as the kernel-region denoted by Rmap(k), and any other region as the ordinary region
denoted by Rmap(o).

Definition 5. (CIRCULAR KERNEL-REGION) Given the kernel-region Rmap(k) and the circle C(s, l), we refer to their inter-
section set as the circular kernel-region denoted by R∗map(k).

Definition 6. (CIRCULAR ORDINARY REGION) Given an ordinary region Rmap(o), and assume that the control point ec

of this region is an effective control point, we refer to the intersection set of this ordinary region and the circle
C(s, l − π(s, ce)) as the circular ordinary region denoted by R∗map(o).

For intuition, Figure 4 illustrates the workflow of our solution, while the pseudocodes of our solution are shown
in Algorithm 1. In brief, it first assigns an empty set to R, followed by building a shortest path map with regard to the
latest known location s and a set O of obstacles. Then, it attempts to obtain the circular kernel region R∗map(k) and a
set of circular ordinary regions (Lines 3-7). It finally gets the reachable region R by merging all these regions.

Remark 1. The reasons we use the SPM technique is that, the reachable region query involves with a lot of com-
putations related to obtruded distances and Euclidean shortest paths among points, while the SPM technique can
efficiently manage obstructed distances and obtain the Euclidean shortest path distances among points easily.

Algorithm 1 RRQ
Input: O, s, l
Output: R

1: Set R = ∅

2: Construct S PM(s)
3: Obtain R∗map(k)
4: for each ordinary region Rmap(o) do
5: Obtain the control point of Rmap(o)
6: if it is a valid control point then
7: Obtain R∗map(o)
8: Let R = R∗map(k)

⋃
R∗map(o)∈Ψ∗ R

∗
map(o) // i.e., merge all the regions obtained before

9: return R

3.2. Reduction

The basic idea of our solution is to reduce our problem to computing the union of the circular kernel-region and a
set of circular ordinary regions. Theorem 1 below exposes this fact.
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Theorem 1. Given S PM(s) and the maximum travel distance l, assume, without loss of generality, that there are a
set Ψ of ordinary regions (among all the ordinary regions) such that each of these regions has the valid control point
ec (i.e., l−π(s, ec) > 0), implying that there are a number |Ψ| of circular ordinary regions. Let Ψ∗ be the set of circular
ordinary regions. Then, the reachable region R can be computed as R = R∗map(k)

⋃
R∗map(o)∈Ψ∗ R

∗
map(o).

It is challenging to prove Theorem 1 directly, our scheme is reducing it to proving another claim (i.e., Lemma 6
below) holds. The intuition behind the reduction is that, the reachable region R strictly assures the following condition:
“given any point p, if π(s, p) > l, then p < R; otherwise, p ∈ R”. Clearly, if one can show that another region can also
assure this condition, then it is equal to R. In the following, we focus on the proof of Lemma 6.

Lemma 6. Given s and l, for any point p,

• if π(s, p) > l, then
p < R∗map(k)

⋃
R∗map(o)∈Ψ∗

R∗map(o).

• otherwise,
p ∈ R∗map(k)

⋃
R∗map(o)∈Ψ∗

R∗map(o).

Proof. This lemma has two statements (“if” and “otherwise”), we prove each of them by contradiction.
• Case 1: assume that π(s, p) > l but

p ∈ R∗map(k)
⋃

R∗map(o)∈Ψ∗
R∗map(o).

.
We first show it is contrary if p ∈ R∗map(k), and then explain it is also contrary if p ∈ R∗map(o). By Definition 5, we

can easily know that
R∗map(k) = C(s, l) ∩ Rmap(k).

See Figure 5(b) for an illustration. To show there does not exist a point p ∈ R∗map(k) that satisfies π(s, p) > l, our key
insight is that the kernel region Rmap(k) has the following property:

Proposition 1. The kernel region is a star-shaped polygon with respect to s, and any point in the polygon is visible to
s.

The claim above follows from Definition 1 and Lemma 2. See e.g., Figure 5(a) for an illustration. Since R∗map(k)
is a subset of Rmap(k), naturally, we have

∀p(p ∈ R∗map(k)→ ^(s, p)).

Meanwhile, the radius of C(s, l) assures that

∀p(p ∈ R∗map(k)→ dist(s, p) ≤ l),

where dist(s, p) = π(s, p), since s and p are visible to each other. Thus, in this case the assumption does not hold.
We proceed to explain it is also contrary if p ∈ R∗map(o). By Definition 6, we can see that

R∗map(o) = Rmap(o) ∩C(ec, l − π(s, ec)),

where ec is an effective control point and l − π(s, ec) > 0. To show any circular ordinary region does not contain such
a point p that satisfies π(s, p) > l, our key insight is as follows.

Proposition 2. Any ordinary region is either a concave polygon or a convex polygon, but any point in the polygon is
visible to its control point ec.
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(a) (b) (c) (d)

Figure 5: Illustration of S PM(s). (a) The kernel-region. (b) The circular kernel-region R∗map(k). (c) The intersections among
segments from R∗map(k) and R∗map(o) are less. (d) The merged result.

Similar to Proposition 1, the claim above follows from Definition 1 and Lemma 2. Again, see Figure 5(a) for an
illustration. At the same time, the radius of C(ec, l − π(s, ec)) assures that

∀p(p ∈ R∗map(o)→ dist(ec, p) ≤ l − π(s, ec)),

it implies that
∀p(p ∈ R∗map(o)→ π(s, p) ≤ l),

since π(s, p) = π(s, ec) + dist(ec, p). Thus, in this case the assumption does not hold, either. Combining the two
results obtained just now, it completes the proof of Case 1.
• Case 2: Here we assume that π(s, p) ≤ l but

p < R∗map(k)
⋃

R∗map(o)∈Ψ∗
R∗map(o).

.
By Definition 4, we can see that for any point located in S PM(s), it must be located in either the kernel region

or an ordinary region, regardless of the distance from s to this point. In the sequel, we first show it is contrary if
p ∈ Rmap(k) but p < R∗map(k), and then expose it is also contrary if p ∈ Rmap(o) but p < R∗map(o).

Consider a point p ∈ Rmap(k) ∧ p < R∗map(k). Intuitively, by Definition 5 and Proposition 1, p shall be outside of
the circle C(s, l). By analytic geometry, we have that

dist(s, p) > l,

where dist(s, p) = π(s, p), since s and p are visible to each other. Thus, in this case the assumption does not hold.
Similarly, consider a point p ∈ Rmap(o) ∧ p < R∗map(o). By Definition 6 and Proposition 2, p shall be outside of

the circle C(ec, l − π(s, ec)), implying that

dist(ec, p) > l − π(s, ec).

That is,
dist(ec, p) + π(s, ec) > l,

where dist(ec, p) + π(s, ec) = π(s, p), since dist(ec, p) = π(ec, p) (by Proposition 2). Thus, in this case the assumption
does not hold, either. Combining the two results obtained just now, it completes the proof of Case 2. To summarize,
Lemma 6 follows.

3.3. Evaluation of Circular Kernel (resp., Ordinary) Region
Lemma 7. Given S PM(s), s and l, we have that (1) the circle kernel-region R∗map(k) can be obtained in linear time,
(2) the control point ec of any circular ordinary region can be obtained in logarithmic time, (3) to determine if ec is
an effective control point can be done in constant time, and (4) to obtain the circular ordinary region R∗map(o) can be
done in constant time, provided that ec is an effective control point of Rmap(o).
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Proof. We first prove the 1st claim. To obtain R∗map(k), we can execute a point-location query on S PM(s), using
the point s as the input data point; this can be done essentially in O(log n) time (by Lemma 3). In this way, we can
immediately identify the region containing the point s, i.e., the so-called kernel region Rmap(k). The edges of the
kernel-region can be efficiently obtained in time linear to the number of edges of this region. This is attributed to the
quad-edge data structure, recall Section 2. It is worth noting that Rmap(k) can have Ω(n) edges, see e.g., Figure 5(a).
With the boundaries of Rmap(k), we can immediate get R∗map(k) by computing the intersection set between Rmap(k)
and the circle C(s, l), which takes O(n) time. It stems directly from the fact that Rmap(k) can have Ω(n) edges, and
computing their intersections needs linear time. In summary, R∗map(k) can be obtained in O(n) time.

We are now ready to prove the 2nd claim. For any ordinary region Rmap(o), if we want to find its control point
ec, we just need to randomly choose a point in the region, and execute a single-source Euclidean shortest path query,
which typically can be done in O(log n) time (by Lemma 1). The final obstacle vertex on the path is just the so-called
control point, justifying the 2nd claim.

To determine whether ec is an effective control point, it is equivalent to checking whether π(s, ec) < l. Since ec ∈ E,
and S PM(s) can store the shortest path distances π(s, e) for all the endpoints e ∈ E (recall Section 2), typically, we
can obtain π(s, ec) in constant time (notice: the distances π(s, e) for all the endpoints e ∈ E can be managed using an
array). Once getting π(s, ec), we can finish, in O(1) time, the comparison between π(s, ec) and l. Thus the 3rd claim
holds.

The essence of obtaining the circular ordinary region R∗map(o) is to compute the intersection set between the circle
C(ec, l − π(s, ec)) and the ordinary region Rmap(o). First of all, the circle is immediately available in O(1) time, and
the edges of Rmap(o) can be also available in O(1) time, since we used quad-edge data structure to store S PM(s) and
the number of edges of this region has the constant descriptive complexity (by Lemma 2). With C(ec, l − π(s, ec)) and
the edges of Rmap(o), we can immediately obtain R∗map(o) in constant time. It stems from the fact that computing their
intersections needs constant time. To summarize, Lemma 7 follows.

3.4. Time/Space Complexity
Theorem 2. The running time of Algorithm 1 is O(n log n), and it consumes O(n log n) space.

Proof. First, by Corollary 5 and Lemma 7, we can easily see that Lines 2 and 3 take O(n log n) and linear time,
respectively. Within the for loop, by Lemma 7, we can see that Line 5 takes logarithmic time, both Lines 6 and 7
take constant time. In addition, by Lemma 2, the number of ordinary regions has O(n) complexity. Thus, the overall
execution time of the for loop is O(n log n). Finally, Line 8 is used to merge all these regions obtained before, which
can be achieved by executing a simple boolean aggregated operation. Since the number of edges of all these regions
has complexity O(n), arranging all the segments of these regions and appealing to the algorithm in [1] can immediately
produce their union in O((n+ i) log n) time, where i is the number of intersections among all these segments. Note that
in the context of our concern, i has the linear complexity, see e.g., Figure 5(c). Thus, merging them can be finished in
O(n log n) time essentially; the merged result shall be a closed region bounded by line segments and circular arcs, see
e.g., Figure 5(d). To summarize, the upper bound of Algorithm 1 is O(n log n). On the other hand, one can see that,
obtaining the circular kernel-region R∗map(k) and circular ordinary region R∗map(o) requires O(n) space, since S PM(s)
has complexity O(n), i.e., it consists O(n) vertices, edges, and faces (by Lemma 2). Similarly, merging all these
regions obtained before takes also linear space, since we need O(n) space to store polygons. In addition, by Corollary
5, we can see that constructing S PM(s) requires O(n log n) space. Overall, this algorithm consumes asymptotic space
O(n log n). In addition, its correctness follows directly from Theorem 1, Corollary 5 and Lemma 7, this completes the
proof.

4. Lower Bound

This section establishes the lower bound of our problem. We prove the lower bound by reduction from the problem
of sorting n integers {x1, x2, . . . , xn}. Let xmin and xmax be the smallest and largest numbers among x1, x2, . . ., xn, and
let τ = |xmax − xmin|, denoting the “range” of these n numbers. We create an instance of our RRQ problem as follows.

We choose some number α in the interval (0, 2π), and define θi =
α(xi−xmin)

τ
, where i ∈ {1, 2, . . . , n}. Note that, all θi’s

lie in the semi-open interval [0, 2π). Also, let ε be an arbitrary number in the interval (0,1), we define θ′i =
α(xi+ε−xmin)

τ
,

where i ∈ {1, 2, . . . , n}. With each number xi, we now associate a line-segment, denoted by si, whose two endpoints
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are on the unit circle having polar coordinates (1, θi) and (1, θ′i ) respectively (known as the first and second endpoints
of si). Figure 6 illustrates the construction for n = 4.

(1, θ1)

(1, θ2)

(1, θ3)

(1, θ4)

2

4

1

3

Figure 6: Illustration of lower bound proof for the RRQ problem.

The starting point s is set to the center of the unit circle, and the maximum travel distance l (i.e., Vmax × Te )
is set to the radius of the unit circle. It can be easily shown that, the first endpoint of each line-segment si appears
regularly on the boundaries of the reachable region in order of increasing values of θi’s. It is therefore easy to extract,
in O(n) time, the number n of “sorted θi’s” from the boundaries of the reachable region. Moreover, in O(n) time
these sorted θi’s can be mapped backed to the corresponding sorted xi’s. Let RRQ(n) be the time required for the
reachable region query, and S (n) be the time required for sorting x1, x2, . . ., xn. Based on the reduction above, we
have S (n) ≤ RRQ(n) + O(n) + O(n). That is, RRQ(n) ≥ S (n) − O(2n). Furthermore, it is well-known that sorting n
integers in the general algebraic decision tree requires Ω(n log n) time. Putting all together, it yields

Theorem 3. The worst case lower bound of the RRQ problem is Ω(n log n).

5. Discussion

For the case of polygonal obstacles, the RRQ problem can be easily achieved. In brief, we also construct a shortest
path map S PM(s). Note that here we can construct S PM(s) by directly appealing to the method in [14], since we
are processing the case of polygonal obstacles. Clearly, by Lemma 4, this step can be done in O(n log n) time using
O(n log n) space. Then we obtain the circular kernel-region R∗map(k) and the circular ordinary regions R∗map(o). The
methods to compute these regions are same to the ones discussed in Section 3.3, except that the control points here
are from the vertices of polygonal obstacles. So, by Lemma 7, obtaining all these regions can be done in O(n log n)
time, consuming O(n) space. We finally merge all these regions using the method discussed in Section 3.4, getting
the reachable region R. This step still takes O(n log n) time and requires O(n) space, since the number of all edges of
these regions has also O(n) complexity. Thus, one can have the following immediate corollary.

Corollary 1. Given a set O of disjoint polygonal obstacles with n vertices, we can answer the reachable region query
in O(n log n) time using O(n log n) space.

Note that, the lower bound of the reachable region query for polygonal obstacles with n vertices is also Ω(n log n).
The proof is immediate by a simple adaptation to the proof of Theorem 3. For example, let ε be an arbitrary number in
the interval (0,0.5); θi =

α(xi−xmin)
τ

, θ′i =
α(xi+ε−xmin)

τ
, θ∗i =

α(xi−ε−xmin)
τ

(notice: if θ∗i < 0, we can replace it by θ∗i +2π); with
each xi, we associate an isosceles triangle whose vertices are (θi, 0.5), (θ′i , 1), (θ∗i , 1); and we also extract the sorted
θi’s from the boundaries of the reachable region, and map them back to the sorted xi’s.

Remark 2. Notice that the object may locate at different positions with different probabilities. In the usual case
(especially when no much prior information is available), one may assume the possible locations follow random
distribution in the reachable region. On the contrary, when there are much more prior information, the probability
distribution could be calculated (or inferred) off-line. Notice that, computing the probability distribution is another
interesting yet challenging problem. Such a topic may belong to the branch of statistics; it is beyond the topic of this
paper.
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Figure 7: Runtime on the synthetic dataset.

6. Performance Evaluation

6.1. Experiment Setup
Our experiments are based on both real and synthetic datasets, and the size of 2D space is fixed to 10000×10000.

Two real datasets, called CA and LB, are deployed. The CA is available in site: http://www.usgs.gov/, and the LB
is available in site: http://www.rtreeportal.org/. The CA contains 104770 2D points, the LB contains 53145 2D
rectangles. We let the CA denote the latest known locations of moving objects, and the LB denote the obstacles in
2D space. All datasets are normalized in order to fit the 10000×10000 2D space. Synthetic datasets also consist of
two types of data. We generate a set of polygons to denote the obstacles, and place them in this space uniformly. We
generate a set of points to denote the latest known locations of moving objects, and let them randomly distributed in
this space (note: there is a constraint that these points cannot be located in the interior of any polygonal obstacles).
We remark that, as for the real dataset, once this constraint is employed, the number of effective 2D points in the CA
is essentially 101871. Furthermore, since some rectangles in the LB are degenerated to line segments, or they are not
disjoint, the number of effective rectangles in the LB is essentially 12765 after we remove those unqualified rectangles.
For brevity, we use the CL and RU to denote the real (California points together with Long Beach rectangles) and
synthetic (Random distributed points together with Uniform distributed polygons) datasets, respectively.

Since there is no available algorithms “directly” working for the reachable region query problem, we implement
a baseline method that is based on the visibility graph [11] technique. This method generally works as follows. It
constructs a visibility graph G for obstacle vertices and stores the shortest path distances from s to all endpoints in G.
For each endpoint e whose shortest path distance π(s, e) is less than l, it computes a “circular” visibility region, which
is the intersection set between the visible region [4] of e and a circle whose radius and center are l − π(s, e) and e,
respectively. Meanwhile, it also computes the circular visibility region for s, using the radius l. It finally merges all
these “circular” visibility regions, getting the reachable region. This baseline method takes O(n2 log n) time, since the
dominant step is to construct the “circular” visibility region, which takes O(n log n) time for a single endpoint. The
space complexity is O(n2), since the dominant space is in the merging phase, in which the space is mainly for storing
O(n) polygons with linear size.

We evaluate the performance of our solution based on two metrics: (i) the execute time for reachable region
query; and (ii) the memory cost used for computing the reachable region query. To study the time and space cost, in
our experiments we randomly choose 100 moving objects, and run 10 times for each object, and then compute the
average query and space cost. In our experiments, the number of edges in the polygonal obstacle is set to 4, the size
is 40 × 40. The maximum path lengths of moving objects are set to [50, 100, 200, 400, 500] for different groups of
tests. In the implementation of our algorithm and of the baseline method, we use the maximum path length to remove
obstacles that are obviously unqualified. That is, we remove those obstacles that are outside of the circle with the
radius l and the center s. In our experiments, both the proposed algorithm and the compared algorithm are written in
C++. All of our experiments are conducted on a computer with Intel i7-8700 CPU@3.2GHz and 16GB of memory.

6.2. Experimental Results for RU Dataset
Figure 7 shows the runtime of our method (i.e, PM) and the baseline method (i.e., BM) on the synthetic dataset

(i.e., RU). From this figure, it can be seen that, with the increase of the maximum travel distance l, the runtime for
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both our method and the baseline grows. Nevertheless, at all cases (l from 50 to 500) our method is superior to the
baseline, demonstrating the effectiveness of our method. On the other hand, we can see from these two curves that the
growth speed of the runtime of our method is obviously slower than that of the baseline. This essentially demonstrates
that our method has a better scalability. Notice that, when one increases the parameter l, it essentially increases the
number of obstacles to be processed. Naturally, a visibility graph (resp., shortest path map) with more edges needs to
be constructed, and so more circular visibility regions (resp., circular ordinary regions) need to be computed. This is
why the runtime increases for both methods when l increases.
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Figure 8: Space cost on the synthetic dataset.

Correspondingly, Figure 8 shows the space cost when computing the reachable region. We can easily see that,
the larger l is, the more the space is used. This is mainly because there are more segments needing to be stored in
the process of computation, when l is larger. Notice that, as for the BM, the segments may be from the visibility
graph, circular visibility regions, some immediate results when merging these regions, and so on. Similarly, as for the
PM, the segments may be from the shortest path map, circular ordinary region, and so on. An interesting finding is
that, when l is small, the space cost for these two methods is close, while the gap turns obvious when l is relatively
large. This is mainly because the number of obstacles to be considered in the computation is very small when l is
small (in this case, both methods need to store less segments, and the gap is bounded by the cost of the baseline).
Essentially, this phenomena also exists for the runtime results (see Figure 7 again), and the underlying reasons are
basically similar.

6.3. Experimental Results for CL Dataset
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Figure 9: Runtime on the real-world dataset.

As mentioned in Section 6.1, besides the synthetic dataset (i.e., RU), we also test our method and the baseline
based on the real-world dataset (i.e., CL). Figure 9 shows the runtime of these two methods. Generally, as for the real
world dataset, our method (i.e, PM) is also more efficient than the baseline (i.e., BM), and the performance gap is more
obvious when l is large. For example, when l = 500, our method outperforms the baseline by an order of magnitude.
The reasons are basically the same to our previous analysis. Moreover, by comparing Figures 7 and 9, one can easily
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find that, given the same l, the runtime on the RU dataset is longer that on the CL dataset. This is mainly because the
size of the real world dataset CL is smaller than the synthetic dataset RU. More specifically, the number of obstacles in
CL is less than that in RU. Naturally, for an query object with the maximum path length l, the computation shall take
a much longer time for the RU dataset (since more qualified obstacles may need to be considered in the computation).

Figure 10 shows the space cost of our method and the baseline on the real world dataset (i.e., CL). Overall, this set
of experimental results are similar to that in Figure 8. On one hand, the space cost of our method is no more than that
of the baseline. On the other hand, the performance gap is much more obvious when l is large. For example, when
l = 500, the space cost of our method outperforms the baseline by 1-2 orders of magnitude. In addition, by comparing
Figures 8 and 10, we can also find that, for the same l, the space cost of both methods on the CL dataset is obviously
less than that on the RU dataset. The main reason is the same to our previous analysis.
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Figure 10: Space cost on the real-world dataset.

7. Conclusion

In this paper, we investigated the problem of reachable region query, and presented an algorithm that runs
O(n log n) time and uses O(n log n) space. Experimental results based on both real and synthetic datasets demonstrate
the efficiency and effectiveness of our method. As mentioned in Section 1, precomputing all (or some) reachable
regions (or other entities) and updating them efficiently could be an independent and more interesting topic. In the
future, we would like to study this open problem.
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