
Noname manuscript No.
(will be inserted by the editor)

Optimizing Power Consumption of Mobile Devices for Video
Streaming over 4G LTE Networks

Jingyu Zhang1 · Zhi-Jie Wang2 · Zhe Quan3 · Jian Yin2 · Yuanyi

Chen1 · Minyi Guo1

zhangzhang@sjtu.edu.cn, cszhijwang@yahoo.com, quanzhe@hnu.edu.cn, issjyin@mail.sysu.edu.cn,

cyyxz@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn

Received: date / Accepted: date

Abstract While the video streaming technique and

4G LTE networks are developing rapidly, the advance-

ment of the battery technology, however, is relatively

slow. Existing works have paid much attention to un-

derstanding the power consumption in general 4G LTE

networks, while few attention has been paid to reduc-

ing the power consumption for online video stream-

ing in 4G LTE networks. Our previous work based on

the real experimental platform showed that, the sav-

ing room in the network part is large, the transmission

pattern and the number of RRC tails could be promis-

ing for optimizing the power consumption. In this pa-

per, we attempt to develop efficient optimization strate-

gies to save the energy cost of mobile devices for online

video streaming over 4G LTE networks. This problem is

clearly important and also interesting, while it is chal-

lenging, due to various reasons such as the uncertainty

of users’ behavior modes. To alleviate the challenges,

we suggest a self-adaptive method that can allow us to

adjust various parameters dynamically and efficiently,

so as to achieve a relatively small energy consumption.

We give the rigorous theoretical analysis for the pro-

posed method, and conduct extensive experiments to

validate its effectiveness. The experimental results show

that the proposed method consistently outperforms the

classical method as well as other competitors adapted

from existing methods.

1 Department of Computer Science and Engineering, Shang-
hai Jiao Tong University, Shanghai, China
2 Guangdong Key Laboratory of Big Data Analysis and Pro-
cessing, School of Data and Computer Science, Sun Yat-Sen
University, Guangzhou, China
3 College of Computer Science and Electronic Engineering,
Hunan University, Changsha, China

Keywords Power efficiency · online video streaming ·
user behavior · 4G LTE networks · mobile devices

1 Introduction

In recent several years, the mobile industry has been

growing rapidly [1,2]. Video streaming as one of the

most important big data applications has received much

attention in mobile industry [2–5]. In 2016 video dom-

inates the mobile traffic and takes 50% of the total

traffic (around 4.25 ExaBytes) [2]. It is predicted that

video will account for around 75% of mobile data traf-

fic (around 34.5 ExaBytes) in 2022 [2]. In addition, mo-

bile devices are arousing the increasing demand of video

streaming, since users can experience video streaming

services on a mobile broadband network with different

mobile devices (e.g., mobile PCs, smartphones) [2]. Re-

cently video streaming has already been applied into 4G

LTE networks [6–8], and particularly the video stream-

ing technique and 4G LTE networks have been devel-

oping at an amazing speed [1,3].

Although the video streaming technique and 4G LTE

networks are developing rapidly, the advancement of

the battery technology, however, is relatively slow [9].

Existing works have paid attention to understanding

the power consumption in general 4G LTE networks

[10–13], while few attention has been paid to reducing

the power consumption for online video streaming over

4G LTE networks. Clearly, mobile users usually care

about the battery capacity of mobile deceives when

they watch videos. Our previous work [14] based on

the real experimental platform showed that, the saving

room in the network part is large, and meanwhile the

transmission pattern and the number of radio resource

control (RRC) tails could be promising for optimizing

2 Jingyu Zhang1 et al.

the power consumption. Yet, no targeted algorithms

and/or techniques are discussed for saving the energy

cost of mobile devices (for online video streaming over

4G LTE networks). In this paper, we focus on video

streaming in 4G LTE networks, and attempt to develop

efficient optimization strategies to address this issue.

There are many challenges needing to be addressed:

(1) Intuitively, one can use a larger buffer, it shall im-

mediately bring us the benefit in terms of energy con-

sumption. Yet, imagine if the behavior of a user u is

in the “unstable” mode (simply speaking, this model

refers to that, user tends to drag the process bar of the

video player), video segments (downloaded in the buffer

prefetching phase) are usually being cleaned without

watching them; this shall incur serious bandwidth waste

(note: this waste actually also consumes a lot of energy).

Then, how to control the buffer size efficiently? (2)

Our previous work [14] has shown that the number of

RRC tails could be promising for optimizing the power

consumption. An immediate idea is to merge multi-

ple segment fetching sessions1 together. Essentially, ex-

isting techniques (see e.g., [8]) can be directly used

to merge the segment fetching sessions, whereas they

ignore users’ behaviors. That is, the “merged” video

segments could be discarded without watching them,

incurring serious bandwidth waste (again, this actu-

ally also consumes much power). Then, how to merge

the video segment fetching sessions wisely? (3) One

could argue that existing works (see e.g., [6]) have sug-

gested different methods for different users’ behavior

modes. Yet, the users’ behavior modes are assumed

to be available beforehand in their work. In the usual

case, we could not know users’ behavior modes be-

forehand. Then, how to reduce the power consump-

tion when users’ behavior modes are unavailable before-

hand? (A more detailed analysis is covered in Section

4.)

The challenges above highlight the need for develop-

ing more competitive approaches. To this end, this pa-

per suggests a self-adaptive method. The central idea of

our method is to exploit the continuous video watching

time to predict users’ behavior modes, and then dynam-

ically adjust corresponding parameters, so as to con-

sume less energy. The difficulty in designing our method

is to construct a systematic model that can “balance”

various parameters. These parameters together with

our strategies cooperatively contribute to the reduction

1 When a user u enjoys the online video streaming service,
the video streaming player downloads the video segments pe-
riodically. This implies that many downloading sessions shall
be involved in this process; and usually the “downloading
session” is called “segment fetching session”.

of power consumption. To summarize, we made the fol-

lowing main contributions.

1. We reveal the major challenges in reducing the power

consumption for online video streaming over 4G LTE

networks. These challenges highlight the need for

studying more competitive methods.

2. We propose a self-adaptive method to save power

consumption. Our idea could be also useful for ad-

dressing other issues related to energy consumption

over video streaming.

3. We give the rigorous theoretical analysis for our pro-

posed method. The analysis verifies the feasibility

and effectiveness of our method, from the theoreti-

cal perspective.

4. We also conduct extensive experiments to demon-

strate the effectiveness of our proposed method. Com-

pared against other competitors, the performance of

our method is closest to that of the “ideal” proto-

type.

In the subsequent section, we review previous works

related to ours. Section 3 introduces some basic con-

cepts. Section 4 formally describes our problem and re-

veals the major challenges. Section 5 presents our pro-

posed method and gives the rigorous theoretical analy-

sis. Experimental results are covered in Section 6, and

we conclude this paper in Section 7.

2 Related work

In this section we review previous works by categorizing

them into three categories.

Power consumption in wireless networks and/or

in IoTs. In the literature a lot of effort has been made

to study the power/energy consumption in wireless net-

works [15–21]. For example, Zhu et al. [16] presented

the design and implementation of a house-build exper-

imental platform, for the energy management and ex-

ploration on wireless sensor networks. In [17] an on-

line algorithm with low computational complexity and

deployment overhead was proposed for multi-channel

wireless networks. Wang et al. [15] presented an analyt-

ical formula for estimating power consumption in large-

scale wireless sensor networks. In [20] a distributed al-

gorithm for increasing the lifetime of wireless sensor

networks was presented. A recent survey [22] covered

the energy-efficiency oriented traffic offloading in wire-

less network, and another survey [23] discussed gen-

eral power control issues in wireless sensor networks.

Most of prior works in these literature focused on en-

ergy consumption of sensors, and assumed to be in the

“general” wireless networks environment. These works

Optimizing Power Consumption of Mobile Devices for Video Streaming over 4G LTE Networks 3

did not investigate the power consumption characteris-

tics for video streaming in 4G LTE networks. In con-

trast, the concern of this paper is to reduce the power

consumption for online video streaming over 4G LTE

networks.

On the other hand, many papers [24–30] studied the

power consumption in internet of things (IoTs). For ex-

ample, Balasubramanya et al. [25] proposed a refined

DRX mechanism to reduce the power consumption in

IoTs. In [24] a power control and resource block al-

location scheme was proposed for reducing the power

consumption in IoTs. Also, most of works in these lit-

erature did not cover the power consumption for online

video streaming, whereas it is the focus of this paper.

Power consumption related to online video stream-

ing. There are a large bulk of works [31,32,6,33–36]

that studied the power consumption related to online

video streaming. For example, Ukhanova et al. [32] pre-

sented an analysis on the power consumption of video

data transmission in 3G mobile wireless networks. In

[31] a seamless high-quality HTTP adaptive stream-

ing algorithm was presented, which considers the en-

ergy consumption of a mobile device over heteroge-

neous wireless networks. Hoque et al. [33] proposed a

download scheduling algorithm based on crowd-sourced

watching statistics to save energy in wireless video stream-

ing. In [35] the problem of resource allocation for video

multicast in 4G wireless systems was addressed. Sheu et

al. [36] discussed scalable-video multicast for WiMAX

relay networks. In [37] a hybrid-stream model was pro-

posed to improve the data processing and network over-

load for video analysis. Compared with these works,

our work is different from theirs in several points at

least: (i) these works did not cover the LTE network

environments while our paper mainly focuses on the

power consumption related to video streaming in 4G

LTE networks; and (ii) these works did not address the

challenge related to the uncertainty of users’ behavior

modes, while it is one of focuses in this paper.

Power consumption in LTE networks. We also re-

alize that many researchers studied the power consump-

tion in LTE networks [10,11,38,12,13,39]. For example,

Deng et al. [38] realized that, keeping the mobile de-

vice’s radio in the “Active” mode is power-consuming.

Their method reduces the energy consumption based

on this observation, and their study is in the 3G LTE

wireless network environment. In [11] a deployment tool

was developed for optimizing the power consumption.

Huang et al. [12] studied the network performance of

many types of mobile networks (including LTE net-

works). In [13] a novel energy efficient MAC scheme

for LTE-Advanced networks was proposed. In summary,

these works focused on power consumption in the “gen-

eral” LTE networks; the specific online video scenarios

are not discussed, and so they are clearly different from

our work.

Besides, there are many other related works, e.g.,

network architectures for data or video delivery [40,41],

video/data transmission and processing [42–46], live video

streaming delivery optimization [47], online mobile ser-

vices [48,49], user-perceived Quality-of-Experience in In-

ternet video applications [50,51]. These works are also

different from ours, and could be complementary to our

work.

3 RRC states, video streaming, and buffer

working scheme

In this section, we review some basic concepts, for ease

of understanding the rest of the paper.

RRC states. In 4G LTE networks there are two main

radio resource control RRC states: RRC idle and RRC

connected [52]. When there is no mobile data trans-

mission in LTE networks, the RRC state is in the idle

mode. Usually, before transferring any application data,

user equipments (e.g., smartphones) shall change from

the RRC idle mode to RRC connected mode immedi-

ately. Yet, after finishing the transmission, even if no

new data transmission happens, the mobile client still

stays at the RRC connected state within a time dura-

tion. The status in such a time interval refers to the

RRC tail. Usually, the RRC connected mode consumes

much more power than the RRC idle mode. Note that,

in an online video session, there may have many tran-

sitions in terms of RRC state. As pointed out in our

previous study [14], the number of RRC tails makes

impact on the power consumption of mobile devices.

Online video streaming and timing scheme. Video

streaming is one of mainstream video playing mech-

anisms. The most common implementation of video

streaming is the HTTP-based online video streaming,

in which the video file (from the video source) shall

be split into many short segments (or chunks), and en-

coded to the desired delivery format [53]. Note that,

it uses a media representation description (MPD) file

to describe the video chunks information (such as the

accessible segments and corresponding timings). The

video chunks are carefully encoded without gaps, and

so the video chunks can be played back as a seamless

video.

For the video streaming, a widely used timing scheme

involves two levels [38,12,53,14]: (i) the video stream-

ing traffic level, see the bottom of Figure 1; and (ii)

the RRC level, see the top of Figure 1. At level (i),

there is an interactive process between the mobile client

4 Jingyu Zhang1 et al.

Server

Mobile
Client

Segment 1

ACK

Request

Segment 2

ACKRequest

...

Send request to
server

Receive desired
video segment

RRC
RRC connected RRC idle

Segment total
service time

Idle period
without traffics

RRC tail

Fig. 1 Timing scheme of video streaming.

and the server. The mobile client sends periodically the

video segment request to the video server. Once the

video server receives such a request, it sends back the

requested segment to the mobile client. When the re-

quested segment is transmitted successfully, the mobile

client sends the ACK message to the video server, and

then enters the idle period, in which no network traffic

is produced. On the other hand, at the level (ii), the

RRC state is in the RRC connected state during the

segment transmission. As mentioned earlier, after fin-

ishing the segment transmission, the mobile client still

stays at this state within a time duration (before enter-

ing the RRC idle state mode).

Buffer working scheme. To avoid the video playing

delay, the video buffer is usually employed for video

segments downloading and storage [7,8]. Figure 2 illus-

trates a general picture for the working scheme of the

video buffer.

Initially, a user starts a video streaming session, and

the video buffer enters into the “fetching” state. In this

state, the video segments (from the HTTP video server)

are continuously downloaded into the buffer. When the

buffer is full, the buffer transits to the “idle” state. In

the idle state, if the user pauses the video playing, the

buffer shall shift to the “stand by” state. In contrast,

when the video playing is resumed, the state transits

back into the idle state. Note that, in the idle state the

video segments that have been played back, shall be

removed. Once the size of the buffered video is below

a specific threshold, the idle state shall shift back to

the fetching state, and new video segments are to be

downloaded into the buffer.

Remark that, if the user skips to another part of

the video (e.g., when he/she wants to watch the latter

part of a video), the buffered video segments shall be

discarded (since the limit of buffer size); and the buffer

shall be filled with new video segments.

Fetching

Idle

Stand by

Initial

Final

Capacity less

than the threshold

All video

segments

downloaded

Buffer is full

The video

playback is

stopped

The Video

playback is

resumed

Skip

If the user skips

to another part,

buffer will be

initialized

Fig. 2 Working scheme of video buffer.

4 Problem definition and analysis

In this section we start by formulating the settings of

our problem, followed by the formal definition of our

problem, and finally we analyze the problem and reveal

the major challenges.

Problem settings. Given a 4G LTE network N, as-

sume that a user u with a mobile device (e.g., smart-

phone) d, on which a video player p is deployed. In ad-

dition, assume that the video segments Γ are encoded

and stored on an internet-accessible video server s. Let

n be the number of total video segments, and fs be

the file size of a video segment (i.e., a chunk). Also, as-

sume that the user u requests the video segments on

the video server s via N, using mobile device d. The

video segments are downloaded and stored in the video

buffer b of mobile device d. Without loss of generality,

assume that the maximum number of video segments

contained in the buffer is bm, and the buffer threshold

used to trigger another segment fetching session is bt.

The downloaded video segments Γ ′ shall be played back

using the video player p (deployed on the mobile device

d). For the online video user u, assume that one of two

behavior modes below could be involved:

– Stable mode. In this mode, the user neither skips

to another part of the current video, nor quits the

current video. In other words, the user is likely to

watch video for a relative long time.

– Unstable mode. In this mode, the user tends to skip

to another part of the current video, or quits the

current video playing even if the current video does

not finish. In other words, the continuous time for

watching video is relative short. (Once the “skip”

happens, the buffer shall clean the current buffered

video segments and restart.)

Note that, in the entire video playing process, the

video buffer b involves two phases:

– Buffer prefetching. In this phase, a set of consec-

utive video segments are prefetched and filled into

Optimizing Power Consumption of Mobile Devices for Video Streaming over 4G LTE Networks 5

the video buffer b. Usually, when the user skips to

another part of the current video (or, the user starts

a new video), the buffer is in this phase, and it lasts

for some time, say τbp.

– Buffer feeding. In this phase the mobile client re-

quests the video segments, based on the specific de-

mand. Usually, when the video is playing back, the

buffer downloads the “requested” video segments

periodically.

Without loss of generality, let vp (reps., vf) be the

average download speed in the buffer prefetching (resp.,

feeding) phase. In addition, let ζ be the total energy

consumption of the mobile device for network activi-

ties, ζo be the average power consumption when playing

back the video offline, and ζτ(·) be the average power

consumption during τ(·) (e.g., ζτri denotes the average

power consumption during the RRC idle τri). For ease

of reference, the notations used frequently are summa-

rized in Table 1.

Problem statement. As mentioned earlier, a user u

could be one of two behavior modes: stable mode and

unstable mode. For these two modes, the energy con-

sumption are different. Observe that, in the usual case

the behavior mode of a user u is unknown beforehand.

In what follows, we first formulate the energy consump-

tion for these two modes, and then present our problem

formally.

First, consider the stable mode, one can have the

following:

ζ =

∫ τbp

0

ζτbp∆t +
n− bm
bm − bt

(

∫ τs

0

(ζτs − ζo)∆t +

∫ τi

0

(ζτi − ζo)∆t)

=
bm

vp
ζτbp +

n− bm
bm − bt

(
fs

vf
(ζτs − ζo) + (τsd −

fs

vf
)(ζτi − ζo))

(1)

where the part before the first “+” refers to the power

consumption in the buffer prefetching phase, while the

“remaining” part refers to the energy consumption in

the buffer feeding stage. In particular, the latter is com-

posed of two sub-parts: (i) the energy consumption of

network transmission; and (ii) the energy consumption

of network idle period (see the part after the second

“+” in Equation 1). Notice that, Step 2 in the above

equation essentially is utilizing the video segment size

and the average speed at the corresponding stage to re-

place the integral operation. Hereafter, we process it in

the same way, unless otherwise stated.

Observe that τi equals the sum of τrt and τri (c.f.,

Figure 1). Thus, Equation 1 can be rewritten as follows.

ζ =
bm

vp
ζτbp +

n− bm
bm − bt

(
fs

vf
(ζτs − ζo) + τrt(ζτrt − ζo)

+ (τsd −
fs

vf
− τrt)(ζτri − ζo))

(2)

Table 1 Notations used frequently

Item Description
ζ the total energy consumption of d for network activities
ζo the average power consumption when playing back

video offline
ζτ(·) the average power consumption during τ(·)
n the number of total video segments
ni the number of video segments of the ith part in

unstable mode
bm the maximum number of video segments contained in b
bt the threshold to trigger video segment fetching session
vp the average download speed in buffer prefetching phase
vf the average download speed in buffer feeding phase
fs the file size (of a video segment, i.e., chunk)
τbp the buffer prefetching time
τs the total service time of a segment
τi the idle period with no traffic
τrt the RRC tail time duration
τri the RRC idle time duration
τsd the playing back time duration of a video segment

We proceed to consider the unstable mode. In this

mode, users tend to skip to another part of the video.

Assume, without loss of generality, that the number of

skips is i − 1; naturally, video playing shall be divided

into i parts. Denote by ni the number of video segments

in the ith part of video playing. Then, one can have

ζ =i×
∫ τbp

0

ζτbp∆t +
n1 + · · ·+ ni − bm × i

bm − bt
(

∫ τs

0

(ζτs − ζo)∆t

+

∫ τi

0

(ζτi − ζo)∆t)

=i×
bm

vp
ζτbp +

n1 + · · ·+ ni − bm × i
bm − bt

(
fs

vf
(ζτs − ζo)

+ (τsd −
fs

vf
)(ζτi − ζo))

(3)

Similarly, the above equation can be further rewrit-

ten as follows (since τi = τrt + τri, recall Figure 1).

ζ =i×
bm

vp
ζτbp +

n1 + · · ·+ ni − bm × i
bm − bt

(
fs

vf
(ζτs − ζo)

+ τrt(ζτrt − ζo) + (τsd −
fs

vf
− τrt)(ζτri − ζo))

(4)

Then, one can construct the followings:

ζ =

{ |= of Eq. 2, if the stable mode

|= of Eq. 4, if the unstable mode

where |= denotes the right-hand of an equation. Specif-

ically, our goal is to obtain a small value in terms of

ζ.

Problem analysis. To understand the hardness of our

problem, this section analyzes it in detail, and reveals

the major challenges.

6 Jingyu Zhang1 et al.

P
o

w
e
r

c
o

n
su

m
p

ti
o

n Segment transmission power

Time duration

Segment transmission power

Tail power

Time durationP
o

w
e
r

c
o

n
su

m
p

ti
o

n

Tail power

Fig. 3 Illustration of merging segment fetching sessions.

B Buffer size. Intuitively, to minimize ζ, one may

decrease the value of n−bm
bm−bt (resp., n1+···+ni−bm×i

bm−bt) for

Equation 2 (resp., Equation 4). This can be achieved

by setting bm (resp., bt) to a large (resp., small) value.

Since bm is depended on the buffer size, one can obtain

a larger value of bm by increasing the buffer size.

Essentially, the larger buffer size can allow more

video segments to be downloaded in the buffer prefetch-

ing phase; this way, the number of subsequent segment

fetching sessions (in the buffer feeding phase) is natu-

rally reduced. On the other hand, the buffer prefetch-

ing phase (compared with the buffer feeding phase) can

usually achieve higher speed for segments downloading

[14], so a larger buffer size also makes positive contri-

bution on saving the entire energy consumption.

Although a larger buffer size is with many merits,

a too large buffer size incurs also troubles. Imagine if

the behavior of a user u is in the unstable mode, video

segments downloaded in the buffer prefetching are usu-

ally being cleaned without watching them; this shall

incur serious bandwidth waste (note: this waste actu-

ally also consumes a lot of energy). In this case, a small

buffer size could reduce the bandwidth waste, whereas

it shall incur more power consumption if it is too small.

Recently, [7] proposed a dynamic cache management

strategy, which can adjust the buffer size according to

the user’s watching logs. This method, however, could

be invalid for new videos, since no watching logs are

available. Also, this method cannot work well when the

behavior of a user is in the unstable mode. To this step,

a natural question raises: how to control the buffer size

efficiently?

B The number of RRC tails. Our previous study

[14] has shown that the number of RRC tails could be

promising for optimizing the power consumption. As

we know, each segment fetching session is followed by

an RRC tail. To decrease the number of RRC tails,

an obvious method is to merge more segment fetching

sessions together (c.f., Figure 3). This can be achieved

by using the push technology mentioned in [8]. How-

ever, such a method ignores user’s behavior. Imagine

if the behavior of a user u is in the unstable mode,

the “merged” video segments could be discarded with-

out watching them, incurring serious bandwidth waste

(again, this actually also consumes much power). Then,

how to merge the video segment fetching sessions wisely

such that the number of RRC tails can be reduced while

keeping the bandwidth waste low?

B Different behavior modes. From the above anal-

ysis, one can easily realize that, in the stable mode

a larger buffer size and merging more segment fetch-

ing sessions are favourable; in contrast, in the unstable

mode a smaller buffer size and merging few segment

fetching sessions are beneficial to the reduction of the

power consumption. Essentially, [6] suggested different

methods for different users’ behavior modes, in which

the users’ behavior modes are assumed to be available

beforehand. In the usual case, we could not know users’

behavior modes beforehand. Then, how to reduce the

power consumption when users’ behavior modes are un-

available beforehand?

5 Our solution

To address the challenges mentioned earlier, we pro-

pose a self-adaptive mechanism for saving the power

consumption. Our method provides a unified frame-

work for different behavior modes; also, it can adjust

the buffer size and merge video segment fetching ses-

sions dynamically and flexibly. In what follows, we first

describe our method at a high level, and then discuss

important components in detail.

Overview. Generally speaking, our method consists of

two main steps. First, a set of parameters are initial-

ized and then it prefetches a set of video segments to

fill the buffer. Our key contribution in the first step

is the design of various parameters; these parameters

together with our strategies (developed in the second

step) shall collaboratively contribute to the reduction

of energy consumption. Second, we dynamically adjust

the parameters based on our proposed strategies. Our

strategies shall guide us to fetch remaining video seg-

ments flexibly and wisely in the video segment feeding

phase. The central idea of our method is to exploit the

continuous video watching time to predict users’ behav-

ior modes, and then dynamically adjust corresponding

parameters, so as to consume less energy. The intuition

behind our idea is that, if a user watches the video for

a relative long time, it is more likely to continuously

watch the whole video without skips.

Self-adaptive mechanism. The self-adaptive mech-

anism needs to adjust several parameters according to

Optimizing Power Consumption of Mobile Devices for Video Streaming over 4G LTE Networks 7

various scenarios. The difficulty in designing this method

is to construct a systematic model that can “balance”

various parameters.

One of important elements is bt, which is the thresh-

old to trigger video segment fetching (recall Table 1).

For the conventional online video player, if the buffer b

is not full, another video segment fetching session shall

be triggered. That is, the default value of bt is equal to

bm−1, where bm refers to the maximum number of video

segments contained in b (recall Table 1). Instead, in our

design we adjust bt dynamically. Let f (∈ [1,+∞)) be a

predefined threshold used to differentiate the warm-up

stage2. We use a “diminishing” policy for adjusting the

threshold bt. In other words, the longer the continuous

online video watching time is, the smaller bt will be set.

This implies that, in the rest of segment fetching ses-

sion, more video segments shall be fetched/downloaded.

Specifically, our diminishing policy is as follows.

bt =

bt −
⌊ ut
τsd
−(bm−bt)(bm−bt−1)

(bm−bt)×2

⌋
, if (bm − bt) < f

bt − 1, otherwise
(6)

where ut
τsd

is used to compute the total number of con-

tinuously viewed video segments; (bm − bt)× 2 implies

we use two segment fetching sessions as the evaluation

unit in the warm-up stage; (bm−bt)(bm−bt−1) refers to

the number of viewed video segments before the latest

change on bt, and it is obtained based on the following:

2×
bm−bt−1∑
i=1

i =2×
(1 + (bm − bt − 1))× (bm − bt)

2

=(bm − bt)(bm − bt − 1)

(7)

In summary, Equation 6 reflects that, if bm−bt < f,

it is in the warm-up stage. This implies that it could

be hard to predict the user behavior. In this case, bt
is decreased after more segment fetching sessions are

finished. In contrast, if bm−bt ≥ f, the possibility to be

in stable mode is increasing gradually. In this case, bt is

decreased after one segment fetching session is finished.

Note that, there is an issue needing to be empha-

sized. That is, when bt is smaller and smaller, more

and more video segments are fetched in a single seg-

ment fetching session. In this case, if users skip to an-

other part of the video. This shall incur the significant

waste, regardless of energy or bandwidth. To alleviate

this issue, we introduce a parameter >, which denotes

the upper bound of the number of video segments in a

single segment fetching session. In other words, when

2 When one plays back an online video, the video may last
for a relative long time. In this paper, the warm-up stage
refers to the early stage of the video being played back. In
the warm-up stage, the number of video segments in a single
segment fetching session is relatively small.

Table 2 Main notations used in our algorithm

Notation Description
ut the user continuous watching time
bs the video buffer size
Θ the threshold to trigger the adjustment of bs
b′m the initial maximum number of video segments

contained in the buffer b
f the threshold to determine the warm-up stage
> the upper bound of the number of video

segments in a single segment fetching session
∆ the size of each adjustment
ne the total times of enlarging buffer
nie the total times of enlarging buffer for the ith

playing part in the unstable mode
nc the number of buffered video segments

bm− bt = >, we shall not further use the “diminishing”

policy.

Another important element is the buffer size bs. For

the conventional online video player, it is usually set

to a fixed value. Imagine if the number of video seg-

ments in a single segment fetching session is larger than

bm − bt. In this case, the system could not work well.

To alleviate this dilemma, in our design we adjust bs
self-adaptively. Let Θ (∈ (0, 1)) be a threshold used

to trigger the adjustment of bs, and ∆∗ be the size of

each adjustment. Specifically, when bt
bm
≤ Θ, we set

bs = bs +∆∗.

Note that, when we enlarge bs, bm (i.e., the maxi-

mum number of video segments contained in b) is nat-

urally enlarged. In this case, the number of segments in

the subsequent segment fetching session could sharply

increase, incurring negative results such as the waste

of bandwidth and energy (the reason is similar to our

previous analysis). We remedy this trouble by enlarging

the value of bt. Specifically, only if bs is set to bs +∆∗,

we immediately set bt = bt +∆, where ∆ = ∆∗

τsd
. Notice

that, τsd refers to the total service time of a segment

(a.k.a., the playing back time duration of a video seg-

ment, recall Table 1).

Algorithm. The pseudo-codes of our method are shown

in Algorithm 1. For ease of reference, the main nota-

tions are summarized in Table 2. In general, Line 1

serves as the initialization of parameters. Line 2 is the

buffer prefetching phase; a lot of video segments are

prefetched and then are filled into the buffer. Lines 3-

17 are used to process the buffer feeding phase. More

specifically, once a video segment has been played back,

we remove it from the buffer, and accumulate the con-

tinuous watching time ut (Lines 4-5). When nc is smaller

than the threshold bt, we starts a new segment fetch-

ing session (Lines 6-12). Clearly, if the remaining video

segments are null, nothing shall be fetched (Lines 7-8).

In contrast, we need to fetch video segments through

8 Jingyu Zhang1 et al.

a new segment fetching session. Note that, there are

two cases: Lines 9-10 are used to process the case when

the buffer size needs to be adjusted, while Lines 11-12

are used to process the case when the buffer size does

not need to be adjusted. Finally, lines 13-17 are used to

update bt based on Equation 6. We remark that, if the

user skips to another part of the video or starts a new

video, the algorithm restarts the above process.

Algorithm 1: SA

1 initialize parameters ;
2 prefetch bm video segments, and set nc = bm ;
3 while nc 6= 0 do
4 if a video segment has been played back then
5 set nc = nc − 1, ut = ut + τsd;

6 if nc <= bt then
7 if the remaining video segments are null

then
8 continue // go to Line 3 ;

9 if bt
bm
≤ Θ // need to adjust buffer then

10 set bs = bs +∆∗, bt = bt +∆,
bm = bm +∆, and fetch ∆+ (bm − bt)
video segments;

11 else
12 fetch bm − bt video segments;

13 if bm − bt < > then
14 if bm − bt < f // warm-up stage then
15 update bt based on the 1st item in Eq. 6 ;
16 else
17 update bt based on the 2nd item in Eq. 6;

Theoretical analysis. In what follows, we examine

the effectiveness of our proposed method, from theo-

retical perspective. As mentioned earlier, our method

works for both stable and unstable modes. For ease of

exposition, we first analyze the stable mode, and then

examine the unstable mode.

B Stable mode. Let b′m be the initial maximum num-

ber3 of video segments contained in the buffer b. Denote

by Nm the number of downloaded video segments in the

last segment fetching session. It can be computed as

Nm =[n− b′m −∆× ne − 2(f− 1)− (>− f− 1)] mod >
=[n− b′m −∆× ne − f−>+ 3] mod >

(8)

where “2(f − 1)” denotes the total downloaded video

segments before (bm − bt) reaches f, and “(> − f −
1)” denotes the total downloaded video segments when

(bm − bt) is between f and >. Let N be the number of

downloaded video segment after (bm− bt) reaches >. It

can be computed as

3 Here the term “initial” maximum number refers to the
value before enlarging the buffer.

N =

⌊
n− b′m −∆× ne − f−>+ 3

>

⌋
(9)

Let vkf (resp., ζkf) be the average download speed

for (resp., the power consumption paid for) the fetching

session that fetches k segments. Similar to Equation 2,

one can have the following.

ζkf =
fs × k
vkf

(ζτs − ζo) + τrt(ζτrt − ζo)

+ (τsd −
fs × k
vkf

− τrt)(ζτri − ζo)

(10)

Let ne be the total times of enlarging buffer in the

buffer feeding phase, and ζa be the additional energy

paid for each buffer enlarging process. Based on the

equations above, we can compute the “improved” en-

ergy consumption in the stable mode as follows.

ζ =
b′m
vp
× ζτbp + ne × ζa + 2×

f−1∑
k=1

ζkf

+

>−1∑
k=f

ζkf +N × ζ>f + ζNm

f

(11)

In the above equation, the part before the second

“+” refers to the power consumption in the buffer prefetch-

ing phase and buffer enlarging process. Note that, both

these phases have power-efficient traffic; in this case,

the larger the segments to be downloaded, the more

power-efficient [54,14,55]. It is not hard to realize that

this part corresponds to the part before the first “+”

in Equation 2. One can observe that the number of

segments contained in this part (c.f., Equation 11) is

(b′m + ne ×∆). It is larger than4 bm in Equation 2. So,

our method is more power-efficient in this part.

We next consider the part after the second “+” in

Equation 11. This part refers to the power consump-

tion in the buffer feeding phase, which could produce

the RRC tails. Note that, the smaller the number of

RRC tails, the less energy shall be consumed [14]. It is

not hard to see that this part corresponds to the part

after the first “+” in Equation 2. One can observe that

the number of RRC tails in this part (c.f., Equation 11)

is (f+>+N−2). It is smaller than5 n−bm
bm−bt = (n−bm)

in Equation 2. This is because the proposed method

merges many single segment fetching sessions together.

On the other hand, when many single segment fetching

sessions are merged, the segments to be downloaded in a

4 Note that here bm is essentially equal to b′m.
5 Remark that, in the traditional implementation, bm−bt =

1, and so n−bm
bm−bt

= (n− bm).

Optimizing Power Consumption of Mobile Devices for Video Streaming over 4G LTE Networks 9

single session turns more, this shall achieve more power-

efficient traffic (as we discussed earlier). Combing these

reasons, our method is also more power-efficient in this

part. To summarize, our proposed method achieves the

improvement in the stable mode, viewed from the the-

oretical perspective.

B Unstable mode. Recall Section 4, the total num-

ber of user skips is assumed to be (i− 1). Without loss

of generality, assume that the buffer size bs will be en-

larged nie times for the ith video playing part. Denote

by N i
m the number of downloaded video segments in the

last fetching session, in terms of the ith video playing

part. Then, We have

Nim =(ni − b′m −∆× nie − 2(f− 1)− (>− f− 1)) mod >
=(ni − b′m −∆× nie − f−>+ 3) mod >

(12)

Denote by N i the number of downloaded video seg-

ment after (bm−bt) reaches >, in terms of the ith video

playing part. We have

N i =

⌊
ni − b′m −∆× nie − f−>+ 3

>

⌋
(13)

Based on the equations above, we can compute the

“improved” energy consumption in the unstable mode

as follows.

ζ =
i∑

k=1

(
b′m
vp
× ζτbp + nie × ζa) +

i∑
k=1

(2×
f−1∑
k=1

ζkf

+

>−1∑
k=f

ζkf +Ni × ζ>f + ζ
Ni
m

f)

(14)

As similar as Equation 11, the part before (resp.,

after) the second “+” in Equation 14 corresponds to the

part before (resp., after) the first “+” in Equation 4.

Also, the former (resp., latter) part refers to the power

consumption in the buffer prefetching phase and buffer

enlarging process (resp., in the buffer feeding phase).

For the first part, in each single segment fetching

session, the number of segments contained in the session

is (b′m+nie×∆), larger than bm in Equation 4. Thus, our

method is more power-efficient in this part (the reason

is same to our analysis mentioned before). On the other

hand, for the second part, in each single segment fetch-

ing session, the total number of RRC tails in the buffer

feeding phase is (f+>+N i−2), which is smaller than

the corresponding number ni−bm
bm−bt = (ni − bm) in Equa-

tion 4. Thus, our method is also more power-efficient

in the latter part (again, the reason is same to our pre-

vious analysis). To summarize, in the unstable mode

the proposed method also achieves the improvement,

viewed from the theoretical perspective.

6 Experiments

In this section, we first discuss the settings of our ex-

periments, and then cover the detailed experimental re-

sults.

Experimental settings. To investigate the power con-

sumption of mobile devices for online video stream-

ing over 4G LTE networks, we deploy a systematic

platform, which is composed of three major compo-

nents: (i) Samsung Galaxy S5, one of the most pop-

ular smartphones; (ii) a professional mobile power me-

ter — Monsoon power monitor [56]; and (iii) DASH-IF

player, the official DASH industry forum reference and

production video streaming player (http://dashif.org/

software). Besides, some other auxiliary components in-

cluding wireshark (https://www.wireshark.org), QXDM

(https://www.qualcomm.com), are also used in our ex-

periments. Here Wireshark is used for the traffic infor-

mation collection, and QXDM is used for the RRC state

information collection. In addition, the video server is

built with Jetty (http://www.eclipse.org/jetty).

We cover the experimental results of four sample

videos: (i) SL-180; (ii) SL-360; (iii) SL-720, and (iv)

SL-1080, respectively. The length of each video is 600

seconds, and each video contains 300 video segments

(i.e., chunks). Each video segment lasts for about 2 sec-

onds. The resolutions of these videos are 180p, 360p,

720p, and 1080p, respectively. These videos are avail-

able at http://www.digitalprimates.net. Remark that

we also tested other videos; those results are similar

to our findings, omitted for saving space. The exper-

imental parameters ∆, f, >, and Θ can be adjusted

manually. We test these parameters offline, and empir-

ically set to 5, 4, 10 and 50% respectively, in order to
achieve the good performance. In addition, the default

value of bs is set to 15.

We test both the stable and unstable modes. When

a user skips to watch another part of the video, we

assume the “skip duration”6 is uniformly distributed

from 20 to 50 seconds. If a skip goes over the length

of a video, we assume the user quits the video before

ending. When there are user skips, all methods skip

at the same time. In our tests, zero to three skips are

used for our performance comparison. The “zero skips”

means there is no user skips during the video playing

(i.e., in stable mode).

To evaluate the performance of our proposed method

(known as SA, for short), we compare it against four

competitors. We shortly introduce them as follows.

B Classic. This is the most classic method for on-

line video streaming [57]. When the buffer is not full,

6 Here the skip duration refers to the step length of each
skip, when a user drags the process bar.

10 Jingyu Zhang1 et al.

0
100
200
300
400
500
600
700

SL-180 SL-360 SL-720 SL-1080

Po
w

er
 (

W
at

ts
)

Classic MF-2 MF-4 SA Optimal

(a) Overall power consumption

0

100

200

300

400

500

600

SL-180 SL-360 SL-720 SL-1080

Po
w

er
 (

W
at

ts
)

Classic MF-2 MF-4 SA Optimal

(b) Transmission power consumption

0

10

20

30

40

50

SL-180 SL-360 SL-720 SL-1080

Po
w

er
 (

W
at

ts
)

Classic MF-2 MF-4 SA Optimal

(c) RRC tail power consumption

Fig. 4 Power consumption comparison. Note that, the “Op-
timal” method mainly serve as a reference.

another video segment fetching session starts immedi-

ately in the buffer feeding phase. That is, the classic

method fetches the video segments one by one in a lin-

ear fashion in the buffer feeding phase.

B MF-2. This method was mentioned in [8]. Its ba-

sic idea is to merge two segment fetching sessions into

one. This method can directly reduce the number of

RRC tails. Note that, an obvious characteristic of this

method is to merge the segment fetching sessions in a

fixed manner.

B MF-4. This method is a variant of MF-2. Com-

pared with MF-2, the major difference is that, it merges

four segment fetching sessions into one.

B Optimal. This method downloads all video seg-

ments in a single segment fetching session, and then

plays back the video offline. This method obtains the

minimum power consumption. To some extent, this method

can be also viewed as a variant of MF-2. Essentially, it

is more extreme in the segment fetching session, com-

pared with MF-4. Note that, this method is an “ideal”

prototype, yet it is impractical in the real online video

streaming application. Here it mainly serves as a refer-

ence.

We remark that the approach mentioned in [6] turns

the wireless interface off (resp., on) when a segment

fetching session finishes (resp., starts). This approach

takes much additional time and energy to restore the

network connection; particularly, it could harm the user

experience, since other applications (e.g., Facebook, Twit-

0

50

100

150

200

250

300

0 1 2 3

Fe
tc

h
in

g
se

ss
io

n
 n

u
m

b
er

Number of user skips

Classic MF-2 MF-4 SA

Fig. 5 The number of segment fetching sessions.

ter, WeChat) running on the mobile device could not

work. Furthermore, the approach in [7] adjusts the buffer

size according to users’ log records of video watching

time. In the context of our concern, we assume no such

information is available. In view of these, we did not

compare with these two approaches.

Experimental results. We first cover the experimen-

tal results without user skips, and then discuss the ex-

perimental results with user skips.

B Without user skips. Figure 4(a) shows the overall

power consumption. We can see from this figure that,

the performance of our proposed method (i.e., SA) is

closest to that of “Optimal”, and SA outperforms Clas-

sic by up to 62% for the power consumption of mobile

devices. Also, we can see that both MF-2 and MF-4

can improve the power consumption of mobile devices,

while they are still inferior than SA. This could be due

to that they do not merge enough segment fetching ses-

sions together. (See Figure 5, in which the number of

segment fetching session are shown.) Note that, no mat-

ter how long the user watches the video, the buffer pa-

rameters are constant for these two methods. In con-

trast, SA collects the continuous video watching time,

and adaptively adjust the buffer parameters (e.g., the

threshold bt, the buffer size bs). As a result, the more

video segment fetching sessions can be merged, saving

the power consumption.

Figure 4(b) shows the power consumption for down-

loading the video segments (i.e., the transmission power

consumption). We can see that SA consumes less power

than classic, MF-2 and MF-4. This implies that SA can

achieve more power-efficient traffics than other three

approaches.

Figure 4(c) compares the power consumption of RRC

tails. We can see that the power consumptions of RRC

tails are almost the same for different resolutions. This

is because, for different resolutions the numbers of seg-

ment fetching sessions are almost the same. Compared

with Classic, MF-2 and MF-4 can significantly decrease

the number of RRC tails, therefore they consume less

energy. Note that SA outperforms both MF-2 and MF-

Optimizing Power Consumption of Mobile Devices for Video Streaming over 4G LTE Networks 11

0

20

40

60

80

100

SL-180 SL-360 SL-720 SL-1080

Pe
rc

en
ta

ge
 (

%
)

Tail Data Transmission

(a) Classic

0

20

40

60

80

100

SL-180 SL-360 SL-720 SL-1080
Pe

rc
en

ta
ge

 (
%

)

Tail Data Transmission

(b) MF-2

0

20

40

60

80

100

SL-180 SL-360 SL-720 SL-1080

Pe
rc

en
ta

ge
 (

%
)

Tail Data Transmission

(c) MF-4

0

20

40

60

80

100

SL-180 SL-360 SL-720 SL-1080

Pe
rc

en
ta

ge
 (

%
)

Tail Data Transmission

(d) SA

0

20

40

60

80

100

SL-180 SL-360 SL-720 SL-1080

Pe
rc

en
ta

ge
 (

%
)

Tail Data Transmission

(e) Optimal

Fig. 6 The power consumption percentage in the stable mode: the data transmission vs. the RRC tails.

0

50

100

150

200

250

300

0 1 2 3

P
o

w
er

 (
W

at
ts

)

Number of user skips

Classic MF-2
MF-4 SA

(a) 180p

0
50

100
150
200
250
300
350
400

0 1 2 3

P
o

w
er

 (
W

at
ts

)

Number of user skips

Classic MF-2
MF-4 SA

(b) 360p

0

100

200

300

400

500

600

0 1 2 3

P
o

w
er

 (
W

at
ts

)

Number of user skips

Classic MF-2
MF-4 SA

(c) 720p

0

100

200

300

400

500

600

700

0 1 2 3

P
o

w
er

 (
W

at
ts

)

Number of user skips

Classic MF-2
MF-4 SA

(d) 1080p

Fig. 7 Impact of user skips. Note that, it is essentially in the
stable mode when the number of skips is 0.

4. This is because it can decrease more RRC tails, based

on the user behaviors. As we expected, the power con-

sumption of RRC tails is extremely tiny for the Opti-

mal method. This is because it almost does not contain
RRC tails.

Figure 6 shows the power consumption percentage

for data transmission and RRC tails. From Figure 6(e),

we can see that almost no RRC tails exist in optimal.

In addition, when the resolution turns smaller, the per-

centage of RRC tails is decreased gradually for all meth-

ods. Instead, the percentage of data transmission is in-

creased gradually. And for all resolutions, data trans-

mission occupies the larger percentage than RRC tails.

In addition, we can also see that SA (cf., Figure 6(d))

keeps the power consumption of RRC tails in a lower

percentage than Classic, MF-2 and MF-4 (cf., Figures

6(a), 6(b) and 6(c) respectively). This implies that SA

makes the total power consumption more dedicated to

video segment transmissions, and thus it is more effi-

cient than the other three approaches.

B With user skips. We compare the performance of

four methods here. Note that, in the unstable mode Op-

timal can not work; we here do not discuss it. Figure 7

shows the impact of user skips. It can been seen that

the more the number of user skips is, the more power

consumption will be paid. This is because, if a user

skips to another part of the video, another additional

buffer prefetching phase will be paid. Particularly, in

this case the undesired buffered video segments will

be removed from the buffer, without watching them;

yet these video segments have already consumed (addi-

tional) power previously. In addition, we can see that,

with the increase of user skips, the power consumption

of SA is increased, and the increase speed is greater

than Classic, MF-2 and MF-4. This is because, in the

unstable mode SA can not stay in the most power-

efficient stage for a long time. However, from the ex-

perimental results, we can still see that the overall per-

formance of SA is still better than Classic, MF-2 and

MF-4. This further demonstrates the effectiveness of

our proposed approach. Again, we can see from Figure

5 that, SA can achieve a smaller value in terms of the

number of fetching sessions, even if there are user skips.

This could be the main reason why SA outperforms the

other three methods.

Figure 8 shows the power consumption percentage

for data transmission and RRC tails, when user skips

happen. (Note that, for ease of observation, we use the
logarithmic scale for the percentage). One can see from

the figure that, SA also has the lower percentage in

terms of RRC tail power consumption. This further

demonstrates that, SA makes the total power consump-

tion more dedicated to video segment transmissions.

Therefore, SA is more power-efficient than other three

approaches in the unstable mode, too.

7 Conclusion

In this paper, we analyzed the major challenges in re-

ducing the power consumption for online video stream-

ing over 4G LTE networks; and proposed a self-adaptive

method that addresses these challenges efficiently. The

central idea of our method is to exploit the continuous

video watching time to predict users’ behavior modes,

and then dynamically adjust corresponding parameters,

so as to achieve a relatively small power consumption.

12 Jingyu Zhang1 et al.

1

10

100

SL-180 SL-360 SL-720 SL-1080

P
er

ce
n

ta
ge

 (
%

)

Tail Data Transmission

(a) Classic

1

10

100

SL-180 SL-360 SL-720 SL-1080

P
er

ce
n

ta
ge

 (
%

)

Tail Data Transmission

(b) MF-2

1

10

100

SL-180 SL-360 SL-720 SL-1080

P
er

ce
n

ta
ge

 (
%

)

Tail Data Transmission

(c) MF-4

1

10

100

SL-180 SL-360 SL-720 SL-1080

P
er

ce
n

ta
ge

 (
%

)

Tail Data Transmission

(d) SA

Fig. 8 The power consumption percentage in the unstable mode: the data transmission vs. the RRC tails.

We provided a rigorous theoretical analysis for our pro-

posed method. Also, we experimentally showed that the

proposed method consistently outperforms the classical

method as well as other competitors adapted from ex-

isting methods.

Acknowledgements We would like to acknowledge the ed-
itors and anonymous reviewers for their instructive sugges-
tions. Also, we gratefully acknowledge the warm help of Prof.
Chunyi Peng and Prof. Sheng Wei, who have offered us valu-
able advices. This work was sponsored by the National Basic
Research (“973”) Program of China (2015CB352403), the Na-
tional Natural Science Foundation of China (61261160502 and
61272099), the Scientific Innovation Act of STCSM (13511504200),
and the EU FP7 CLIMBER project (PIRSES-GA-2012-318939).

References

1. GSMA global mobile economy report 2015.
http://gsmamobileeconomy.com/global/.

2. Ericsson mobility report: on the pulse of the networked
society. http://www.ericsson.com/mobility-report, 2016.

3. Mohammad Reza Zakerinasab and Mea Wang. A
cloud-assisted energy-efficient video streaming system
for smartphones. In IWQoS, pages 1–10, 2013.

4. Wei Xiang, Gengkun Wang, Mark Pickering, and
Yongbing Zhang. Big video data for light-field-based 3D
telemedicine. IEEE Network, 30(3):30–38, 2016.

5. Xiaoyan Guo, Yu Cao, and Jun Tao. SVIS: Large scale
video data ingestion into big data platform. In
DASFAA Workshops, pages 300–306, 2015.

6. Wenjie Hu and Guohong Cao. Energy-aware video
streaming on smartphones. In INFOCOM, pages
1185–1193, 2015.

7. Xin Li, Mian Dong, Zhan Ma, and Felix C. A.
Fernandes. Greentube: power optimization for mobile
videostreaming via dynamic cache management. In
ACM Multimedia Conference, pages 279–288, 2012.

8. Sheng Wei, V. Swaminathan, and Mengbai Xiao. Power
efficient mobile video streaming using HTTP/2 server
push. In MMSP, pages 1–6, 2015.

9. Mike Williams. Why are mobile phone batteries still so
crap. http://www.techradar.com/news/phone-and-
communications/mobile-phones/why-are-mobile-phone-
batteries-still-so-crap–1162779.

10. Hauke Holtkamp, Gunther Auer, Samer Bazzi, and
Harald Haas. Minimizing base station power
consumption. IEEE Journal on Selected Areas in
Communications, 32(2):297–306, 2014.

11. Margot Deruyck, Emmeric Tanghe, David Plets, Luc
Martens, and Wout Joseph. Optimizing LTE wireless
access networks towards power consumption and
electromagnetic exposure of human beings. Computer
Networks, 94:29–40, 2015.

12. Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. A close
examination of performance and power characteristics
of 4G LTE networks. In MobiSys, pages 225–238, 2012.

13. Reema Imran, Mutaz Shukair, Nizar Zorba, and
Christos Verikoukis. An energy saving strategy for
LTE-A multiantenna systems. Mobile Networks and
Applications, 20(5):692–700, 2015.

14. Jingyu Zhang, Zhi-Jie Wang, Song Guo, Dingyu Yang,
Gan Fang, Chunyi Peng, and Mingyi Guo. Power
consumption analysis of video streaming in 4G LTE
networks. Wireless Networks, doi:
10.1007/s11276-017-1519-9, 2017.

15. Hui Wang, H Eduardo Roman, Liyong Yuan, Yongfeng
Huang, and Rongli Wang. Connectivity, coverage and
power consumption in large-scale wireless sensor
networks. Computer Networks, 75:212–225, 2014.

16. Nanhao Zhu and Athanasios V Vasilakos. A generic
framework for energy evaluation on wireless sensor
networks. Wireless Networks, 22(4):1199–1220, 2016.

17. Peng Li, Song Guo, and Jiankun Hu. Energy-efficient
cooperative communications for multimedia
applications in multi-channel wireless networks. IEEE
Transactions on Computers, 64(6):1670–1679, 2015.

18. Lin Xiang, Xiaohu Ge, Cheng-Xiang Wang, Frank Y Li,
and Frank Reichert. Energy efficiency evaluation of
cellular networks based on spatial distributions of traffic
load and power consumption. IEEE Trans. on Wireless
Communications, 12(3):961–973, 2013.

19. Andrea Lupia and Floriano De Rango. Evaluation of
the energy consumption introduced by a trust
management scheme on mobile ad-hoc networks.
Journal of Networks, 10(4):240–251, 2015.

20. Metin Tekkalmaz and Ibrahim Korpeoglu. Distributed
power-source-aware routing in wireless sensor networks.
Wireless Networks, 22(4):1381–1399, 2016.

21. Krishnan Narendran, R. M. Karthik, and Krishna M.
Sivalingam. Iterative power control based admission
control for wireless networks. Wireless Networks,
22(2):619–633, 2016.

22. Xianfu Chen, Jinsong Wu, Yueming Cai, Honggang
Zhang, and Tao Chen. Energy-efficiency oriented traffic
offloading in wireless networks: a brief survey and a
learning approach for heterogeneous cellular networks.
IEEE Journal on Selected Areas in Communications,
33(4):627–640, 2015.

23. Nikolaos A. Pantazis and Dimitrios D. Vergados. A
survey on power control issues in wireless sensor

Optimizing Power Consumption of Mobile Devices for Video Streaming over 4G LTE Networks 13

networks. IEEE Communications Surveys and
Tutorials (COMSUR), 9(1-4):86–107, 2007.

24. Vijeth J. Kotagi, Rahul Thakur, Sudeepta Mishra, and
Chebiyyam Siva Ram Murthy. Breathe to save energy:
Assigning downlink transmit power and resource blocks
to LTE enabled IoT networks. IEEE Communications
Letters, 20(8):1607–1610, 2016.

25. Naveen Mysore Balasubramanya, Lutz Lampe, Gustav
Vos, and Steve Bennett. DRX with quick sleeping: A
novel mechanism for energy-efficient IoT Using
LTE/LTE-A. IEEE Internet of Things Journal,
3(3):398–407, 2016.

26. Naveen Mysore Balasubramanya, Lutz Lampe, Gustav
Vos, and Steve Bennett. Low SNR uplink CFO
estimation for energy efficient IoT using LTE. IEEE
Access, 4:3936–3950, 2016.

27. Juan Luo, Di Wu, Chen Pan, and Junli Zha. Optimal
energy strategy for node selection and data relay in
WSN-based IoT. Mobile Networks and Applications,
20(2):169–180, 2015.

28. Antonino Orsino, Giuseppe Araniti, Leonardo Militano,
Jesus Alonso-Zarate, Antonella Molinaro, and Antonio
Iera. Energy efficient IoT data collection in smart cities
exploiting D2D communications. Sensors, 16(6), 2016.

29. Kun Wang, Yihui Wang, Yanfei Sun, Song Guo, and
Jinsong Wu. Green industrial Internet of Things
architecture: An energy-efficient perspective. IEEE
Communications Magazine, 54(12-Supp):48–54, 2016.

30. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The
Internet of Things: A survey. Computer Networks,
54(15):2787–2805, 2010.

31. Yunmin Go, Oh Chan Kwon, and Hwangjun Song. An
energy-efficient HTTP Adaptive Video Streaming with
networking cost constraint over heterogeneous wireless
networks. IEEE Trans. on Multimedia,
17(9):1646–1657, 2015.

32. Anna Ukhanova, Evgeny Belyaev, Le Wang, and Søren
Forchhammer. Power consumption analysis of constant
bit rate video transmission over 3G networks. Computer
Communications, 35(14):1695–1706, 2012.

33. Mohammad Ashraful Hoque, Matti Siekkinen, and
Jukka K Nurminen. Using crowd-sourced viewing
statistics to save energy in wireless video streaming. In
MOBICOM, pages 377–388, 2013.

34. Yousef O Sharrab and Nabil J Sarhan. Aggregate power
consumption modeling of live video streaming systems.
In MMSys, pages 60–71, 2013.

35. Ya Ju Yu, Pi Cheng Hsiu, and Ai Chun Pang.
Energy-efficient video multicast in 4G wireless systems.
IEEE Transactions on Mobile Computing,
11(10):1508–1522, 2012.

36. Jang Ping Sheu, Chien Chi Kao, Shun Ren Yang, and
Lee Fan Chang. A resource allocation scheme for
scalable video multicast in WiMAX relay networks.
IEEE Transactions on Mobile Computing,
12(1):90–104, 2013.

37. Kun Wang, Jun Mi, Chenhan Xu, Qingquan Zhu, Lei
Shu, and Der Jiunn Deng. Real-time load reduction in
multimedia big data for mobile Internet. ACM Trans.
on Multimedia Computing Communications &
Applications, 12(5s):76:1–76:20, 2016.

38. Shuo Deng and Hari Balakrishnan. Traffic-aware
techniques to reduce 3G/LTE wireless energy
consumption. In CoNEXT, pages 181–192, 2012.

39. Li-Ping Tung, Ying-Dar Lin, Yu-Hsien Kuo,
Yuan-Cheng Lai, and Krishna M Sivalingam. Reducing
power consumption in LTE data scheduling with the

constraints of channel condition and QoS. Computer
Networks, 75:149–159, 2014.

40. Kun Wang, Yihui Wang, Deze Zeng, and Song Guo. An
sdn-based architecture for next-generation wireless
networks. IEEE Wireless Communications,
24(1):25–31, 2017.

41. Kun Wang, Heng Lu, Lei Shu, and Joel J. P. C.
Rodrigues. A context-aware system architecture for leak
point detection in the large-scale petrochemical
industry. IEEE Communications Magazine,
52(6):62–69, 2014.

42. Siripuram Aditya and Sachin Katti. Flexcast: graceful
wireless video streaming. In MOBICOM, pages
277–288, 2011.

43. Kun Wang and Yue Yu. A query-matching mechanism
over out-of-order event stream in iot. International
Journal of Ad Hoc & Ubiquitous Computing,
13(3/4):197–208, 2013.

44. Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A control-theoretic approach for dynamic
adaptive video streaming over HTTP. In SIGCOMM,
pages 325–338, 2015.

45. Kun Wang, Yun Shao, Lei Shu, and Guangjie Han.
Ldpa: a local data processing architecture in ambient
assisted living communications. IEEE Communications
Magazine, 53(1):56–63, 2015.

46. Kun Wang, Linchao Zhuo, Yun Shao, Dong Yue, and
Kim Fung Tsang. Toward distributed data processing
on intelligent leak-points prediction in petrochemical
industries. IEEE Trans. on Industrial Informatics,
12(6):2091–2102, 2016.

47. Matthew K Mukerjee, David Naylor, Junchen Jiang,
Dongsu Han, Srinivasan Seshan, and Hui Zhang.
Practical, real-time centralized control for CDN-based
live video delivery. In SIGCOMM, pages 311–324, 2015.

48. Yun Shao, Kun Wang, Lei Shu, Song Deng, and
Der Jiunn Deng. Heuristic optimization for reliable data
congestion analytics in crowdsourced ehealth networks.
IEEE Access, 4:9174–9183, 2016.

49. Kun Wang, Yun Shao, Lei Shu, and Chunsheng Zhu.
Mobile big data fault-tolerant processing for ehealth
networks. IEEE Network, 30(1):36–42, 2016.

50. Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality on
user engagement. ACM SIGCOMM Computer
Communication Review, 41(4):362–373, 2011.

51. Athula Balachandran, Vyas Sekar, Aditya Akella,
Srinivasan Seshan, Ion Stoica, and Hui Zhang.
Developing a predictive model of quality of experience
for internet video. ACM SIGCOMM Computer
Communication Review, 43(4):339–350, 2013.

52. 3GPP TR 25.813: Radio interface protocol aspects
(V7.1.0), 2006.

53. Thomas Stockhammer. Dynamic adaptive streaming
over HTTP –: standards and design principles. In
MMSys, pages 133–144, 2011.

54. Yan Zhang, N. Ansari, Mingquan Wu, and H. Yu.
Afstart: An adaptive fast TCP slow start for wide area
networks. In ICC, pages 1260–1264, 2012.

55. In Kwan Yu and Richard Newman. TCP slow start
with fair share of bandwidth. Computer Networks,
55(17):3932–3946, 2011.

56. Monsoon power monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/.

57. Alex Zambelli. IIS smooth streaming technical
overview. Microsoft Corporation, 3:40, 2009.

