
Mengqi Zeng, Bin Yao, Zhi-Jie Wang et al. CATIRI: An Efficient Method for Content-and-Text Based Image Retrieval.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 3x(x): 1–15 xxxxx 2018. DOI 10.1007/s11390-015-xxx-xx

CATIRI: An Efficient Method for Content-and-Text Based Image
Retrieval

Mengqi Zeng1, Bin Yao1, Member, CCF, ACM, IEEE, Zhi-Jie Wang2,5,6, Member, CCF, ACM, Yanyan Shen1,
Feifei Li3, Senior Member, IEEE, Member, ACM, Jianfeng Zhang4, Hao Lin4, and Minyi Guo1, Fellow, IEEE,
Member, CCF, ACM

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
3School of Computing, University of Utah, Salt Lake City 84112, USA
4Alibaba Group, Hangzhou 311121, China
5Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China
6National Engineering Laboratory for Big Data Analysis and Applications, Beijing 100871, China

E-mail: zmq19950714@126.com, yaobin@cs.sjtu.edu.cn, wangzhij5@mail.sysu.edu.cn, shen-yy@cs.sjtu.edu.cn

lifeifei@cs.utah.edu, xingdian@taobao.com, bixuan@taobao.com, guo-my@cs.sjtu.edu.cn

Received July 09, 2018; revised December 12, 2018.

Abstract The combination of visual and textual information in image retrieval remarkably alleviates the semantic gap

of traditional image retrieval methods, and thus it has attracted much attention recently. Image retrieval based on such a

combination is usually called the content-and-text based image retrieval (CTBIR). Nevertheless, existing works in CTBIR

mainly make efforts on improving the retrieval quality. To the best of knowledge, little attention has been focused on how

to enhance the retrieval efficiency. Nowadays, image data is widespread and expanding rapidly in our daily life. Obviously,

it is important and interesting to investigate the retrieval efficiency. To this end, this paper presents an efficient image

retrieval method named CATIRI (Content-And-Text based Image Retrieval using Indexing). CATIRI follows a three-phase

solution framework that develops a new indexing structure called MHIM-tree. The MHIM-tree seamlessly integrates several

elements including Manhattan Hashing, Inverted file, and M-tree. To use our MHIM-tree wisely in the query, we present

a set of important metrics and reveal their inherent properties. Based on them, we develop a top-k query algorithm for

CTBIR. Experimental results based on benchmark image datasets demonstrate that CATIRI outperforms by an order of

magnitude a competitor.

Keywords image retrieval, text-and-visual feature, indexing, top-k

1 Introduction

With the booming development of electronic in-
formation technology and the network communication
technology, massive image data are generated every
day, mainly from social networks (e.g., Facebook, Twit-
ter and Flickr) and general image databases (e.g.,
Google Images and Baidu Images) [3, 4]. The scale
of image databases is now in the hundreds of millions,
and is expanding rapidly [3, 5, 6]. Image retrieval as a

fundamental operation in image database plays a sig-
nificant role [7, 8].

One of representative branches is the text-based im-
age retrieval (TBIR)[9, 10]. It is based on annotations
associated with images, and the relevant images are
retrieved from the databases by matching the textual
query with the textual annotations of images [1, 10].
TBIR is simple and fast, and has been widely used on
the Internet (e.g., many social image search engines).

Regular Paper

©2018 Springer Science + Business Media, LLC & Science Press, China

2 J. Comput. Sci. & Technol., January 2018, Vol., No.

Yet, TBIR bears some limitations due to manual la-
belling, e.g., expensive labor and time cost, covering a
limited part of semantic interpretations on the image
content, inconsistent and/or biased annotations [3]. To
alleviate these issues some automatic image annotation
techniques have been proposed [1].

Another branch is the content-based image retrieval
(CBIR) [11, 12]. It is based on low-level visual prop-
erties (e.g., color, texture, sketch) extracted from the
images, and in CBIR systems the similarity of two im-
ages is measured by these visual features [11, 13]. CBIR
thoroughly overcomes the disadvantages of TBIR, since
it does not use annotations. Hence, much attention
has been attracted to CBIR, some researches are de-
voted to the retrieval quality (see e.g., [14, 11, 15]),
while others are devoted to the retrieval efficiency (see
e.g., [16, 5, 17, 12, 8, 7]), since CBIR is much more
time-consuming than TBIR. Nevertheless, there exists
a critical issue [3]: the semantic gap between low-level
visual features and high-level semantic features. Typi-
cally, the semantic gap refers to the mismatch between
the information extracted from an image and the inter-
pretation for the users [14]. Two major reasons incur
semantic gap [3, 14]: one is the impossibility for users to
describe the query image exactly and adequately, and
the other is the incomprehension about users’ intention
behind the query.

The researches [18, 19] have shown that combining
textual and visual information even with simple fusion
strategies may improve the quality of retrieval results.
Thereby, it has attracted a lot of attention in recent
years [20, 4, 19, 21, 22], and typically it is called the
content-and-text based image retrieval (CTBIR). In ex-
isting literature, efforts for CTBIR are mostly on im-
proving the retrieval quality by exploiting various tech-
niques such as latent semantic kernels [21], semantic
combination [22], composite correlation quantization
model [4], etc. To the best of our knowledge, few atten-
tion has focused on the retrieval efficiency in CTBIR.
One can easily understand that CTBIR is also time-
consuming, since we need to consider both textual and
visual information, let alone the increasing scale of im-
age databases. In view of the facts above, we make an
attempt to investigate the retrieval efficiency of CTBIR.

Specifically, this paper proposes an efficient CT-
BIR method dubbed as CATIRI, which can preserve
the quality of retrieval results and is designed for high
efficiency. The key principle of CATIRI is to model
the top-k image retrieval problem as a problem similar
to spatial-keyword query, and solve the reduced prob-
lem by exploiting (i) a new indexing structure called
MHIM-tree that can be viewed as a seamlessly blend
of several existing techniques such as Manhattan hash-
ing [23], inverted file [24] and M-tree [25], and (ii) a

set of important properties that allow us to prune most
of nodes in the query processing. As we demonstrate
with benchmark datasets, CATIRI is significantly su-
perior to the baseline. To summarize, the novelty and
contributions of this paper are as follows.

• We reveal that the retrieval efficiency for CBTIR
is also urgently important yet it is widely ignored.
This paper makes the first deep investigation on
the retrieval efficiency of CBTIR.

• We show the top-k image retrieval problem can
be modelled as a problem similar to the spatial-
keyword query. This finding could open a hopeful
direction for image retrieval.

• We present a top-k image retrieval method,
CATIRI, that yields a new indexing structure and
reveals a set of important properties.

• We give rigorous theoretical analysis for our
method, and conduct a comprehensive experi-
ments to evaluate its performance.

The rest of the paper is organized as follows. Section
2 reviews previous work most related to ours. Section
3 formulates our problem, and Section 4 presents our
indexing structure MHIM-tree. In Section 5 several im-
portant metrics and their inherent properties are exam-
ined, and Section 6 presents our three-phase solution.
Section 7 presents the theoretical analysis for our pro-
posed indexing as well as the retrieval algorithm. In
Section 8 we experimentally evaluate our proposed so-
lution, and finally Section 9 concludes the paper.

2 Related work

Image retrieval is a classic and hot topic in tens
of years. We review existing image retrieval methods
most related to ours. Generally, they can be classi-
fied into three categories: (i) text-based image retrieval
(TBIR); (ii) content-based image retrieval (CBIR); and
(iii) content-and-text based image retrieval (CTBIR).

TBIR. In TBIR, images are annotated with text that
represents high-level semantics, and image retrieval is
performed by text retrieval techniques. For example,
Zhang et al. [9] suggested a user-term feedback based
technique for text-based image retrieval. Li et al. [10]
proposed an approach to learn a robust classifier for
text-based image retrieval. TBIR is simple and fast yet
manual labelling is labor intensive process [38], and so
many researches focus on automatic image annotation
techniques [1].

CBIR. Correspondingly, in CBIR, image content is
used to measure similarity, which is described by vi-
sual features such as color, shape and texture. CBIR
overcomes the disadvantages of manual labelling, but

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 3

it is not so satisfactory [14] due to the semantic gap
between low-level visual features and high-level seman-
tics. Many researches have been devoted to narrowing
or bridging the semantic gap, and various techniques
and algorithms are proposed. For example, Tong et al.
[11] proposed a support vector machine active learning
algorithm for content-based image retrieval. Yang et al.
[39] suggested multiple-instance learning techniques for
image retrieval. Deng et al. [15] incorporated prior hu-
man knowledge in the form of a hierarchical structure
to perform content-based image retrieval.

Compared to TBIR, CBIR is much more time-
consuming. A lot of works have been devoted to the
efficiency in CBIR. For example, Xia al. [17] developed
Multi-Kernel Locality Sensitive Hashing schema, signif-
icantly improving the retrieval performance of KLSH
[13] by utilizing multiple kernels. Natsev et al. [40]
proposed WALRUS retrieval algorithm, which extracts
features of region and compute their signature as index
to measure similarity. Shen et al. [7] addressed how
to speed up interactive image retrieval, where they as-
sume a query is interactively refined towards the op-
timal answers by exploiting user feedback. Falchi et
al. [8] studied the possibility of caching the answers to
content-based image retrieval queries in metric space,
with the aim of reducing the average cost of query.

Although these line of works are related to our work,
it can be seen that they are clearly different from ours,
since this paper mainly focuses on the content-and-text
based image retrieval, instead of CBIR.

CTBIR. In CTBIR, it can take advantage of both vi-
sual and textual information, and bridge the seman-
tic gap. Thereby, it has attracted a lot of atten-
tion in recent years [20, 4, 19, 21, 22]. For example,
Chatzichristofis et al. [20] proposed a two-stage ap-
proach. They first use a text modality to rank the
collection and then perform CBIR only on the top-k
items. Long et al. [4] proposed a composite correlation
quantization model for image retrieval. Their model
jointly finds correlation-maximal mappings, and learns
composite quantizers that convert the isomorphic la-
tent features into compact binary codes. Zhou et al.
[19] proposed a seamless joint querying and relevance
feedback scheme, based on both keywords and low-level
visual contents. Caicedo et al. [21] proposed a strategy
to fuse visual features and unstructured-text data in a
medical image retrieval system. Clinchant et al. [22]
proposed a set of techniques called semantic combina-
tion that better manages the complementaries between
text and image search systems.

This line of works are mainly devoted to improving
the retrieval quality by developing various fusion tech-
niques. To the best of our knowledge, less attention has
been focused on the efficiency in CTBIR. This paper

makes an attempt to address the efficiency issue in CT-
BIR. Remark that, the demo paper [37] could be clos-
est to our work, since they “mentioned” the retrieval
efficiency by directly exploiting an existing technique
“inverted index”. Nevertheless, their focus is still on
the retrieval quality, as indicated in their experiments.
Essentially, we compare a similar version of [37]. Our
solution CATIRI achieves excellent query performance,
and is significantly superior to the baseline.

Others. There are also other works that close to our,
but clearly different from our work. For example, Ra-
bitti et al. [41] presented an approach to image re-
trieval that allows to take into account the imprecision
assigned to the different parts of the query, and to rank
the images on the basis of this imprecision. Chu et
al. [42] introduced a semantic data model to capture
the hierarchical, spatial, temporal, and evolutionary se-
mantics of images in pictorial databases. Brown et al.
[43] proposed a prototype content-based image retrieve
system that aims to save space cost. Chen et al. [44]
developed a distributed retrieval and recommendation
system for geo-textual images.

3 Preliminaries

3.1 Problem Formulation

Let D be an image database, and each image object
I in D is defined as a pair (Iv, It), where Iv is a vector of
visual features (e.g., GIST [26] and bag-of-words [27]),
and It is a document consisting of textual annotations.
Usually, document It can be represented by a vector, in
which each dimension is the weight of a distinct term
in the document [28, 29].

Let Dc be the collection of all documents in
database D. The weight of a term t in It can be com-
puted as follows [29]:

w(It, t) = p(t|It) = (1− λ)
tf(t, It)

|It|
+ λ

tf(t,Dc)

|Dc|
(1)

where tf(t, It) (resp., tf(t,Dc)) is the term frequency
of term t in It (resp., Dc), |It| (resp., |Dc|) is the
the total number of tokens in document It (resp., all
documents of Dc), λ ∈ [0, 1] is a smoothing coeffi-
cient of the Jelinek-Mercer method [29]. Notice that,
here tf(t, It)/|It| (resp., tf(t,Dc)/|Dc|) is essentially
the maximum likelihood estimate of term t in It (resp.,
Dc).

Let Q be a query defined as a pair (Qv, Qk), where
Qv is a vector of visual features, and Qk is a set of query
keywords. The text relevancy, between a given query Q
and an image object I, can be regarded as the proba-
bility that query keywords Qk appear in the document

4 J. Comput. Sci. & Technol., January 2018, Vol., No.

Table 1. Notations

Notation Meaning

D/Dc image database; collection of documents in D

I/Iv/It image object; vector of visual features of I; document of I

w(It, t) weight of term t in document It

Q/Qv/Qk top-k query; vector of visual features of Q; keywords of Q

P (Qk|It) text relevancy between Qk and It

vDist(Qv , Iv) distance between Qv and Iv

Dist(Qv , Iv) Manhattan distance between the hashcodes of Qv and Iv

Sv(·)/St(·) visual similarity; text relevancy

S(·)/sDif(·) similarity score; change to insert an entry

R/rDif(·) minimum bounding sphere of entry; enlargement of the covering radius of R

V/vDif(·) document vector of image object or node; difference between vectors

E/C entry in a node; category label(s)

It. And it can be computed as follows:

P (Qk|It) =
∏
t∈Qk

p(t|It) (2)

Correspondingly, the visual similarity, between a
given query Q and an image object I, can be usually ob-
tained by computing the distance between their visual
vectors. That is,

vDist(Qv, Iv) = ‖Qv − Iv‖ (3)

Furthermore, the similarity score between an image
object I and the query Q can be computed as follows
[30]:

S(Q, I) = αN(Sv(Q, I)) + (1− α)N(St(Q, I)) (4)

where Sv(·) represents the visual similarity between Q
and I, St(·) represents the text relevancy between Q
and I; N(·) is a normalization operator that transforms
them into a range [0, 1], and α ∈ [0, 1] is a balance
parameter between the visual similarity and text rele-
vancy. Note that, the similarity score described above
is a linear combination of text relevance and visual simi-
larity. Nevertheless, our solution can also work for other
functions, since it is independent of the “fusion” func-
tions. Formally, in this paper we focus on the following
problem.

Definition 1 (Top-k image retrieval). Given an image
database D and a query Q, the top-k image retrieval is
asked to return k image objects that are ranked highest
in terms of the similarity scores.

3.2 Problem Analysis

It is widely accepted [3, 13, 17] that feature hash-
ing can map visual features of image into the compact
binary code. Most of existing hashing methods adopt

Hamming distance to measure the similarity between
points in the hashcode space. Yet, these hashing meth-
ods may destroy the neighborhood structure in the orig-
inal feature space, violating the essential goal of feature
hashing [31].

Recently, a new feature hashing technique called
Manhattan Hashing [23] shows that it can effectively
preserve the neighborhood structure in the original fea-
ture space. Nevertheless, their work mainly focuses
on the retrieval quality for the content-based image
retrieval (CBIR). Note that, in this paper we are in-
terested in the content-and-text based image retrieval
(CTBIR), and our goal is to achieve a remarkable im-
provement on the retrieval efficiency.

Nevertheless, Manhattan hashing is still a power-
ful tool for our work. It enlightens us to re-examine
our problem, and particularly, we realize that, by us-
ing Manhattan hashing, it may allow us to transform
our retrieval problem into a new version that still per-
verse the inherent equivalence. The followings show the
reduction.

Denote by Dist(Qv, Iv) the Manhattan distance be-
tweenQv and Iv in the hashcode space. One can rewrite
Equation 4 as follows:

S(Q, I) = α(1− Dist(Qv, Iv)

maxD
) + (1−α)

P (Qk|It)
maxP

(5)

where maxD is the upper bound on Dist(Qv, Iv) and is
used to normalize Dist(Qv, Iv) into [0, 1], while maxP
is the upper bound on P (Qk|It) and is used to normal-
ize the P (Qk|It) into [0, 1].

This reduction is important, since it is the corner-
stone of our proposed method. In particular, we observe
that, to some extent the reduced problem is similar to
spatial-keyword query problems [32], since they also in-
volve text and have two components in the query input.
This mightily motivates us to develop solutions by in-

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 5

tegrating Manhattan hashing [23] with the techniques
widely used in keyword query such as inverted file [24],
and used in similarity search such as M-tree [25]. To
the best of our knowledge, to date (1) none of existing
spatial-keyword query methods can solve our problem,
and (2) this is the first work to expose the top-k image
retrieval problem can be modelled as a problem simi-
lar to the spatial-keyword query. In what follows, we
present our solution including indexing structure, im-
portant metrics and specific algorithms. For ease of
reference, the reader can refer to Table 1 for main sym-
bols used in this paper.

4 The MHIM-tree

In this section, we present a novel indexing struc-
ture, named MHIM-tree. Similar to many existing in-
dexing structures such as sequenced multi-attribute tree
[16], our MHIM-tree is also a blend of several exist-
ing techniques (with some specific adaptations). In a
nutshell, our MHIM-tree integrates several elements in-
cluding Manhattan hashing [23], inverted file [24], M-
tree [25]. For ease of presentation, we next shortly re-
view these three existing elements. And then we exam-
ine the details of the MHIH-tree.

4.1 Three Existing Elements

Manhattan hashing. As mentioned earlier, it is
mainly used to transform the visual features of images
into binary Manhattan hashcodes that preserve the
neighborhood structure in the original feature space.
More specifically, it first uses the iterative quantization
(ITQ) [2] to project the original data with higher di-
mension to the lower dimensional space, and then uses
Manhattan quantization (MQ) [23] to get the corre-
sponding hashcode, such as 110011 (a 3-dimensional
hashcode).

Inverted file. It has a vocabulary of all terms, and
each term is associated with an inverted list. Each
inverted list comprises a sequence of postings, each
of which normally contains the identifier of an object
whose description contains the term and the frequency
of the term in the description. In general, the postings
in each inverted list are sorted by object’s identifer.

M-tree. Similar to B-tree, the M-tree is also a bal-
anced search tree, mainly used for indexing generic
multi-dimensional “metric space”, where the distance
function satisfies the symmetry, non-negativity and tri-
angle inequality postulates. The key idea is to group
nearby objects and represent them with their mini-
mum bounding sphere in the next higher level of the
tree. Since all objects lie within this bounding sphere,
a query that does not intersect the bounding sphere
also cannot intersect any of the contained objects. At

the leaf level, each indexed object is represented by a
sphere, where sphere center is the features of object
and radius is zero; at higher levels, the aggregation of
an increasing number of objects is called routing object,
represented by a bounding sphere of contained objects.

4.2 Data structure of MHIM-tree

Based on M-tree, the MHIM-tree is a hight-balanced
tree with the balancing factor B. For a leaf node, it
contains entries in the form of (id,R,V, C), and each
entry represents an image object.

• id: the identifer of an image object I.

• R(O, r): the minimum bounding sphere of image
object I, whose center O is the hashcode of I
and radius is zero. Remark that, the sphere for
a single image object is essentially a point. For
example, assume the 3-dimensional hashcode of I
is 001101, then R.O = (0, 3, 1) and R.r = 0.

• V: a vector that represents the document It. For
example, assume that there are n distinct terms
t1, t2, ..., tn in Dc, then V = {v1, v2, ..., vn}, where
vi = w(It, ti) (i.e., p(ti|It), recall Equation 1) if
ti ∈ It; otherwise vi = 0.

• C: a label for the category containing I. Note
that, in general all images in the database D are
divided into many categories.

For a non-leaf node, it contains entries in the form
of (p,R,V, C), and each entry represents a routing ob-
ject corresponding to a child node. Note that, here we
slightly abuse the notations R,V, C but their meanings
shall be clear in the context.

• p: a pointer to the corresponding child node.

• R(O, r): the minimum bounding sphere of the
routing object that bounds the spheres of all en-
tries in the child node.

• V: the representative vector of all the document
vectors in the subtree rooted at the child node.
For example, assume V = (v1, v2, · · · , vn), then
vj = max{Ei.V.vj}, where Ei is an entry con-
tained in the child node.

• C: a set of all labels for categories in the child
node. That said, C =

⋃
{Ei.C}.

In addition, each node N (regardless of leaf or non-
leaf node) is attached with an inverted file, which is
used to index all the documents in the subtree rooted
at N . The inverted file is composed of two main com-
ponents:

• A vocabulary of all distinct terms in documents
that are in the subtree rooted at N .

• A collection of inverted lists, each of which is
linked to a term t in the vocabulary. Note that,
here each inverted list is a set of tuples in the form

6 J. Comput. Sci. & Technol., January 2018, Vol., No.

of 〈E, c, w((E, c), t)〉, where E refers to an entry
in the node containing term t, c is one of category
labels in entry E, and w((E, c), t) is the weight of
term t in both entry E and category c.

Remark that, when N is a leaf node, c = E.C and
w((E, c), t) = w(E.id, t), since entry E represents an
image object. Otherwise, c is a category label in the set
E.C, and w((E, c), t) is the maximum weight of term
t in all documents of image objects that belong to the
subtree rooted at E and category c, since entry E rep-
resents a child node of N . Here w((E, c), t) is computed
as follows:

w((E, c), t) = max{w((Ei, c), t)|Ei ∈ E.p} (6)

where Ei is an entry contained in the node represented
by E.

Example 1. To further understand the general picture
of the MHIM-tree, Figure 1 shows a general picture of
our MHIM-tree. Here I1, I2, . . . , I9 are nine image ob-
jects, which are grouped into four different categories
C1, C2, C3, C4.

inv1 inv2 inv3 inv4 inv5

inv7inv6

N8 C1C2C4C1C2C3N6 N7inv8

N6 C2C3C1C2N1 N2 N7 N3 N4 N5C1 C2C4 C4

N3 I5 C1N2 C2I3

I4 C3

N1 I1

I2

C1

C2

N4

C2

I6

I7

I8

C4

C4

N5 I9 C4

Fig.1. Index structure of the MHIM-tree

5 Important Metrics and Properties

In order to use the MHIM-tree wisely in the re-
trieval, this section defines a set of important metrics,
and meanwhile examines their inherent properties.

As we know, for two points x = [x1, x2, · · · , xd]T ,

y = [y1, y2, · · · , yd]T in Manhattan space, the Manhat-
tan distance between x and y is the sum of differences
on all dimensions. The specific calculation formula is
as follows [23]:

Dist(x,y) =

d∑
i=1

|xi − yi| (7)

Obviously, Manhattan distance satisfies the symmetry,
non-negativity and triangle inequality postulates.

Consider, in Manhattan hashcode space, a point
P = [p1, p2, . . . , pd] and a sphere R = (O, r), where

O = [o1, o2, . . . , od] is center of R and r is radius. The
first metric is as follows:

Definition 2. Given P and R = (O, r), the minimum
Manhattan distance between P and R in Manhattan
hashcode space, is defined as follows:

minDist(P,R) = max(Dist(P,O)− r, 0) (8)

The metric above has the following property:

Lemma 1. The distance minDist(P,R) is no larger
than the distance between P and any object enclosed in
R.

Proof. Let S be any image object enclosed in R, and
the hashcode of which is [s1, s2, . . . , sd]. It is obvious
that ∀i ∈ [1, d], we have

|pi − si| ≥ |pi − oi| − |si − oi| .

By Equation 7, we can obtain

Dist(P, S) ≥ Dist(P,O)−Dist(S,O).

And Dist(S,O) ≤ r, so

Dist(P, S) ≥ Dist(P,O)− r.

Then, by Definition 2 and non-negativity of Man-
hattan distance, we have

minDist(P,R) ≤ Dist(P, S).

The above lemma offers a lower bound on the Man-
hattan distance between a query and all image objects
enclosed in the Sphere of a node, and it shall be used
in our proofs later. The second metric we present is the
maximum text relevancy between a query and a node,
which takes the category into consideration.

Definition 3. Given a query Q and a node N , the
maximum text relevancy between Q and N is defined
as follows:

maxRel(Qk,N) = max
c∈N .C

P (Qk|(N , c)) (9)

P (Qk|(N , c)) is an upper bound on the text relevancy
between Qk and documents of all image objects that are
contained in the subtree rooted at N and belong to cat-
egory c. It is computed as:

P (Qk|(N , c)) =
∏
t∈Qk

p(t|(N , c))

=
∏
t∈Qk

w((N , c), t)

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 7

where for t ∈ (N , c), w((N , c), t) is stored in the in-
verted file corresponding to the parent node of N ; for

t /∈ (N , c), w((N , c), t) = λ tf(t,Dc)
|Dc| .

Lemma 2. The text relevancy maxRel(Qk,N) is no
less than the text relevancy between query Q and any
image object contained in the subtree rooted at node N .

Proof. Let I be any image object belonging to the
subtree rooted at N , the text relevancy between q and
I is:

P (Qk|It) =
∏
t∈Qk

w(It, t).

According to Equation 6, we have

w((N , I.C), t) ≥ w(It, t).

By combining the above two results, we can obtain:

P (Qk|(N , I.C)) ≥ P (Qk|It).

Further, according to Equation 9 and the fact I.C ∈
N .C, this yields

maxRel(Qk,N) ≥ P (Qk|It).

The lemma above offers an upper bound on the text
relevancy between a query and all image objects con-
tained in the subtree rooted at a node, and it shall be
used in the proof of Lemma 3. Furthermore, based on
Equation 5 we propose the third metric, the maximum
similarity score, which combines minDist and maxRel.
Specifically, we have

Definition 4. Given a query Q and a node N , the
maximum similarity score between Q and N is defined
as follows:

MaxScore(Q,N) = α(1− minDist(Qv,N .R)

maxD
)+

(1− α)
maxRel(Qk,N)

maxP
(10)

where α, maxD and maxP are same to that in Equa-
tion 5.

Lemma 3. The similarity score MaxScore(Q,N) is
no less than the similarity score between any image
object and query Q, which is contained in the subtree
rooted at node N .

Proof. Let I be an image object belonging to the
subtree rooted at node N , the similarity score of I for
query Q is S(Q, I), and can be computed by Equation
5. By Lemma 1, we have

minDist(Qv,N .R) ≤ Dist(Qv, Iv).

Further, by Lemma 2, we can obtain:

maxRel(Qk,N) ≥ P (Qk|It).

By Equations 5 and 10, this yields

MaxScore(Q,N) ≥ S(Q, I).

For a query, the lemma above offers an upper bound
on the similarity scores of all image objects contained
in the subtree rooted at node N . The last metric is the
maximum Manhattan distance between a point and a
Sphere.

Definition 5. Given a point P and a sphere R =
(O, r), the maximum Manhattan distance between P
and R in Manhattan hashcode space is defined as:

maxDist(P,R) = Dist(P,O) + r (11)

Lemma 4. The distance maxDist(P,R) is no smaller
than the distance between P and any object enclosed in
R.

Proof. Let S be any object enclosed in R, the hash-
code of which is [s1, s2, . . . , sd], it is obvious that for
∀i ∈ [1, d], we have

|pi − si| ≤ |pi − oi|+ |si − oi|.

By Equation 7, we can obtain

Dist(P, S) ≤ Dist(P,O) +Dist(S,O).

And Dist(S,O) ≤ r, so

Dist(P, S) ≤ Dist(P,O) + r.

By Definition 5, this yields

maxDist(P,R) ≥ Dist(P, S).

Besides, one can easily obtain the extra results be-
low. Given a query Q and the root node, root, of
MHIM-tree, one can see that, for any image object I
in the tree, it is enclosed in root.R. Thus, by Lemma 4
and Lemma 2, one can obtain the following corollary:

Corollary 1. maxDist(Qv, root.R) ≥ Dist(Qv, Iv).

Corollary 2. maxRel(Qk, root) ≥ P (Qk|It).

The above two facts imply that, in the MHIM-tree
we can essentially view maxDist(Qv, root.R) as maxD,
and maxRel(Qk, root) as maxP , respectively.

8 J. Comput. Sci. & Technol., January 2018, Vol., No.

6 The CATIRI Retrieval Algorithm

CATIRI comprises several phases: (1) text-and-
visual feature preprocessing; (2) building MHIM-tree;
(3) image retrieval via MHIM-tree.

6.1 Preprocessing

In this phase, we preprocess (i) the documents of
textual annotations, and (ii) the visual features of im-
age objects.

The text preprocessing is mainly for calculating
the text relevancy. Specifically, for each document It,
one can calculate, according to Equation 1, the weight
w(It, t) of each distinct term t. This way, one can ob-
tain a set of term-weight pairs (t, w(It, t)). In addition,

one may need to calculate λ tf(t,Dc)
|Dc| for each distinct

term t in the database D. This value represents the
weight of t when term t is not in document It. After
text processing, one can easily get the text relevancy
according to Equation 2.

The visual feature preprocessing is for transforming
the visual features of image objects into hashcodes. As
mentioned earlier, we use Manhattan hashing algorithm
[23] to get the hashcodes of visual features.

6.2 Building MHIM-tree

As mentioned in Section 4, our MHIM-tree is based
on the classic M-tree. This allows us to adapt the con-
struction algorithm of M-tree to achieve our goal. Gen-
erally, the construction of MHIM-tree is similar to that
of M-tree. To save space, we only present the parts that
are different from M-tree.

Algorithm 1: Insert(I, category)

Input: Image object I and its category label
category

1 R← createSphere(Iv, 0);
2 E ← createEntry(I.id,R, It, category);
3 N ← ChooseLeaf(E);
4 Add E to node N , add It and category to

inverted file corresponding to N ;
5 AdjustTree(N);

The MHIM-tree is built by Insert operation, whose
pseudo-codes are described in Algorithm 1. In this al-
gorithm, ChooseLeaf is responsible for choosing the
best leaf node to place a new image object. This op-
eration starts from the root, and recursively selects the
best subtree to enclose the image object, until a leaf
node is reached. Algorithm 2 covers more details about
the ChooseLeaf operation. Note that, the selection
criteria is to make the change for “inserted” subtree as
small as possible. Here the change includes the enlarge-
ment of the covering radius, and also the difference of
the “document” vector. The followings show how the

change is measured.

Let E be the entry of the image object to be in-
serted, Ei be one of entries in the current node. With-
out loss of generality, assume that one wants to insert
E into the subtree rooted at Ei, then the enlargement
of the covering radius is:

rDif(Ei, E) = CMB(Ei.R,E.R).r − Ei.r (12)

where CMB(Ei.R,E.R) is minimum bounding sphere
enclosing Ei.R and E.R, so its radius is:

CMB(Ei.R,E.R).r = max(Dist(Ei.O,E.O)+E.r,Ei.r).
(13)

Correspondingly, the change of the document vector is:

vDif(Ei, E) = 1− cosSim(Ei.V, E.V) (14)

where cosSim is the cosine similarity between two vec-
tors. With the above two concepts in mind, the “over-
all” change is measured by the following:

sDif(Ei, E) = β
rDif(Ei, E)

maxR
+ (1− β)vDif(Ei, E)

(15)
where maxR is the maximum rDif , which is used to
normalize rDif into [0, 1]. In addition, β ∈ [0, 1] is
a parameter used to balance visual similarity and text
relevancy. In general, one can set β = α in order to
maintain the consistency.

Algorithm 2: ChooseLeaf(E)

Input: An entry E representing an image
object

Output: The leaf node that E should be
inserted into

1 N ← root;
2 while N is a non-leaf node do
3 for each entry Ei in N do
4 change← sDif(Ei, E);

5 Select the entry Ei with the smallest
change;

6 N ← the node pointed by Ei.p;

7 return N ;

Another important operation in Algorithm 1 is the
AdjustTree operation, which is responsible for adjust-
ing the MHIM-tree after inserting a new image object.
This operation starts from the leaf node, recursively
adjusts the entry of each visited node and updates the
inverted file in its parent node, until the root is reached.
Algorithm 3 covers more details about this operation.

A key operation in Algorithm 3 is SplitNode, used
to split the node into two new nodes when the number
of entries in a node exceeds the maximum limit. The
division criteria is to make more similar entries in the

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 9

same node, and less similar entries in different nodes.
By incorporating the above criteria (based on sDif in
Equation 15) and the Split policy in [25], Algorithm 4
covers the details about SplitNode.

Algorithm 3: AdjustTree(N)

Input: A node N
1 Np ← parent node of N ;
2 if N needs to be split then
3 {N1,N2} ←SplitNode(N);
4 if N is root then
5 Create a new node N ′;
6 Add N1,N2 into N ′ as child nodes and

update the inverted file corresponding
to N1,N2 and N ′;

7 root ← N ′;
8 else
9 Delete N from the parent node Np, and

add N1,N2 to Np as child nodes;

10 else
11 EN ← entry of N ;
12 adjustEntry(EN);
13 Update the inverted file corresponding to

Np;
14 if N is not root then
15 AdjustTree(Np);

Algorithm 4: SplitNode(N)

Input: A node N that needs to be split
Output: Two new nodes obtained by splitting

N
1 m← the minimum number of entries in a node;
2 N1,N2 ← empty node;
3 Insert E1 in node N into N1;
4 for each remaining entry Ei in node N do
5 rD ← Dist(Ei.O,N .O);

6 Select the entry with the largest rD, and insert
it into N2;

7 while there are unassigned entries in node N
do

8 if one node has to contain all the rest to
reach m then

9 Insert all the rest of entries into it;
10 break;

11 for each remaining entry Ei do
12 d1 ← sDif(N1, Ei);
13 d2 ← sDif(N2, Ei);

14 Select the entry with the largest |d1 − d2|
and insert it into the node with smaller
sDif();

15 return {N1,N2};

6.3 Retrieval via MHIM-tree

Our query algorithm follows the best-first traversal
paradigm [33]. It fully exploits the proposed indexing
structure as well as the metric properties. Generally
speaking, we employ a priority for nodes and image ob-
jects to determine the order in which they are to be
visited. For an image object, its priority is the similar-
ity score computed by Equation 5, and for a node its
priority is the MaxScore computed by Equation 10. In
the algorithm, we use the common rule: “the larger the
score is, the higher the priority is”. In the retrieval pro-
cess, our algorithm repeatedly chooses the next node or
image object from the priority queue, which keeps track
of unvisited nodes and image objects, until k image ob-
jects have been obtained. Algorithm 5 illustrates the
details for top-k image retrieval.

Algorithm 5: Query(Q, root, k)

Input: A query Q, the root node root, and the
number of desired images k

Output: A list of desired images
1 que← createPriorityQueue();
2 result← createList();
3 count← 0;
4 que.Enqueue(root, 1);
5 while que is not empty do
6 elem← que.Dequeue();
7 if elem is an image object then
8 result.add(elem);
9 count+ +;

10 if count = k then
11 break;

12 else if elem is a leaf node then
13 for each entry (i.e., image object I) in

elem do
14 priority ← S(Q, I);
15 que.Enqueue(I, priority);

16 else
17 for each entry (i.e., node N) in elem do
18 priority ←MaxScore(Q,N);
19 que.Enqueue(N , priority);

20 return result;

7 Theoretical Analysis

In this section, we cover main theoretical results re-
lated to our method. In analysis, we use m/M to de-
note the minimum/maximum number of entries in a
node, and d to denote the dimension of hashcode.

Theorem 1. Our top-k query processing algorithm is
correct.

10 J. Comput. Sci. & Technol., January 2018, Vol., No.

Proof. To prove our query algorithm is correct, the
key of point is to show that all image objects are
dequeued in the descending order of their similarity
scores. The followings validate this fact. Given a query
Q, two image object I1 and I2, without loss of gen-
erality, assume I1 is dequeued before I2 (in the query
processing). It is easily know that, after I1 is dequeued,
there are two cases:

(i) I2 is in the queue;

(ii) a node N containing I2 in the queue.

If it is the former case, then it is not hard to see that
S(Q, I1) ≥ S(Q, I2), since I1 has a higher priority than
I2. In contrast, if it is the latter case, we can get
S(Q, I1) ≥ MaxScore(Q,N) ≥ S(Q, I2), according to
Lemma 3. Therefore, image objects are dequeued in the
descending order of their similarity scores in Algorithm
5. This completes the proof.

Theorem 2. The upper bound on time cost of con-
structing an MHIM-tree containing N image objects is

O(MNdlogmNe(d+ |Dc|)).

Proof. The height of an MHIM-tree containing N
image objects is at most dlogmNe−1, since the branch
number of each node is between m and M . And the
maximum number of nodes in the tree can be estimated
as

maxNode = dN
m
e+ d N

m2
e+ · · ·+ 1 ≈ N − 1

m− 1
.

To insert an image object, one can follow a path
from the root node to the leaf node for ChooseLeaf
operation. For each visited node in ChooseLeaf oper-
ation, we scan no more than M entries to find the most
appropriate one, and the cost per entry is O(d+ |Dc|).
Clearly, the cost of ChooseLeaf operation should be
O((dlogmNe − 1) ∗M ∗ (d+ |Dc|)).

In addition, we need to adjust the tree by Adjust-
Tree operation, since the new node may incur some
updates for the upper level nodes. The updates can be
done by following the reversed path from the chosen leaf
to the root. For each visited node in AdjustTree oper-
ation, we need to adjust the attributes and the inverted
file in its parent node. Hence, the cost for AdjustTree
operation is O((dlogmNe − 1) ∗ (d+ |Dc|)).

Based on the above facts, it easily get that the cost
for inserting an image object (without SplitNode op-
erations) is O((dlogmNe − 1) ∗ (M + 1) ∗ (d+ |Dc|)).

On the other hand, it is not hard to see that the cost

for each SplitNode operation is O(M
2+M
2 ∗(d+ |Dc|)),

and the number of SplitNode operations is no more
than maxNode− 1.

Thus, to sum up, the time cost of building an
MHIM-tree is at most

O((M + 1) ∗N ∗ (dlogmNe+
M

2(m− 1)
) ∗ (d+ |Dc|))

≈ O(MNdlogmNe(d+ |Dc|)).

Theorem 3. For an MHIM-tree containing N image
objects with c (≥ 1) categories, the upper bound on
space cost is O(Nd+ (cm + 2)N |Dc|).

Proof. Without loss of generality, assume that the
number of all nodes is nodeSum. It is easily verified
that in the MHIM-tree there are N entries that rep-
resent image objects, and nodeSum entries that repre-
sent nodes. The space cost per entry is O(d + |Dc|),
in which O(d) is for R in the entry and O(|Dc|) is for
V in the entry. So the space cost of for all entries is
O((nodeSum+N) ∗ (d+ |Dc|)).

The other part of space cost is the inverted files cor-
responding to nodes. Note that, in the inverted lists,
one term is at most related to one tuple for each entry
that represents an image object, and is at most related
to c tuples for each entry that represents a node. In
addition, the total number of terms is no more than
|Dc|. Thus, the total space cost of all inverted files is
O((nodeSum ∗ c+N) ∗ |Dc|).

To sum up, the space cost of an MHIM-tree is

O((nodeSum+N)∗d+[nodeSum∗(c+1)+2N]∗|Dc|).

Note that, since the maximum number of nodes is
N−1
m−1 (stated in the proof of Theorem 2), we can relax
the above result, obtaining the following (by replacing
nodeSum): O(Nd + (cm + 2)N |Dc|). This completes
the proof.

Theorem 4. For a top-k query Q on an MHIM-tree
containing N image objects, the time complexity in the
best-case is O((k + dlogM

N
k e)(d + |Qk|)), and in the

worst-case is O(N(d+ |Qk|)).

Proof. The time cost for visiting a node or an image
object is O(d+ |Qk|), according to Equation 5 and 10.
In the best-case, all image objects of the query result
are close to each other in the MHIM-tree. So in the re-
trieval process, the number of visited nodes and image
objects is at least

k + (d k
M
e+ d k

M2
e+ · · ·+ 1) + (dlogM Ne − dlogM ke)

= k +
k − 1

M − 1
+ dlogM

N

k
e ≈ O(k + dlogM

N

k
e).

Thus, the time complexity is O((k + dlogM
N
k e)(d +

|Qk|)). In the worst-case, we may need to visit the

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 11

whole tree in the retrieval, so the number of visited
nodes and image objects is at most

N +maxNode = N +
N − 1

m− 1
≈ O(N).

Thus, the time complexity is O(N(d+ |Qk|)).

8 Experiments

8.1 Experimental Settings

Datasets. In our experiments, we use three bench-
mark datasets: IAPR [34], LabelMe [35] and NUS-WIDE
[36]. NUS-WIDE is a large social image dataset to test
the scalability of our method, used to investigate if our
method is promising for processing large-scale image re-
trieval. For ease of reference, Table 2 summarizes the
main properties of these three datasets. In order to en-
hance the reliability and comparability of experiment
results, for IAPR and LableMe we scale all images to
the same size, and extract 512-dimensional GIST de-
scriptor as visual vector. For NUS-WIDE, we use 500-
dimensional bag-of-words (included in the dataset) as
visual vector.

Table 2. Properties of Dataset

Property IAPR LabelMe NUS-WIDE

images 20000 73000 269648
distinct words 7873 19291 425000
words 348630 442215 4949317
words per image 1-55 1-317 1-632

Evaluation metrics. In our experiments, four evalu-
ation metrics are used: (i) the construction time of our
MHIM-tree; (ii) the runtime of executing top-k image
retrieval; (3) the I/O cost per query; and (iv) the mean
average precision (MAP), which is to measure the re-
trieval quality. Note that, we adopt 60 query topics
and the ground truth for top-1000 retrieval task used in
ImageCLEF2007 [30] to evaluate the accuracy for the
IAPR dataset. For LabelMe and NUS-WIDE, there is
no ground truth for top-k image retrieval, and so we
randomly choose 1000 image objects (with image and
textual caption) to form the query set, and only evalu-
ate the running efficiency.
Paremeter settings. Following [29], we set λ = 0.2
in our experiments. In addition, in our experiments the
parameter k is set to [1, 10, 100, 1000], where 1000 is the
default value. To evaluate the influence of the dimen-
sion in the hashing process, we set d = [32, 64, 128, 256],
in which d = 128 is the default setting. To investigate
the impact of the fanout (i.e., the balance factor B) of
our MHIM-tree, we set B = [50, 100, 200, 300, 400, 600]

for IAPR dataset, in which B = 400 is the default
setting. For the LabelMe dataset, the values we used
are [100, 200, 400, 600, 800, 1200], and B = 800 is set
to the default value. For the NUS-WIDE dataset, we
use B = 1200 as the default value. A major reason we
use different B for these datasets is that, the sizes of
these datasets are different, a more micromesh settings
allow us to find exactly the impact trend and help us
find appropriate default values for other tests. Also, we
study the impact of the parameter α, which is used to
adjust the weigh between textual and visual parts when
calculating the similarity score. Specifically, we set
α = [0.1, 0.3, 0.5, 0.7, 0.9], and the default value is 0.5.
Experiments were executed on an Intel(R) Core(TM)
i5-5200U CPU @2.20HZ and 4GB RAM.

Compared method. For our problem, it is chal-
lenging to find an appropriate baseline for comparison,
although there are already some representative works
[20, 4, 19, 21, 22, 37] that investigate the content-
and-text based image retrieval (CTBIR). Among these
works, most of them are devoted to designing better fu-
sion techniques (e.g., [22, 19, 21, 20]). That said, they
focused on how to effectively combine text and content
information to improve the retrieval quality. Our pa-
per directly uses their fusion technique as mentioned in
Section 3. Note that, for their papers it is unclear on
how to perform top-k image retrieval. Their works are
essentially orthogonal to our work. Besides, the work in
[4] focused on developing advanced hashing techniques
to improve the retrieval quality; for their paper it is
also unclear on how to perform top-k image retrieval.
Our paper directly uses the existing hashing technique.
Note that, as we discussed in Section 6.1, designing
more effective hashing techniques is not the focus of this
paper. Thus, our work is also orthogonal to [4]. Among
all these works, the paper [37] could be closest to our
work, since they “mentioned” the retrieval efficiency
by directly exploiting an existing technique “inverted
index”. Thus, we would like to choose their method as
the Baseline1. Note that, their paper uses visual words
to compute the similarity score, it is different from our
similarity score measurement; it could incur some devi-
ations in evaluation. For the fair comparison, we adapt
their method by using also the inverted file and the
same similarity measurement, getting a version similar
to their method. The general steps of the baseline are
briefly described as follows.

It first creates a inverted file for all image objects,
which records p(t|It). For a top-k query, it uses the
inverted file to obtain the text relevancy between the
query and all image objects by Equation 2, and then
sorts all image objects in the descending order to form
an array. After that, it traverses the array, and cal-
culates the similarity score for each visited image ob-

12 J. Comput. Sci. & Technol., January 2018, Vol., No.

 0

 2

 4

 6

 8

 100 200 300 400 500 600

co
ns

tru
ct

io
n

tim
e(

m
in

)

fanout

32Dim
64Dim

128Dim
256Dim

(a) IAPR

 0

 10

 20

 30

 40

 50

 200 400 600 800 1000 1200

co
ns

tru
ct

io
n

tim
e(

m
in

)

fanout

32Dim
64Dim

128Dim
256Dim

(b) LabelMe

 0

 30

 60

 90

 120

 150

 200 400 800 1200 1400

co
ns

tru
ct

io
n

tim
e(

m
in

)

fanout

32Dim
64Dim

128Dim
256Dim

(c) NUS-WIDE

Fig.2. Construction time vs. B

 0

 100

 200

 300

 400

 100 200 300 400 500 600

ru
nt

im
e(

m
s)

fanout

32Dim
64Dim

128Dim
256Dim

(a) IAPR

 0

 200

 400

 600

 800

 200 400 600 800 1000 1200

ru
nt

im
e(

m
s)

fanout

32Dim
64Dim

128Dim
256Dim

(b) LabelMe

 0

 5000

 10000

 15000

 20000

 25000

 200 400 800 1200 1400

ru
nt

im
e(

m
s)

fanout

32Dim
64Dim

128Dim
256Dim

(c) NUS-WIDE

Fig.3. Runtime vs. B

 0

 50

 100

 150

 200

 250

 0.1 0.3 0.5 0.7 0.9

ru
nt

im
e(

m
s)

α

32Dim
64Dim

128Dim
256Dim

(a) IAPR

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.3 0.5 0.7 0.9

ru
nt

im
e(

m
s)

α

32Dim
64Dim

128Dim
256Dim

(b) LabelMe

 3000

 4000

 5000

 6000

 7000

 8000

 0.1 0.3 0.5 0.7 0.9

ru
nt

im
e(

m
s)

α

32Dim
64Dim

128Dim
256Dim

(c) NUS-WIDE

Fig.4. Runtime vs. α

 0

 50

 100

 150

 200

1 10 100 1000

ru
nt

im
e(

m
s)

top-k

32Dim
64Dim

128Dim
256Dim

(a) IAPR

 0

 100

 200

 300

 400

 500

1 10 100 1000

ru
nt

im
e(

m
s)

top-k

32Dim
64Dim

128Dim
256Dim

(b) LabelMe

 0

 1500

 3000

 4500

 6000

 7500

1 10 100 1000

ru
nt

im
e(

m
s)

top-k

32Dim
64Dim

128Dim
256Dim

(c) NUS-WIDE

Fig.5. Runtime vs. k

ject. During the traversal, it keeps a priority queue to
record k objects with highest similarity scores. When
visiting an image object I whose text relevancy is lower
than a threshold τ , it stops traversing and returns all
image objects in the queue as the query result, where
τ = Smin−α

1−α , Smin refers to the minimum similarity
score in the priority queue.

Furthermore, we adopt Manhattan hashing to op-
timize Baseline1 according to paper [23], and then get
Baseline2 method. we will compare our method with
Baseline1 and Baseline2, to enhance the comparability
and reliability of our experiment.

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

50 100 200 300 400 600

M
AP

fanout

32Dim
64Dim

128Dim
256Dim

(a) Varying B

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

0.1 0.3 0.5 0.7 0.9

M
AP

α

32Dim
64Dim

128Dim
256Dim

(b) Varying α

Fig.6. MAP vs. B and α

8.2 Experimental Results of CATIRI

Indexing Construction Cost. Figure 2 shows the
construction time of MHIM-tree, it is easy to find that
the construction time is almost proportional to the
fanout for all datasets. In addition, the higher the di-
mension is, the longer the construction time is. This is
consistent to our theoretical analysis in Section 7.
Query Time. Figure 3 shows the query performance
of the top-k image retrieval with different fanout. It can
bee seen that the runtime is almost proportional to the
dimension d. The smaller d is, the less the query time
is. Besides, one can see that, when the fanout B is very
small, the runtime is long and decreases rapidly when

B increases. This implies that a too small fanout value
could hurt the performance. When the fanout reaches a
certain value, the runtime performance enters a steady
stage. Nevertheless, when the fanout increases to a too
large value, the performance starts to degrade. This
implies that a too larger fanout value could be not very
helpful. This is because, by limiting the capacity of
each node, the fanout directly determines the height of
MHIM-tree. Clearly, when the fanout is too small, the
index tree is so high that the retrieval needs a long time
to travel. On the other hand, when the fanout is too
large, the height of the MHIM-tree is so small that it
offers little help for the retrieval. This essentially shows
us that choosing an appropriate fanout is important.

Figure 4 shows the runtime when we vary α. It can
be seen that there is no obvious fluctuation in terms
of the runtime. This implies that α has little effect on
the runtime. On the other hand, as we expected, the
runtime is still almost proportional to the dimension d.

The query runtime performance for different k is
shown in Figure 5. On one hand, the runtime increases
when k is relatively small, while the growth speed turns
slow when k reaches a large enough value. The reason
is same to our analysis for I/O performance. That said,
the pruning ability of our MHIM-tree is powerful and
scalable. On the other hand, one can see that dimen-
sion d can make impact on the performance, and usually
the larger the dimension is, the larger the runtime is.
This is because computing the distances in the retrieval
needs to consider each dimension.

I/O Cost. Figure 7 shows the I/O cost per query for
different B. One can see that the I/O cost decreases
when the fanout increases. This is mainly because both
the number of nodes and the height of the MHIM-tree
decrease when the fanout B increases. In addition, as
we expected, the dimension d rarely influences the I/O

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 13

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600

pa
ge

 a
cc

es
s

fanout

32Dim
64Dim

128Dim
256Dim

(a) IAPR

 0

 1000

 2000

 3000

 4000

 5000

 200 400 600 800 1000 1200

pa
ge

 a
cc

es
s

fanout

32Dim
64Dim

128Dim
256Dim

(b) LabelMe

 0

 4000

 8000

 12000

 16000

 20000

 200 400 800 1200 1400

pa
ge

 a
cc

es
s

fanout

32Dim
64Dim

128Dim
256Dim

(c) NUS-WIDE

Fig.7. I/O cost vs. B

 50

 100

 150

 200

 250

1 10 100 1000

pa
ge

 a
cc

es
s

top-k

32Dim
64Dim

128Dim
256Dim

(a) IAPR

 600

 800

 1000

 1200

 1400

1 10 100 1000

pa
ge

 a
cc

es
s

top-k

32Dim
64Dim

128Dim
256Dim

(b) LabMe

 1500

 2000

 2500

 3000

 3500

 4000

1 10 100 1000

pa
ge

 a
cc

es
s

top-k

32Dim
64Dim

128Dim
256Dim

(c) NUS-WIDE

Fig.8. I/O cost vs. k

101

102

103

104

 0.1 0.3 0.5 0.7 0.9

ru
nt

im
e(

m
s)

α

CATIRI
Baseline1
Baseline2

(a) IAPR

101

102

103

104

105

 0.1 0.3 0.5 0.7 0.9

ru
nt

im
e(

m
s)

α

CATIRI
Baseline1
Baseline2

(b) LabelMe

103

104

105

106

 0.1 0.3 0.5 0.7 0.9

ru
nt

im
e(

m
s)

α

CATIRI
Baseline1
Baseline2

(c) NUS-WIDE

Fig.9. Runtime vs. α

101

102

103

104

1 10 100 1000

ru
nt

im
e(

m
s)

top-k

CATIRI
Baseline1
Baseline2

(a) IAPR

101

102

103

104

105

1 10 100 1000

ru
nt

im
e(

m
s)

top-k

CATIRI
Baseline1
Baseline2

(b) LabelMe

103

104

105

106

1 10 100 1000

ru
nt

im
e(

m
s)

top-k

CATIRI
Baseline1
Baseline2

(c) NUS-WIDE

Fig.10. Runtime vs. k

cost.

Figure 8 shows the impact of k on the I/O cost.
We can see that when k is large enough, the I/O cost
will not increase when k increases. The main reason
is that, the pruning power of the MHIM-tree plays a
greater role in the retrieval when k is large. In addi-
tion, we can also see that, for different dimensions, the
I/O cost is almost equivalent. This result is consistent
to our previous discussion.

Accuracy. Furthermore, we also study the impact of
B on the retrieval quality. From Figure 6(a) we can
see that, the fanout has no influence on the MAP. This
further verifies that the fanout B is essentially irrel-
evant with the similarity score. The MAP values for
different α are shown in Figure 6(b). We can see that
the MAP first ascends and then descends with the in-
crease of α, and reaches the peak at α = 0.5. These
results validate that the fusion of visual and text infor-
mation can essentially improve the accuracy of query,
and the best performance can be achieved at the bal-
ance point of the visual and text information. Another
phenomenon is that 128 dimensions achieve the best
MAP for all cases except α = 0.1. The MAP keeps
nearly unchanged for α = 0.1, because α is so small
that the visual similarity makes almost no contribution
on the query result. In addition, we can see that the
most appropriate dimension for our experiments could
be 128.

8.3 Comparing with Baseline

Query quality. Table 3 shows the MAP values for our
method and for the baselines. It can be seen that the
MAP of our method is close to that of the baselines.
This means that our method can successfully preserve
the retrieval accuracy. The major reason is that re-

trieval accuracy mainly depends on the fusion technique
and hashing method, CATIRI directly uses existing fu-
sion technique and hashing technique, obtaining similar
retrieval quality.

Table 3. MAP on IAPR

α 0.1 0.3 0.5 0.7 0.9

CATIRI 0.1351 0.1517 0.1589 0.1561 0.1265
Baseline1 0.1321 0.1398 0.1499 0.1558 0.1159
Baseline2 0.1374 0.1533 0.1559 0.1526 0.1264

Runtime. Figure 9 and 10 compare the runtime time
of our method against the baselines, it is easy to find
that our MHIM-tree significantly outperforms the base-
line algorithms under all settings of α and k. And our
method almost outperforms both baselines by an order
of magnitude. This essentially demonstrates the effec-
tiveness and efficiency of our proposed method.

Construction Cost. Table 4 shows the index con-
struction cost for our method and baselines. It can be
seen that the construction time of our method is larger
than that of the baselines, but it is within the accept-
able range. Considering the huge improvement in re-
trieval efficiency of our method, it is worth sacrificing a
little construction time to get better retrieval efficiency.

Table 4. Construction Time (minute) on Datasets

Dataset IAPR LabelMe NUS-WIDE

CATIRI 4.41 23.00 102.77
Baseline1 0.42 0.70 5.62
Baseline2 1.62 6.00 25.25

14 J. Comput. Sci. & Technol., January 2018, Vol., No.

9 Conclusion

In this paper we proposed CATIRI for the content-
and-text based image retrieval. CATIRI consists of
three phases. It first transforms the image query prob-
lem into the one similar to spatial keyword query by fea-
ture hashing, and then builds an MHIM-tree to mange
the textual and visual information, and finally per-
forms the retrieval based on our top-k query algorithm
that fully exploits the MHIM-tree and a set of impor-
tant properties. We presented theoretical analysis for
CATIRI, and experimentally demonstrated that it can
remarkably improve retrieval efficiency while preserving
the quality of retrieval results.

Acknowledgement(s) This work was supported by
the National Basic Research 973 Program of China
under Grant No.2015CB352403, the National Key
Research and Development Program of China under
Grant Nos.2018YFC1504504, 2016YFB0700502 and
2018YFB1004400, the National Natural Science Foun-
dation of China under Grant Nos.61872235, 61729202,
61832017, U1636210, 61832013, 61672351 and
61472453, 61702320, U1401256, U1501252, U1611264,
U1711261,U1711262,U61811264, and Guangdong
Province Key Laboratory of Popular High Perfor-
mance Computers of Shenzhen University under Grant
No,SZU-GDPHPCL2017.

References

[1] Wu L, Jin R, Jain A K. Tag Completion for Image Re-
trieval. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 2013, 35(3): 716-727.

[2] Gong Y, Lazebnik S, Gordo A, Perronnin F. Iterative quan-
tization: A procrustean approach to learning binary codes.
In Proc. Computer Vision and Pattern Recognition, Jun.
2011, pp.817-824.

[3] Datta R, Joshi D, Li J, Wang J Z. Image retrieval: Ideas,
influences, and trends of the new age. Acm Computing Sur-
veys, 2008, 40(2): 1-60.

[4] Long M, Cao Y, Wang J, Yu P S. Composite Correlation
Quantization for Efficient Multimodal Retrieval. In Proc.
the 39th Int. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval, Jul. 2016, pp.579-588.

[5] Zhu L, Shen J, Xie L, Cheng Z. Unsupervised visual hashing
with semantic assistant for content-based image retrieval.
IEEE Trans. on Knowledge and Data Engineering, 2017,
29(2): 472-486.

[6] Xu B, Bu J, Chen C, Cai D, He X. EMR: A scalable
graph-based ranking model for content-based image re-
trieval. IEEE Trans. on Knowledge and Data Engineering,
2015, 27(1): 102-114.

[7] Shen H T, Jiang S, Tan K L, Huang Z, Zhou X. Speed up
interactive image retrieval. The Int. Journal on Very Large
Data Bases, 2009, 18(1): 329-343.

[8] Falchi F, Lucchese C, Orlando S, Perego R, Rabitti F.
Caching content-based queries for robust and efficient im-
age retrieval. In Proc. the 12th Int. Conf. on Extending
Database Technology: Advances in Database Technology,
Mar. 2009, pp.780-790.

[9] Zhang C, Chai J Y, Jin R. User term feedback in interac-
tive text-based image retrieval. In Proc. the 28th Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, Aug. 2005, pp.51-58.

[10] Li W, Duan L, Xu D, Tsang I W. Text-based image re-
trieval using progressive multi-instance learning. In Proc.
Int. Conf. on Computer Vision, Nov. 2011, pp.2049-2055.

[11] Tong S, Chang E. Support vector machine active learning
for image retrieval. In Proc. the 9th ACM Int. Conf. on
Multimedia, Sep. 2001, pp.107-118.

[12] Liu D, Hua K A, Vu K. Fast query point movement tech-
niques with relevance feedback for content-based image re-
trieval. In Proc. Int. Conf. on Extending Database Tech-
nology, Aug. 2006, pp.700-717.

[13] Kulis B, Grauman K. Kernelized locality-sensitive hashing
for scalable image search. In Proc. IEEE Int. Conf. on Com-
puter Vision, Sep. 2009, pp.2130-2137.

[14] Smeulders A W M, Worring M, Santini S, Gupta A, Jain
R C. Content-based image retrieval at the end of the early
years. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 2000, 22(12): 1349-1380.

[15] Deng J, Berg A C, Li F F. Hierarchical semantic indexing
for large scale image retrieval. In Proc. Computer Vision
and Pattern Recognition, Jun. 2011, pp.785-792.

[16] Ooi B C, Tan K L, Chua T S, Hsu W. Fast image retrieval
using color-spatial information. The Int. Journal on Very
Large Data Bases, 1998, 7(2): 115-128.

[17] Xia H, Wu P, Hoi S C H, Jin R. Boosting multi-kernel
locality-sensitive hashing for scalable image retrieval. In
Proc. Int. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval, Aug. 2012, pp.55-64.

[18] Christel M G. Examining user interactions with video re-
trieval systems. In Proc. Multimedia Content Access: Al-
gorithms and Systems, Oct. 2007, pp.1-15.

[19] Zhou X S, Huang T S. Unifying keywords and visual con-
tents in image retrieval. IEEE Multimedia, 2002, 9(2): 23-
33.

[20] Zagoris K, Chatzichristofis S A, Arampatzis A. Bag-of-
visual-words vs global image descriptors on two-stage mul-
timodal retrieval. In Proc. the 34th Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval,
Dec. 2011, pp.1251-1252.

[21] Caicedo J C, Moreno J G, Niuo E A, Gonzuez F A. Combin-
ing visual features and text data for medical image retrieval
using latent semantic kernels. In Proc. the Int. Conf. on
Multimedia Information Retrieval, Mar. 2010, pp.359-366.

[22] Clinchant S, Ah-Pine J, Csurka G. Semantic combination
of textual and visual information in multimedia retrieval.
In Proc. the 1st ACM Int. Conf. on Multimedia Retrieval,
Oct. 2011, pp.44.

[23] Kong W, Li W J, Guo M. Manhattan hashing for large-scale
image retrieval. In Proc. the 35th Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, Aug.
2012, pp.45-54.

[24] Zobel J, Moffat A. Inverted files for text search engines.
ACM Computing Surveys, 2006, 38(2): 6.

[25] Ciaccia P, Patella M, Zezula P. M-tree: An efficient access
method for similarity search in metric spaces. In Proc. 23th
Int. Conf. on Very Large Data Bases, Aug. 1997, pp.357-
368.

[26] Oliva A, Torralba A. Modeling the shape of the scene: A
holistic representation of the spatial envelope. Int. Journal
of Computer Vision, 2001, 42(3): 145-175.

[27] Sivic J, Zisserman A. Video Google: A text retrieval ap-
proach to object matching in videos. In Proc. IEEE Int.
Conf. on Computer Vision, Oct. 2003, pp.1470-1477.

[28] Ponte J M, Croft W B. A language modeling approach to
information retrieval. In Proc. the 21th Int. ACM SIGIR
Conf. on Research and Development in Information Re-
trieval, Aug. 1998, pp.275-281.

[29] Zhai C, Lafferty J. A study of smoothing methods for lan-
guage models applied to information retrieval. ACM Trans.
on Information Systems, 2004, 22(2): 179-214.

[30] Depeursinge A, Muller H. Fusion techniques for combining
textual and visual information retrieval. In ImageCLEF,
2010, pp.95-114.

[31] Wang J, Liu W, Kumar S, Chang S. Learning to hash for
indexing big data: a survey. Proceedings of the IEEE, 2016,
104(1): 34-57.

[32] Cao X, Chen L, Cong G, Jensen C S, Qu Q, Skovsgaard A.
Spatial keyword querying. In Proc. Int. Conf. on Concep-
tual Modeling, Nov. 2012, pp.16-29.

Mengqi Zeng et al.: Content-and-Text Based Image Retrieval 15

[33] Hjaltason G R, Samet H. Distance browsing in spatial
databases. ACM Trans. on Database Systems, 1999, 24(2):
265-318.

[34] Grubinger M, Clough P, Muller H, Deselaers T. The iapr tc-
12 benchmark: A new evaluation resource for visual infor-
mation systems. In Proc. Int. Workshop OntoImage, May.
2006, pp.5.

[35] Russell B C, Torralba A, Murphy K P, Freeman W T. La-
belMe: a database and web-based tool for image annota-
tion. Int. Journal of Computer Vision, 2008, 77(1-3): 157-
173.

[36] Chua T S, Tang J, Hong R, Li H, Luo Z, Zheng T Y. NUS-
WIDE: a real-world web image database from National Uni-
versity of Singapore. In Proc. the ACM Int. Conf. on image
and video retrieval, Oct. 2009, pp.1-9.

[37] Mamou J, Mass Y, Shmueli-Scheuer M, Sznajder B. A uni-
fied inverted index for an efficient image and text retrieval.
In Proc. the 32th Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, Jul. 2009, pp.814-
815.

[38] Rasiwasia N, Costa Pereira J, Coviello E, Doyle G, Lanck-
riet G R G, Levy R, Vasconcelos N. A new approach to
cross-modal multimedia retrieval. In Proc. the 18th ACM
Int. Conf. on Multimedia, Oct. 2010, pp.251-260.

[39] Yang C, Lozano-Perez T. Image database retrieval with
multiple-instance learning techniques. In Proc. Int. Conf.
on Data Engineering, Feb. 2000, pp.233-243.

[40] Natsev A, Rastogi R, Shim K. WALRUS: A similarity re-
trieval algorithm for image databases. In Proc. ACM SIG-
MOD Record, Jun. 1999, pp.395-406.

[41] Rabitti F, Savino P. An information retrieval approach for
image databases. In Proc. 18th Int. Conf. on Very Large
Data Bases,. Aug. 1992, pp.574-584.

[42] Chu W W, Ieong I T, Taira R K. A semantic modeling ap-
proach for image retrieval by content. The VLDB Journal,
1994, 3(4): 445-477.

[43] Brown L, Gruenwald L. A Prototype Content-Based Re-
trieval System that Uses Virtual Images to Save Space. In
Proc. 27th Int. Conf. on Very Large Data Bases, Sep. 2001,
pp.693-694.

[44] Chen L, Gao Y, Xing Z, Jensen C S, Chen G. I2RS: a
distributed geo-textual image retrieval and recommenda-
tion system. Proc. the Very Large Data Bases Endowment,
2015, 8(12): 1884-1887.

