
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

An Efficient Framework for Sentence Similarity
Modeling

Zhe Quan, Zhi-Jie Wang, Yuquan Le, Bin Yao, Kenli Li, and Jian Yin

Abstract—Sentence similarity modeling lies at the core of many
natural language processing applications, and thus has received
much attention. Owing to the success of word embeddings,
recently, popular neural network methods achieved sentence
embedding. Most of them focused on learning semantic infor-
mation and modeling it as a continuous vector, yet the syntactic
information of sentences has not been fully exploited. On the
other hand, prior works have shown the benefits of structured
trees that include syntactic information, while few methods in
this branch utilized the advantages of word embeddings and
another powerful technique — attention weight mechanism.
This paper suggests to absorb their advantages by merging
these techniques in a unified structure, dubbed as ACV-tree.
Meanwhile, this paper develops a new tree kernel, known as
ACVT kernel, that is tailored for sentence similarity measure
based on the proposed structure. The experimental results,
based on 19 widely-used datasets, demonstrate that our model
is effective and competitive, compared against state-of-the-art
models. Additionally, the experimental results validate that many
attention weigh mechanisms and word embedding techniques
can be seamlessly integrated into our model, demonstrating the
robustness and universality of our model.

Index Terms—Sentence similarity, word embedding, attention
weight, syntactic structure

I. INTRODUCTION

SENTENCE similarity is a fundamental metric to measure
the degree of likelihood between a pair of sentences [1],

[2], [3], and plays an important role for many applications [4],
[5], [6], [7]. Measuring sentence similarity is challenging due
to the ambiguity and variability of linguistic expression, and
thus has received much attention in recent years [8], [9], [10].
A large number of prior works focused on feature engineering,
and several types of sparse features have been shown to be
useful, such as knowledge-based [11] and corpus-based [12].
Some methods also used the combination of various features
and multi-task learning [13].

Recently, owing to the success of word embeddings [14],
[1], researchers have attempted to study sentence similarity
modeling via sentence embeddings. This approach has be-
come a successful paradigm in natural language processing
(NLP) community [2], [15]; and particularly some studies
have used the attention weight mechanism to further enhance
the performance [15], [16]. In this line of works, most of

Z. Quan, Y. Le and K. Li are with the College of Computer Science
and Electronic Engineering, Hunan University, Changsha, China. Email:
{leyuquan,quanzhe,lkl}@hnu.edu.cn.

Z. Wang and J. Yin are with the Guangdong Key Laboratory of Big Data
Analysis and Processing, School of Data and Computer Science, Sun Yat-Sen
University, Guangzhou, China. Email: {wangzhij5,issjyin}@mail.sysu.edu.cn.

B. Yao is with the Department of Computer Science & Engineering, Shang-
hai Jiao Tong University, Shanghai, China. Email: yaobin@cs.sjtu.edu.cn.

previous studies focused on learning semantic information
and modeling it as a continuous vector, while the syntactic
information of sentences are not fully exploited. On the other
hand, prior works have shown the benefits of structured trees
that include syntactic information [17], [18]. Yet, few works
in this branch utilized the advantages of word embeddings and
the attention weight mechanism.

Inspired by the above observations, in this paper we attempt
to absorb the advantages of the above mentioned techniques,
and develop a more efficient method. In a nutshell, our model
uses a structured manner for sentence similarity modeling.
It seamlessly integrates semantic information, syntactic in-
formation, and the attention weight mechanism. To measure
similarity, we develops a new tree kernel, known as the ACVT
kernel, that is tailored for our proposed structure and is de-
signed for high operability. Our model can be used as a general
framework, since one can view word embedding and attention
weight as the building blocks of the framework, allowing users
to replace them using other on-shelf (or more powerful, devel-
oped in the future) word embedding techniques and attention
weight schemes. Besides, unlike most of sentence embedding-
based models, our model can be free from time-consuming
learning/training, once word embeddings are available. On the
other hand, there are also word embedding-based models [8],
[2] for sentence similarity modeling. Nevertheless, our model
can achieve better performance on almost all datasets used in
our experiments, compared against the word-embedding based
models. The novelty of this work is twofold at least: (i) it
suggests a novel manner for sentence modeling, and (ii) it
develops a new tree kernel.

To summarize, the main contributions of this paper are:

• We propose a new structure for sentence similarity mod-
eling. Our model wisely combines syntactic information,
semantic features, and attention weight mechanism to-
gether, absorbing the merits of various techniques. Our
model is easily understood and implemented, but without
loss of effectiveness.

• We developed the ACVT kernel that can allow us to effi-
ciently perform similarity measure based on the proposed
structure.

• We conduct extensive experiments based on widely-used
benchmark datasets. The experimental results consistently
demonstrate the superiorities and competitiveness of our
proposed model.

In the next section, we introduce some preliminaries. Sec-
tion III covers our proposed model. In Section IV, we report
and analyze the experimental results. Section V review pre-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

vious works most related to ours. Finally, we conclude this
paper in Section VI.

II. BACKGROUND

In this section we review several main techniques, for ease
of understanding our proposed model.

A. Constituency-based Parse Tree

It is known as the constituency tree. The interior nodes are
labelled by non-terminal categories of the grammar, while the
leaf nodes are labelled by terminal categories [19]. Each node
in the tree is either a root node, a branch node, a non-branch
node, or a leaf node. A root node doesn’t have any branches on
top of it. Within a sentence, there is only ever one root node. A
branch node is a parent node that connects to two or more child
nodes. A non-branch node is a parent node that contains only
a single child. A leaf node, however, is a terminal node that
does not dominate other nodes in the tree. The fundamental
trait of the constituency tree is that we view sentence structure
in terms of the constituency relation. Consider a sentence
“Love makes man grow up” as an example, the constituency
tree that represents the syntactic structure of this sentence is
shown in Figure 1. Note that, by convention, the constituency
tree usually uses some abbreviations. For example, “S for
sentence”, “N for noun”, “NP for noun phrase”, “V for verb”,
“VP for verb phrase”, and so on.

 !

"#

$%&

'()*+

,,

-./*

,,

'(0

$%

12.3

,! ,! ! 4

$!

5
$!

5

Fig. 1. Constituency tree .

B. Word Embedding

Recently, a popular framework can allow users to represent
words as continuous vectors that capture lexical and semantic
properties of words [14], [1]. Usually, this technique is known
as word embedding (a.k.a., distributed vector representation
of words). Figure 2 shows an example of a representative
framework (notice: for ease of understanding, the readers can
rotate the figure 90 degrees). In brief, in this framework every
word is mapped to a unique vector that is represented by a
column in a matrix W . The column is indexed by position
of the word in the vocabulary. The concatenation or sum
of the vectors is then used as features for prediction of the
next word in a sentence. More formally, given a sequence
of context words w1,w2,w3, ...,wT , the objective of the word
vector model is to maximize the average log probability
1
T

∑T−k
t=k log p(wt|wt−k, ..., wt+k). The neural network based

word embeddings are usually trained using stochastic gradient
descent where the gradient is obtained via backpropagation.
After the training converges, words with similar meaning are

mapped to a similar position in the vector space. For example,
“pretty” and “beautiful” are close to each other, whereas
“beautiful” and “cup” are more distant. The prediction task
is typically done via a multiclass classifier, such as softmax.
It can be formulated as p(wt|wt−k, ..., wt+k) = eywt∑

t e
yi

. Each
of yi is un-normalized log probability for each output word
i, and it is computed as y = b + Uh(wt−k, ..., wt+k;W),
where U , b are the softmax parameters, and h is constructed
by a concatenation or average of word vectors extracted from
matrix W . As a remark, although the framework described
here is from the CBOW model [20], most of other models are
similar in spirit to it.

up

W W W

love makes man

Word Matrix

Concatenate/Average

Classifier

W

grow

Fig. 2. Framework of word embedding.

C. Weight Mechanism

Most of neural network based sentence representation mod-
els treat each word in sentences equally [21], [22], [8]. This
mechanism could be ineffective since it is inconsistent with the
way that human read and understand sentences (i.e., reading
some words superficially and paying more attention to others).
So far, extensive studies have proven that word attributes,
as represented by frequency, POS tag, length, Surprisal, etc.,
are all correlated with human reading time [23]. Thereby,
researchers have considered to assign words with different
weights (which can be treated as attention mechanism [15]),
and there are many schemes to assign weights to words, such
as smooth inverse frequency (SIF), inverse document frequency
(IDF), term frequency-inverse document frequency (TF-IDF),
POS tag (POS), [15], [24], [16]. Remark that, a more strict
definition on the attention weight can be found in [25]; in this
paper we slightly relax this notion, for ease of presentation.

D. Tree Kernel

Tree kernel is used to compute the similarity between
structured trees. The main idea of tree kernels is to compute
the number of common substructures between two trees T1 and
T2 without explicitly considering the whole fragment space
[26]. A tree kernel function over T1 and T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (1)

where NT1 and NT2 denote the set of nodes in T1 and
T2, respectively. Note that, the ∆(·) function determines the
richness of the kernel space and thus can yield different tree
kernels. A representative tree kernel, known as partial tree

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

kernel (PTK) [26], is highly related to our proposed tree
kernel. Specifically, the ∆(·) function of PTK is computed
as

∆(n1, n2) =

 µ(λ2 +
lm
Σ
p=1

∆p(cn1
, cn2

)), n1 = n2

0, otherwise
(2)

where µ and λ are two decay factors: µ for the height of the
tree, and λ for the length of the child sequences; cn1 (resp.,
cn2) refers to the list of children nodes of n1 (resp., n2), in
which the nodes are stored in order as same as the original
order in the tree; lm = min{length(cn1

), length(cn2
)}; and

∆p(·) refers to the number of common subsequence whose
length is p.

III. MODEL

In this section, we first cover the proposed structure, and
then expatiate the new tree kernel tailored for computing
similarity based on our structure.

A. ACV-tree

At a high level, the ACV-tree (Attention Constituency
Vector-tree) is similar to the so-called constituency tree, since
(1) it is also tree-like structure with only a root denoting the
sentence; (2) the internal nodes are some abbreviations for
various constituencies such as NP and VP; and (3) the leaf
nodes contain also the words. A major difference is that, the
leaf nodes of ACV-tree contain also two other elements besides
the words: one is a vector storing the semantic information of
the corresponding word, the other is a real number denoting
the weight of the corresponding word. In what follows, we
address how to construct the ACV-tree in detail.

To construct the ACV-tree, one can follow several steps
below. First, we determine “part of speech” for each word
in the sentence. For example, the word man is a noun and the
word makes is a verb. Second, we associate each word with
(1) the word vector, which can be trained from unlabelled
texts in large corpus, and (2) the attention weight, which
can distinguish the contribution of different words to the
semantic meaning of sentences. Third, we find the modification
relations (or dependency relations) of words in the sentence.
For example, in the sentence “love makes man grow up”,
the word up modifies the word grow, and the words grow
up modifies the word man. Finally, as similar as that in
[19], we link items according to the modification relations
(or dependency relations) found by the previous step, until all
the modifiers are attached to the modified constituents. Note
that, in the process of “linking”, different rules shall be used
(e.g., when a modifier (or word) modifies a noun, the NP rule
is to be used). As such, we obtain our ACV-tree as shown in
Figure 3.

B. ACVT Kernel

As mentioned before, tree kernel is used to compute simi-
larity between structured trees. Yet, few existing tree kernels
consider both the semantic information and the attention
weight. To alleviate this issue, we develop a new tree kernel

 !

"# $%&'() *%+

,-.

/01%2 $%&'() *%+

33

45*% $%&'() *%+

33

/06 $%&'() *%+

,-

'75$ $%&'() *%+

3! 3! ! 8

,!

9
,!

9

Fig. 3. An example of ACV-tree

known as ACVT kernel (Attention Constituency Vector Tree
kernel). Our tree kernel is tailored for computing similarity
based on the proposed ACV-tree.

As same as almost all existing tree kernels, our ACVT
kernel uses also the general framework. That is, Equation 1 is
also used. The major difference between our tree kernel and
existing tree kernels is the ∆(·) function. Let vec1 and wt1
(resp., vec2 and wt2) be the word vector and attention weight
of node n1 (resp., n2). Our ∆(n1, n2) function is inspired by
that of PTK (recall Section II). Specifically, it is defined as

∆(n1, n2) =
0, n1 and/or n2 are non-leaf nodes ∧ n1 6= n2
Attweight × SIM(vec1, vec2), n1 and n2 are leaf nodes
µ(λ2 +

∑lm
p=1 ∆p(cn1 , cn2)), otherwise

(3)

where cn1 , cn2 , lm, µ and λ have the same meaning as
mentioned in Section II; vec1 and vec2 are the word vector of
n1 and n2, respectively; SIM(·, ·) is a function to measure
the cosine similarity between vectors; Attweight = wt1×wt2.
Remark that, the symbol “6=” means that the strings of these
two nodes do not match; e.g., a node with a string “NP” and
a node with a string “VB”.

It remains to explain how to compute ∆p(·) as far as our
tree kernel. To understand, consider cn1

= s1a and cn2
= s2b

(a and b are the last children, s1 and s2 are subsequences of
cn1 and cn2 , respectively), then one can solve ∆p(cn1 , cn2)
by constructing a “recursive” function as follows.

∆p(s1a, s2b) =∆(a, b)
|s1|
Σ
i=1

|s2|
Σ
r=1

(λ|s1|−i+|s2|−r

×∆p−1(s1[1 : i], s2[1 : r]))

(4)

where s1[1 : i] (resp., s2[1 : r]) is the subsequence of s1
(resp., s2) ranging from 1 to i (resp., from 1 to r); |s1| (resp.,
|s2|) is the length of s1 (resp., s2). Note that, here ∆(a, b)
is computed using Equation 3, while ∆p−1(·) is recursively
computed using Equation 4, and the recursive process stops
when it reaches at the leaf node.

C. Algorithm

The pseudo-codes of our algorithm for computing similarity
score between two trees T1 and T2 are shown in Algorithm
1. Our algorithm follows the paradigm in [26]. In a nutshell,
it works as follows. First, it constructs a matrix K, and then
compute the similarity of each node pair based on the rules in
Equation 3. Note that, for the case of “otherwise” mentioned
in Equation 3, our algorithm treats these two nodes as two new

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Algorithm 1 COMPSIM(T1,T2)
1: for each node ni in T1 do
2: if isLeaf(ni) = true then
3: for each node nj in T2 do
4: if isLeaf(nj) = true then
5: K[ni][nj]← Attweight × SIM(vec1, vec2);
6: else
7: K[ni][nj]← 0;
8: else
9: for each node nj in T2 do

10: if isLeaf(nj) = true then
11: K[ni][nj]← 0;
12: else
13: if ni has the same structure with nj then
14: K[ni][nj]← COMPSIM(ni, nj);
15: else
16: K[ni][nj]← 0;
17: ST1T2

← compute the sum of K and normalize it;
18: return ST1T2

trees and compute their similarity (see Line 14). The final step
is the same as that in [26], namely, we compute the sum of all
values in K and normalize it, obtaining the similarity score.

D. Universality of Our Model

Up to now, we have presented our model for sentence
similarity modeling. Our model contains a new structure ACV-
tree, and a new tree kernel (i.e., ACVT kernel). Note that,
the proposed structure has two major building blocks: word
embedding and attention weight mechanism. Although there
are many word embedding techniques (e.g., PSL vectors [27],
PWS vectors[27], D2V vectors [28], SGNS vectors [29]) and
attention weight mechanisms (e.g., TF-IDF [30], [15], IDF
[24], POS tags [15], SIF [16]), our model can seamlessly in-
tegrate the existing word embedding technique (resp., attention
weight mechanism), and it is easy to implement. In brief,
at the second step of constructing ACV-tree (recall III-A),
one can associate each word with the corresponding word
vector (resp., attention weight). In our experiments, most of
tests are based on the PSL vectors (one of common word
embeddings) and TF-IDF (one of common attention weights).
Nevertheless, to validate the universality of our model, our
later experiments also investigate the performance of many
other word embeddings and attention weight mechanisms.

IV. EXPERIMENTS

A. Datasets and Experimental Settings

Datasets. Following prior works, we conduct experiments on
19 textual similarity datasets (http://ixa.si.ehu.es/stswiki/index.

php/Main Page) that contain all the datasets from Semantic
Textual Similarity (STS) tasks (2012-2015), except the SMT
dataset in 2013 due to no permission. Each dataset contains
many pairs of sentences (e.g. MSRvid dataset contains 750
pairs of sentences). These datasets cover a wide range of
domains such as news, web forum, images, glosses, twitter.
Table I summarizes these datasets (grouped by year). Please
note that datasets with the same name in different years include
different data.

Compared methods. In our experiments, we mainly compare
two sets of baselines (note that, most of models in the second
category are classic and earlier than those in the first category):

(1) The models that use word embedding and/or sentence
embedding techniques, including Glove [9], PSL [27], ST [22],
SCBOW [2], PROJ [8], PP-tfidf [15], DAN [5], LSTM [31],
RNN and iRNN [8]. The results of the above methods are
collected from [8] except SCBOW from [2] and PP-tfidf from
[15].

(2) The models that are developed based on other tech-
niques, including WUP [32], RES [33], LIN [34], JCN [35],
and LCH [36], ESA [37], ADW [4]. For ESA and ADW,
they have many variants, we choose the best of them for
comparison. The results of these classic methods are collected
from [4].

Other settings. In our paper we use the Pearson’s correlation
between the predicted scores and the ground-truth scores as
the evaluation criterion, which is the same as that in [4], [15],
[2]. The similarity score of sentence pair is from 0 to 5, where
a scale of 5 means semantically equivalence, whereas 0 means
complete unrelated. In our experiments, the hyper-parameters
µ=[0.1,0.2,...,0.9,1.0], and λ =[0.1,0.2,...,0.9,1.0], where the
numbers in bold denote the default settings, unless otherwise
stated. In our experiments, we implement our ACV-tree by
using the Stanford Parser [38] to generate the constituency
tree of the sentence, and then attach the word vectors (i.e.,
lexical vectors) and the attention weights to the words in leaf
nodes, for the sake of simplicity. Following prior works [16],
[15], we use the term frequency-inverse document frequency
(TF-IDF) scheme to generate the attention weights. In the
computation, we view each sentence as a document and use
all sentences in test data to calculate IDF. The lexical vectors
we used are provided by PARAGRAM-SL999 (PSL for short)
vectors, which is learned by PPDB and is the 300 dimensional
Paragram embeddings tuned on SimLex999 dataset [27].

Roadmap of our experiments. In what follows, we first

STS’12 STS’13 STS’14 STS’15

MSRpar: (750,750) headlines: (-,750) deft-forum: (-,450) answers-forums: (-,375)
MSRvid : (750,750) OnWN : (-,561) deft-news : (-,300) answers-students : (-,750)

SMTeuroparl : (734,459) FNWN : (-,189) headlines : (-,750) belief: (-,375)
OnWN : (-,750) SMT : (-,750) images: (-,750) headlines: (-,750)

SMTnews : (-,399) OnWN: (-,750) images: (-,750)
tweet-news: (-,750)

TABLE I
DATASETS FOR THE SEMEVAL SEMANTIC TEXTUAL SIMILARITY TASKS (YEAR 2012 — YEAR 2015). NOTE THAT, IN THE TABLE THE NUMBERS IN
BRACKET REFER TO THE NUMBER OF TRAINING DATA AND THE NUMBER OF TEST DATA, RESPECTIVELY. IN ADDITION, THE NOTATION “-” DENOTES

THAT NO ANY ACCOMPANYING TRAINING DATA IS PROVIDED.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Year Dataset Compared methods Our method
PROJ PP-tfidf DAN RNN LSTM ST GloVe PSL iRNN SCBOW ACVT

2012

MSRpar 0.44 0.47 0.40 0.19 0.09 0.17 0.48 0.42 0.43 0.44 0.58
MSRvid 0.74 0.79 0.70 0.67 0.71 0.42 0.64 0.60 0.73 0.45 0.83

SMTeuroparl 0.49 0.52 0.44 0.41 0.44 0.35 0.46 0.42 0.47 0.45 0.43
OnWN 0.70 0.73 0.66 0.63 0.56 0.30 0.55 0.63 0.70 0.64 0.70

SMTnews 0.63 0.66 0.60 0.51 0.51 0.31 0.50 0.57 0.58 0.39 0.54

2013
headlines 0.73 0.74 0.71 0.60 0.49 0.35 0.64 0.69 0.73 0.65 0.77
OnWN 0.68 0.75 0.64 0.55 0.50 0.10 0.49 0.48 0.69 0.50 0.85
FNWN 0.47 0.50 0.43 0.31 0.38 0.30 0.34 0.38 0.45 0.23 0.50

2014

deft-forum 0.51 0.54 0.49 0.42 0.46 0.13 0.27 0.37 0.49 0.41 0.48
deft-news 0.72 0.74 0.72 0.54 0.39 0.24 0.68 0.67 0.72 0.59 0.74
headlines 0.71 0.71 0.69 0.58 0.51 0.38 0.60 0.65 0.70 0.64 0.72
images 0.78 0.81 0.77 0.68 0.63 0.51 0.61 0.62 0.78 0.65 0.81
OnWN 0.80 0.81 0.76 0.68 0.62 0.23 0.58 0.61 0.79 0.61 0.87

tweet-news 0.76 0.77 0.74 0.58 0.48 0.40 0.51 0.65 0.77 0.73 0.75

2015

answers-forums 0.65 0.68 0.63 0.33 0.51 0.36 0.31 0.39 0.67 0.22 0.69
answers-students 0.78 0.79 0.78 0.65 0.56 0.33 0.63 0.69 0.78 0.37 0.79

belief 0.75 0.78 0.72 0.52 0.53 0.25 0.41 0.53 0.76 0.48 0.70
headlines 0.75 0.77 0.74 0.65 0.57 0.44 0.62 0.69 0.75 0.22 0.79
images 0.80 0.84 0.78 0.71 0.64 0.18 0.68 0.70 0.81 0.26 0.82

TABLE II
THE COMPARISON RESULTS; THE BOLD NUMBER HIGHLIGHTS ONE OF STRONGEST RESULTS IN EACH DATASET.

compare with the methods that used word/sentence embedding
techniques, since these methods are closest to our proposed
model (Section IV-B). In addition, we check whether our
model can beat classic methods (Section IV-C). One could be
curious that there are studies showing stronger performances
in sentence embedding like Infersent [3] and Quick-Thought
[39], it could be interesting to compare these methods (Section
IV-D). Then, we study the impact of important parame-
ters (Section IV-E). Also, we investigate the effectiveness
of syntactic information from another viewpoint, since the
aforementioned studies could not well reflect the effectiveness
of syntactic information (Section IV-F). After that, we study
the universality of our model by using various attention weight
mechanisms and word embedding techniques (Section IV-G).
It is interesting to compare some more widely used word
embedding methods. To this end, we also compare our method
with Glove [9] and FastText [40] (Section IV-H). Finally, we
also conduct an extra experiment by replacing constituency
tree with another well-known syntactic structure — depen-
dency tree (Section IV-I). Note that, for ease of presentation,
the experimental settings for investigating the universality of
our model are placed in Section IV-G, since these settings are
independent of other experiments.

B. Comparing with word/sentence embedding-based methods
Table II shows the comparison results. It can be seen

from this table that our proposed method (shorted as ACVT)
gets favourable performance. Specifically, ACVT achieves the
best performance on 12 out of 19 datasets (notice: in NLP
community “12 out of 19” is an attractive result [8]). Besides,
we observe that for some datasets, although our method is not
the best one, it is close to the best result (e.g., 12’ OnWN,
14’ tweet-news, 15’ images). These evidences demonstrate that
our proposed model is effective and competitive. Essentially,

it implies that a combination of syntax, semantics and word
attention mechanism could be a good choice for sentence
similarity modeling. Nevertheless, we find that, on several
datasets including 12’ SMTeuroparl, 12’ SMTnews, 14’ deft-
forum, and 15’ belief, our method is inferior than the strongest
competitor and the performance gap is larger than 0.05. It is
interesting to understand why our method cannot performs
well on these datasets.

As for 12’ SMTeuroparl and 12’ SMTnews datasets, it
could be due to that some particular properties such as a
large number of numerical items or special characters in these
datasets weaken the performance of our model. For example,
in the 12’ SMTeu dataset items like “5.30pm” and “(A5-
0323/2000)” account for around 10% of the total test sample;
in the 12’ SMTnews dataset, items like “5.2%” and “24 May”
account for around 8% of the total test sample. Note that, our
model currently lacks for the strong ability to model numerical
items and special characters (e.g., the sentence pair for phone
numbers and email addresses).

Meanwhile, we find that the 14’ def forum dataset con-
tains the forum post sentences, and the 15’ belief dataset
contains the Belief pairs for which their source documents
are English Discussion Forum data. It is easy to understand
that people usually write sentences in forums without using
rigorous syntactic format, and so the grammars used in these
sentences could be not guaranteed; and particularly sentences
are also doped with a large number of colloquial terms and
network abbreviations. These factors lead to the construction
of syntactic structure inaccurate, weakening the performance
of our model.

C. Comparing with classic methods
As same as to [4], we here also use the SemEval-2012

Semantic Similarity task to compare these classic methods.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Dataset Compared methods Our method
JCN WUP LCH LIN RES ESA ADW ACVT

MSRvid 0.65 0.64 0.67 0.70 0.73 0.74 0.80 0.83
MSRpar 0.44 0.44 0.45 0.45 0.46 0.44 0.56 0.58
SMTeuroparl 0.20 0.21 0.18 0.23 0.25 0.48 0.55 0.43
OnWN 0.53 0.55 0.53 0.57 0.59 0.62 0.63 0.70
SMTnews 0.26 0.28 0.27 0.28 0.30 0.40 0.40 0.54

TABLE III
THE COMPARISON BETWEEN OUR METHOD AND CLASSIC METHODS.

Table III lists the compared results. It can be seen from the
table, our method beats all these methods for almost all these
datasets. This further demonstrates the competitiveness of our
model. Note that, as for the SMTeuroparl dataset, our model is
significantly inferior than ADW (i.e., the performance gap is
about 0.12). The reason is the same as our previous analysis.
That is, this dataset contains much more numerical items and
special characters for which our model lacks for the strong
ability to model.

D. Comparing with Infersent and Quick-Thought

In this part, we compare our method with Infersent [3]
and Quick-Thought [39], which have been shown stronger
performances in sentence embeddings. For a fair comparison
with them, we keep the dimension of word vector as same as
our method. In addition, as for Quick-Thought, we use the of-
ficial pre-training model (https://s3.amazonaws.com/senteval/
infersent/infersent1.pkl), other settings are the default values
described in https://github.com/facebookresearch/SentEval. As
for Quick-Thought, we use also the official pre-training model
(https://bit.ly/2uttm2j), and other settings are the default values
described in https://github.com/lajanugen/S2V. Table IV lists
the comparison results. It can be seen that, (i) compared
against Infersent, our method achieves better performance
on 17 out of 19 datasets; and (ii) compared against Quick-
Thought, our method shows better performance on all these
datasets. These results essentially further demonstrate the
competitiveness and effectiveness of our proposed method.

E. Impact of µ and λ

Recall Section III-B, our model is involved with two im-
portant parameters µ and λ, where µ is a decay factor for the
height of the tree, and λ is a decay factor for the length of
the child sequences. We here study the impact of these two
parameters on the accuracy of our model. Note that, in this
set of experiments, we also test two other methods: one is
known as CT which did not incorporate the word embedding
technique and the attention weight mechanism; the other is
known as CVT, which did not incorporate the attention weight

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

P
e
a
rs

o
n

µ

 ACVT CVT CT

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

P
e
a
rs

o
n

λ

 ACVT CVT CT

(b)

Fig. 4. Varying µ and λ on the 13’ OnWN dataset.

mechanism. This way, it might be helpful for us to study
the effectiveness of various techniques used in our model. To
compute the similarity, CT uses PTK, while CVT uses the
simple version of ACVT kernel in which the “weight” part
is removed by setting “Attweight = 1 in Equation 3”. Next,
we use the representative results to analyze the performance
(notice: other results have the similar performance tendencies,
and so we here do not exhaustively plot them, for saving
space). Specifically, Figure 4 shows the compared results
obtained by using the 13’ OnWN dataset.

It can be seen from Figure 4 that ACVT basically out-
performs CVT, and CVT basically outperforms CT. This
demonstrates that the word embedding technique and the
attention weight mechanism are useful when we combine them
together. As for ACVT, we can see from Figure 4(a) that, it has
the best performance when we set µ = 0.2 or 0.1 (compared to
other settings such as µ = 0.9). On the other hand, from Figure
4(b) we can see that our model can obtain best performance
when we set λ = 0.1. These facts justify our default settings
for parameter µ and λ, recall Section IV-A.

One could be curious why the curve of ACVT goes down
when µ (resp., λ) increases. The main reason could be the fol-
lowings. When the parameter µ (resp., λ) turns smaller, nodes
near to the leaf level (resp., nodes with long child sequences)
shall be penalized much more. This way, it makes our model
pay more attention to the key information of sentences, which
usually located at the upper layers of the ACV-tree. As such,
it has higher probability to match people’s reading habit (i.e.,
when people compare two complex sentences, most of people
tend toward comparing the main components and essential
meaning of the sentences), and thus improves the accuracy.

F. Effectiveness of Syntactic Information

Although we can see clearly from Figure 4 that (1) the
constituency tree (CT) alone achieves the weak performance,
and (2) word embedding and attention weight mechanism
contribute a lot to the overall performance; it is still necessary

Model
Dataset 2012 2013 2014 2015

MSRp MSRv SMTe OnWN SMTn hea OnWN FNWN dt-f dt-n head imag OnWN tt-n as-f as-s beli head imag
QT 0.32 0.83 0.41 0.21 0.31 0.65 0.82 0.49 0.47 0.28 0.57 0.65 0.54 0.64 0.15 0.43 0.28 0.28 0.37

InferSent 0.45 0.74 0.48 0.68 0.58 0.69 0.73 0.35 0.47 0.67 0.63 0.76 0.73 0.72 0.35 0.60 0.51 0.19 0.68
ACVT 0.58 0.83 0.43 0.70 0.54 0.77 0.85 0.50 0.48 0.74 0.72 0.81 0.87 0.75 0.69 0.79 0.70 0.79 0.82

TABLE IV
THE COMPARISONS WITH INFERSENT AND QUICK-THOUGHT. NOTICE THAT, WE USE ABBREVIATIONS FOR SOME NAMES, FOR EASE OF ORGANIZING

THE TABLE. FOR EXAMPLE, MSRPAR IS WRITTEN AS MSRP.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0.5

0.6

0.7

0.8

ans-foru ans-stu belief headlines images

P
e
a
rs
o
n

Dataset

PSL+tfidf PSL+tfidf+CT

Fig. 5. Effectiveness of syntactic information. In this figure, “ans-foru” means
the “answer-forums” dataset, and “ans-stu” means the answer-student dataset,
respectively.

to investigate the effectiveness of the syntactic information
from another viewpoint. To this end, we compare two meth-
ods: (1) PSL+tfidf, which uses the TF-IDF (as the attention
weight) and PSL vector (cf., Section IV-A) together; and (2)
PSL+tfidf+CT (i.e., our proposed method ACVT), which uses
three techniques together. Figure 5 shows the representative
results obtained by using five datasets from the 15’ STS, which
are answers-forums, answers-students, belief, headlines, and
images. Remark that, we here report them separately, instead
of using the average value. This is mainly because the average
value might mislead the readers in some cases, due to the lack
of individual information.

We can see from Figure 5 that, “PSL+tfidf+CT” always
outperforms the “PSL+tfidf”. This essentially demonstrates the
effectiveness of syntactic information. Meanwhile, we observe
that, on most of these datasets the improvements obtained
by the syntactic information seem to be not so big. For
example, on the “images” dataset, the syntactic information
improves only the overall performance by 0.03 (from 0.79
to 0.82); on the “belief” dataset, the syntactic information
also improves only the overall performance by 0.03 (from
0.67 to 0.70). Nevertheless, all these results show us that the
syntactic information is consistently helpful to improve the
overall performance. Remark that, results on other datasets that
are not shown (due to space limit), are basically similar to this
set of results. That is, the syntactic information is consistently
helpful to improve the overall performance.

G. Universal Tests

In this subsection, we test the universality of our model.
We use the proposed structure and kernel as the basic frame-
work, and test various attention weight mechanisms and word
embedding techniques, respectively. To save space, in our
experiments we focus on four word embedding techniques
and four attention weight mechanisms mentioned in Section
III-D. Nevertheless, other attention weight mechanisms and
word embeddings can be seamlessly integrated into our model
as well. In our experiments, we use 11 datasets obtained from
the STS’14 and STS’15.

In the first group of experiments, four methods are used. (1)
ACVT: it is the same as our previous experiments, in which
we use PSL vectors [27], which are learned by PPDB and are
the Paragram embeddings tuned on SimLex999 dataset [41].
(2) ACVTpws: it uses the Paragram-WS353 (PWS) vectors

Year Dataset Methods
ACVT ACVTpws ACVTd2v ACVTsgns

2014

deft-forum 0.48 0.46 0.47 0.39
deft-news 0.74 0.74 0.70 0.65
headlines 0.72 0.71 0.70 0.62
images 0.81 0.80 0.75 0.64
OnWN 0.87 0.87 0.86 0.82
tweet-news 0.75 0.74 0.73 0.64

2015

answers-forums 0.69 0.62 0.62 0.50
answers-students 0.79 0.60 0.60 0.54
belief 0.70 0.68 0.64 0.53
headlines 0.79 0.78 0.75 0.66
images 0.82 0.80 0.77 0.68

TABLE V
COMPARISON RESULTS OF METHODS THAT USE DIFFERENT WORD

EMBEDDINGS.

[27], which are Paragram embeddings tuned on WordSim353
dataset [42]. (3) ACVTd2v: it uses word embedding obtained
by Dict2vec approach [28], which builds new word pairs
from dictionary entries so that semantic-related words are
moved closer, and negative sampling filters out pairs whose
words are unrelated in dictionaries. And (4) ACVTsgns: it
uses dependency-based embedding [29], which generalizes
the skip-gram model with negative sampling (introduced by
Mikolov et al. [1]) so as to include the dependency-based
contexts.

In the second group of experiments, we also use four meth-
ods. (1) ACVT: it is the same as our previous experiments,
in which TF-IDF [30], [15] is used as the attention weight.
(2) ACVTidf : it uses IDF [24] as the attention weight, which
is computed as IDF (w) = log(N/count(Nw)), where N is
the total number of articles, and Nw refers to the number
of articles containing the word w; in our experiments we
get the IDF value via Wikipedia, and set IDF (w) as min{
max{0, IDF (w)}, 10}. (3) ACVTpos: it uses the dot product
of the POS tag vector and the corresponding word embedding
[15] as the attention weight; in our experiments, we use the
Stanford POS tagger to assign POS tags for words in the
training and testing datasets; we obtain POS tag vector with
the PPDB dataset (version XL) for 10 epochs, and then train
for another 10 epochs on the SICK dataset; as same as in
[15], we assign a vector to each POS tag and compute the
dot product with the corresponding word embedding vector;
the result is a scalar parameter which reflects the importance
of the word in the sentence. And (4) ACVTsif : it uses the
smooth inverse frequency (SIF) [16] as the attention weight,
in which SIF is computed as SIF (w) = α/(α+p(w)), where
α is parameter and p(w) refers to the word frequency; in
our experiments, we calculate p(w) from Wikipedia, and set
α = [10−2, 10−3, 10−4, 10−5, 10−6], respectively.

Varying word embeddings. Table V shows the performance
results when different word embeddings are used (notice:
Figure 6 plots these results in a more intuitive manner, for ease
of comparison). It can be seen that ACVT achieves the best
performance on all these datasets, and ACVTpws achieves the
best performance on 2 out of 11 datasets. In addition, we also
observe that, on most of these datasets, the performance gap
between ACVT and ACVTpws is pretty small. For example,
on 4 out of 11 datasets (i.e., 14’ and 15’ headlines datasets,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0.3

0.5

0.7

0.9

14'deft-forum 14'deft-news 14'headlines 14'images 14'OnWN 14'tweet-news 15'ans-foru 15'ans-stu 15'belief 15'headlines 15'images

P
ea
rs
on

Dataset

ACVT ACVTpws ACVTd2v ACVTsgns

Fig. 6. Visual results of various word embeddings. In this figure, “ans-foru” means the “answer-forums” dataset, and “ans-stu” means the answer-student
dataset, respectively.

15’ images dataset, and 15’ tweet-news dataset), these two
methods have only a slight gap of 0.01; on 3 out of 11 datasets
(i.e., 14’ deft-forum dataset, 15’ belief dataset, and 15’ images
dataset), these two methods have only a gap of 0.02. These
results show us that, for the word embedding building block,
the PSL vector performs best, and the PWS vector is also
competitive in some datasets. Nevertheless, we also observe
that on some individual datasets (e.g., 15’ answers-students
dataset), these two methods have a large performance gap:
one is 0.69, and the other is 0.60. The reason could be that
the 15’ answer-students dataset contains many more dialogue-
related words, and the PSL vector may has the stronger ability
than PWL vector to represent such words.

As for the ACVTd2v method, its performance is close to that
of ACVTpwl and it performs well on most of datasets (e.g., 14’
deft-forum dataset, 14’ and 15’ headlines dataset, 14’ tweet-
news dataset, 14’ OnWN dataset, 15’ answers-forums dataset).
This demonstrates that D2V vector and PWL vector may have
the similar ability to represent words in these datasets. Also,
on most of these datasets, the performance gap between ACVT
and ACVTd2v is small. For example, on the 14’ deft-forum
dataset and 14’ OnWN dataset, these two methods have only a
slight gap of 0.01. In contrast, as we expected, the ACVTsgns
method performs relatively poor on these datasets. This is
mainly because dependency-based word embedding exhibits
more on functional similarities instead of lexical similarities;
it could be not very compatible with sentence similarity tasks.

In summary, this set of experiments show us that (1)
different word embedding techniques can be applied to our
framework, and most of these methods can achieve good
performance, demonstrating the universality of our model.
(2) in usual cases, the better the word embedding technique,
the better the overall performance shall be achieved; this
implies that it is possible that one can further improve
the performance of our method, when more powerful word
embedding techniques are available in the future. (3) some
dependency-based embedding techniques (e.g., SGNS) could
be not very suitable for sentence similarity tasks, since this
type of techniques focus more on functional similarities rather
than lexical similarities.

Varying attention weight mechanisms. Since the ACVTsif
method involves with a parameter α, we first investigate its
impacts on the overall performance of the ACVTsif method,
and then compare the variant methods in which different
attention weight mechanisms are used.

Table VI reports the experimental results when we vary the
parameter α. From this table, one can observe two interesting

Year Dataset parameter α
10−2 10−3 10−4 10−5 10−6

2014

deft-forum 0.49 0.50 0.48 0.40 0.29
deft-news 0.76 0.77 0.75 0.66 0.56
headlines 0.73 0.73 0.72 0.62 0.50
images 0.76 0.77 0.74 0.58 0.34
OnWN 0.78 0.81 0.85 0.79 0.54
tweet-news 0.77 0.77 0.74 0.62 0.47

2015

answers-forums 0.70 0.72 0.70 0.61 0.43
answers-students 0.68 0.68 0.64 0.51 0.34
belief 0.72 0.72 0.71 0.62 0.40
headlines 0.78 0.78 0.77 0.68 0.51
images 0.84 0.85 0.84 0.75 0.51

TABLE VI
VARYING PARAMETER α FOR THE ACVTsif METHOD.

phenomena: (1) when α is very small (e.g., 10−5, 10−6), the
ACVTsif cannot achieve the best performance on all these
datasets; (2) the performance results when α = 10−5 are
consistently better than the ones when α = 10−6 on all these
datasets. These phenomena essentially illustrate that setting a
too small value for α could be inappropriate. It is possible that
the word frequency p(w) in these datasets is usually signifi-
cantly larger than 10−5, and so a too small α shall lower the
attention weight. Recall Section IV-G, the ACVTsif method
uses the smooth inverse frequency (SIF) as the attention
weight, in which SIF is computed as SIF (w) = α/(α+p(w)).
Thus, it is obvious that the attention weight SIF (w) is to be
a small value when α is much smaller than p(w).

Besides the above findings, it can be seen that when α =
10−4, the ACVTsif method achieves the best performance
on one dataset (this is consistent with the finding in [16]),
and it achieves the best performance on five datasets when
α = 10−2. In contrast, it achieves the best performance
on 10 out of 11 dataset when α = 10−3. In view of this
fact, in the following experiments, we set α to 10−3, unless
stated otherwise. To this step, the reader could be curious
why the ACVTsif method can achieve the best performance
on 10/11 datasets when α is set 10−3, yet it cannot achieve
the best performance for the OnWN dataset. We conjecture
that the word frequency p(w) in the OnWN dataset could be
slightly smaller than that in other datasets, and so the ACVTsif
method fails to obtain the best performance when α = 10−3.
Nevertheless, this does not make a significant impact on our
later experiments and analyses.

Table VII reports the experimental results when different
attention weight mechanisms are integrated into our frame-
work. Correspondingly, Figure 7 plots these results in a more
intuitive manner, for ease of exposition. One can see from

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0
0.2
0.4
0.6
0.8
1

14'deft-forum 14'deft-news 14'headlines 14'images 14'OnWN 14'tweet-news 15'ans-foru 15'ans-stu 15'belief 15'headlines 15'images

Pe
ar
so
n

Dataset

ACVT ACVTsif ACVTidf ACVTpos

Fig. 7. Visual results of various attention weight mechanisms. In this figure, “ans-foru” means the “answer-forums” dataset, and “ans-stu” means the
answer-student dataset, respectively.

Year Dataset Methods
ACVT ACVTsif ACVTidf ACVTpos

2014

deft-forum 0.48 0.50 0.45 0.44
deft-news 0.74 0.77 0.72 0.73
headlines 0.72 0.73 0.64 0.66
images 0.81 0.77 0.73 0.72
OnWN 0.87 0.81 0.82 0.79
tweet-news 0.75 0.77 0.68 0.70

2015

answers-forums 0.69 0.72 0.68 0.58
answers-students 0.79 0.68 0.61 0.67
belief 0.70 0.72 0.69 0.61
headlines 0.79 0.78 0.70 0.72
images 0.82 0.85 0.84 0.80

TABLE VII
THE COMPARISON RESULTS OF METHODS THAT USE DIFFERENT

ATTENTION WEIGHT MECHANISMS.

Table VII that on the whole these variant methods perform
well; and there is no a huge performance degradation arisen
by different attention weight mechanisms (cf., Figure 7). This
essentially implies that different attention weight mechanisms
can be seamlessly integrated into our framework, demonstrat-
ing the universality of our model from another point of view.
Furthermore, we can see that the ACVTsif method achieves
the best performance on 7 out of 11 datasets, and the ACVT
method achieves the best performance on 4 out of 11 datasets.
Recall Section IV-G, the ACVT method uses the TF-IDF as the
attention weight. These phenomena imply that (1) SIF and TF-
IDF have favourable performance in expressing the importance
of words; and (2) using SIF (or TF-IDF) as the attention weight
building block in our model is a strong baseline. This findings
are useful for the future studies.

Compared to the above two (variant) methods (i.e., ACVT
and ACVTsif), the variant method, ACVTidf , is slightly
inferior to them on (almost) all these datasets. Note that,
although ACVTsif is inferior to ACVTidf on the OnWN
dataset, we used α = 10−3 in this group of experiments.
In fact, ACVTsif can achieve a better result if one sets α
to 10−4 (recall Table VI). On the whole, the performance
of ACVTidf is still good (although it is inferior to those
strong variant methods). These results also reveal that IDF

is slightly inferior to TF-IDF in expressing the important
of words. In addition, we can see that, among these four
methods, the ACVTpos method performs the worst on the
whole. The major reasons could be that, this method trains
the POS tag vector and calculates the attention weight by dot
product with the corresponding word embedding, yet the POS
tag vector trained from the PPDB dataset might not well reflect
the semantic importance of different words in the sentence
(since the elements contained in the PPDB dataset are almost
all phrases instead of sentences). Nevertheless, we conjecture
that, if one can develop some targeted preprocessing strategies
before calculating the attention weight (based on the POS tag
vector and the corresponding word embedding), the ACVTpos
method could be further improved.

In summary, this set of experiments show us that (1)
replacing different attention weight mechanisms does not incur
a huge performance degeneration; this further reflects the
universality of our model. (2) TF-IDF and/or SIF could be
most suitable for working as the attention weight building
block. (3) the ACVTsif method is sensitive to the parameter
α, which should be elaborately chosen.

H. Word Embedding Revisited
As we know, Glove [9] and FastText [40] are also two

widely used word embedding methods in the literature. The
readers could be curious how about if we replace the word
embedding used in our method. To this end, we compare
our method ACVT (in which PSL vectors are used) with
the following invariants: (i) ACVTglv in which the Glove
word embedding is adopted, and (ii) ACVTfst in which the
FastText word embedding is adopted. As for both Glove and
FastText, we use the official pre-trained word vector mod-
els available at http://nlp.stanford.edu/data/glove.840B.300d.
zip and https://s3-us-west-1.amazonaws.com/fasttext-vectors/
wiki-news-300d-1M.vec.zip, respectively. For a fair compari-
son, the word vector dimensions for both Glove and FastText
are set to 300, which is as same as that in ACVT. Table VIII
reports the comparison results. One can see that (i) our method
ACVT outperforms ACVTglv on all these 19 datasets, and

Model
Dataset 2012 2013 2014 2015

MSRp MSRv SMTe OnWN SMTn hea OnWN FNWN dt-f dt-n head imag OnWN tt-n as-f as-s beli head imag
ACVTglv 0.56 0.79 0.34 0.63 0.49 0.69 0.80 0.39 0.39 0.69 0.64 0.70 0.81 0.64 0.50 0.52 0.51 0.70 0.71
ACVTfst 0.56 0.79 0.32 0.63 0.57 0.66 0.81 0.32 0.39 0.68 0.62 0.68 0.82 0.54 0.51 0.53 0.51 0.67 0.69

ACVT 0.58 0.83 0.43 0.70 0.54 0.77 0.85 0.50 0.48 0.74 0.72 0.81 0.87 0.75 0.69 0.79 0.70 0.79 0.82

TABLE VIII
THE COMPARISONS WITH GLOVE AND FASTTEXT. NOTICE THAT, WE USE ABBREVIATIONS FOR SOME NAMES, FOR EASE OF ORGANIZING THE TABLE.

FOR EXAMPLE, MSRPAR IS WRITTEN AS MSRP.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0.4
0.5
0.6
0.7
0.8
0.9

14'deft-forum 14'deft-news 14'headlines 14'images 14'OnWN 14'tweet-news 15'ans-foru 15'ans-stu 15'belief 15'headlines 15'images

Pe
ar
so
n

Dataset

ACVT ADVT

Fig. 8. The comparison results of different parse trees. In this figure, “ans-foru” means the “answer-forums” dataset, and “ans-stu” means the answer-student
dataset, respectively.

outperforms ACVTfst on 18 out of 19 datasets; the reason
could be that the PSL vector is tuned on SimLex999 dataset,
which is better suitable for semantic similarity tasks; (ii)
although ACVTglv and ACVTfst are basically dominated by
our method, their effects are also good, to some extent. To
summarize, this set of experiments further demonstrate the
competitiveness and universality of our method.

I. Constituency Tree vs Dependency Tree

As we know, parse trees are usually constructed based on
either the constituency relation of constituency grammars or
the dependency relation of dependency grammars. The former
is usually called the constituency-based parse tree (known
as constituency tree), while the latter is usually called the
dependency-based parse tree (known as dependency tree).
In previous sections, our proposed model employs the con-
stituency tree structure, and achieves favourable performance.
It should be interesting to investigate whether the dependency
tree structure has the similar properties. To this end, we adapt
our model and get a variant method named ADVT, where
“D” is an abbreviation of the word “dependency”, and others
have the similar meanings with our proposed method (i.e.,
ACVT). The adaptation is trivial. One can follow the steps
of constructing the dependency tree [19], and associate each
word with the corresponding attention weight and word vector
(as similar as that in Section III-A). Since both the dependency
tree and the constituency tree are tree-like structures, the
kernel and the algorithm developed in Section III can be
immediately used in the ADVT method. Note that, throughout
our experiments, the ACVT method uses PSL vectors and TF-
IDF. Thus, in this set of experiments, we also use PSL vectors
and TF-IDF for the ADVT method.

Figure 8 shows the experimental results. It can be seen that
ACVT is not worse than ADVT on all these datasets. This
essentially demonstrates that using the constituency tree to
build our model could be more reasonable. However, we have
to point out that, on the whole the performance of ADVT is
no much different from that of ACVT. Specifically, compared
with the ACVT method, the ADVT method achieves almost
the identical performance on six datasets (including 14’ deft-
forum, headlines, images, OnWN, tweet-news datasets and
also 15’ belief dataset). As for those datasets on which ADVT
is inferior to ACVT, the performance gap between them is
small. For example, there is only a slight gap of 0.01 on
three datasets (including 14’ deft-news, 15’ answers-forums,
15’ headlines), and a gap of 0.02 on one dataset (i.e., 15’
answers-students) respectively. All these phenomena show us
that the dependency tree structure is also a strong candidate

for similarity modeling tasks, especially when it is combined
with word embedding and attention weight mechanism.

V. RELATED WORK

As mentioned before, own to the success of word embed-
dings [14], [1], [9], [27], much attention has been devoted to
sentence similarity modeling via sentence embeddings in NLP
community. For example, Yu and Dredze [10] used the simple
additional composition of the word vectors to achieve sentence
embeddings. Mitchell and Lapata [43] proposed a framework
for representing the meaning of phrases and sentences in
vector space. Arora et al. [16] obtained the sentence embed-
dings by a weighted average of the word vectors. Kiros et al.
[22] proposed an encoder-decoder method that can reconstruct
the surrounding sentences of an encoded passage. Wieting
et al. [8] studied the general-purpose sentence embeddings
by using the supervision from paraphrase databases. Mueller
and Thyagarajan [44] presented a siamese adaptation of the
LSTM network for labeled data comprised of pairs of variable-
length sequences, in which the word-embedding vectors sup-
plemented with synonymic information are provided to the
LSTMs. The authors in [21], [45] focused on learning “extra”
sentence embeddings, and presented excellent methods. Wiet-
ing et al. [46] and Takase et al. [47] applied the gate mecha-
nism to compute embeddings of phrases and sentences. Wang
et al. [15] introduced the attention mechanism to improve
sentence embeddings. Ling et al. [48] suggested an improved
method to the continuous bag-of-words model, which adds an
attention model, for learning word representations. Pham et al.
[49] applied the Skip-gram algorithm to train embeddings of
phrases. Kenter et al. [2] presented the Siamese CBOW model
for efficiently obtaining the high-quality sentence embeddings.
Pagliardini et al. [50] proposed Sent2Vec, which allows to
compose sentence embeddings using the word vectors along
with n-gram embeddings. In this line of works, complex
nonlinear functions like convolutional neural networks [51],
[52], [53], [54] were already widely used. Compared to this
line of works, our work shares several common features with
theirs: (1) our work is also attributed to the development
of word embeddings, and (2) our work also addresses the
issues related to sentence similarity. Nevertheless, our work
is different from theirs in one (or both) of features at least:
(1) most of these works focused on learning semantic infor-
mation and did not fully take the syntactic information of
sentences into account, and (2) tree kernels are not covered
in these works. In this paper we take full use of the syntactic
information (besides the semantic information). Our model
uses a structured manner for sentence similarity modeling;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

it integrates semantic information by word embeddings and
syntactic information by constituency trees, and develops the
ACV-tree kernel to measure similarity, achieving favourable
performance (as shown in our experiments).

Another line of works that discussed syntactic and semantic
kernels are also related to our work, since our work also
encodes syntactic/semantic information represented by means
of tree structures [55], [26], [18]. For example, Moschitti [26]
proposed a new tree kernel, namely the partial tree kernel; their
method encodes syntactic parsing information represented
by tree structures. Collins and Duffy [56] discussed kernel
methods for various natural language structures such as strings,
trees, graphs or other discrete structures. Croce et al. [17]
proposed efficient and powerful kernels for measuring the
similarity between dependency structures. Severyn et al. [18]
proposed a powerful feature-based model that relies on the
kernel-based learning and simple tree structures. Additionally,
Tian et al. [57] presented a tutorial discussing the challenge of
composition in distributional and formal semantics. Compared
with this line of works, although our work also uses tree
structures, our work is different from theirs, since (1) word
embeddings are not used in these works, and (2) the attention
weight mechanism is not covered in these works. In our
paper, the ACV-tree and the corresponding tree kernel are
designed to address these issues. As a remark, Tai et al. [58]
and Zhou et al. [59] improved semantic representations from
tree-structured LSTM Networks or its variants; these studies
also considered the syntactic information. Nevertheless, our
work is different from theirs in several points at least: (1)
we utilize the tree structure directly after syntactic analysis,
while their methods need to learn the syntax information into
model(s) through supervised learnings, and (2) the tree kernel
is necessary for our method, while their methods do not need
to involve this technique.

Besides the above two lines of excellent works, there are
also some other nice works such as, sentence classifying [60],
[61], [62], sentence clustering [63], sentence ranking [64], new
measures and/or metrics to assess sentence similarity [65],
[66], [67], etc. These works are clearly different from ours,
yet they are complementary to our work. This article is an
extended version of the preliminary work [68].

VI. CONCLUSION

This paper proposed a new method for sentence simi-
larity modeling. The central idea of the proposed model
is to combine syntactic information, semantic features, and
attention weight mechanism together, absorbing the merits
of various techniques. We compared our model with classic
and state-of-the-art models on multiple STS tasks, and the
results demonstrated that our model can achieve favourable
performance, and it has good universality. The major merits
of our model are: (1) it can be used as a general framework,
since techniques integrated in our model can be viewed as
building blocks, allowing users to replace them using other
on-shelf techniques or more powerful techniques developed
in the future; and (2) unlike most of sentence embedding-
based models, our model can be free from time-consuming

learning/training, once word embeddings are available; some
existing models essentially have also this merit, yet our model
outperforms them in terms of performance, further reflecting
the superiorities of our model.

REFERENCES

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[2] T. Kenter, A. Borisov, and M. D. Rijke, “Siamese cbow: Optimizing
word embeddings for sentence representations,” in ACL, 2016, pp. 941–
951.

[3] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” in EMNLP, 2017, pp. 670–680.

[4] M. T. Pilehvar and R. Navigli, “From senses to texts: An all-in-one
graph-based approach for measuring semantic similarity,” Artif. Intell.,
vol. 228, pp. 95–128, 2015.

[5] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. D. Iii, “Deep unordered
composition rivals syntactic methods for text classification,” in ACL,
2015, pp. 1681–1691.

[6] W. Jiang and J. Wu, “Active opinion-formation in online social net-
works,” in INFOCOM, 2017, pp. 1–9.

[7] W. Jiang, J. Wu, and G. Wang, “On selecting recommenders for trust
evaluation in online social networks,” ACM Trans. Internet Techn.,
vol. 15, no. 4, pp. 1–21, 2015.

[8] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal
paraphrastic sentence embeddings,” in ICLR, 2016.

[9] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, 2014, pp. 1532–1543.

[10] M. Yu and M. Dredze, “Learning composition models for phrase
embeddings,” TACL, vol. 3, pp. 227–242, 2015.

[11] C. Fellbaum, WordNet: An Electronic Lexical Database. Cambridge:
The MIT Press, 1998.

[12] W. Guo and M. T. Diab, “Modeling sentences in the latent space,” in
ACL, 2012, pp. 864–872.

[13] W. Xu, A. Ritter, C. Callison-Burch, W. B. Dolan, and Y. Ji, “Extracting
lexically divergent paraphrases from twitter,” TCAL, vol. 2, pp. 435–448,
2014.

[14] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” JMLR, vol. 3, pp. 1137–1155, 2003.

[15] S. Wang, J. Zhang, and C. Zong, “Learning sentence representation with
guidance of human attention,” in IJCAI, 2017, pp. 4137–4143.

[16] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” in ICLR, 2017.

[17] D. Croce, A. Moschitti, and R. Basili, “Structured lexical similarity via
convolution kernels on dependency trees,” in EMNLP, 2011, pp. 1034–
1046.

[18] A. Severyn, M. Nicosia, and A. Moschitti, “Building structures from
classifiers for passage reranking,” in CIKM, 2013, pp. 969–978.

[19] A. Carnie, Syntax: A Generative Introduction, 3rd Edition. Wiley-
Blackwell, 2012.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR, 2013.

[21] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML, 2014, pp. 1188–1196.

[22] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun,
and S. Fidler, “Skip-thought vectors,” in NIPS, 2015, pp. 3294–3302.

[23] M. Barrett, J. Bingel, F. Keller, and A. Søgaard, “Weakly supervised
part-of-speech tagging using eye-tracking data,” in ACL, 2016, pp. 579–
584.

[24] S. Robertson, “Understanding inverse document frequency: on theoret-
ical arguments for IDF,” Journal of Documentation, vol. 60, no. 5, pp.
503–520, 2004.

[25] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in ICLR, 2015, pp. 1–15.

[26] A. Moschitti, “Efficient convolution kernels for dependency and con-
stituent syntactic trees,” in ECML, 2006, pp. 318–329.

[27] J. Wieting, M. Bansal, K. Gimpel, K. Livescu, and D. Roth, “From
paraphrase database to compositional paraphrase model and back,”
TCAL, vol. 3, pp. 98–104, 2015.

[28] J. Tissier, C. Gravier, and A. Habrard, “Dict2vec: Learning word
embeddings using lexical dictionaries,” in Conference on Empirical
Methods in Natural Language Processing (EMNLP 2017), 2017, pp.
254–263.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[29] O. Levy and Y. Goldberg, “Dependency-based word embeddings,”
in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), vol. 2, 2014, pp.
302–308.

[30] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Inf. Process. Manage., vol. 24, no. 5, pp. 513–523, 1988.

[31] F. A. Gers and N. N. Schraudolph, “Learning precise timing with lstm
recurrent networks,” JMLR, vol. 3, pp. 115–143, 2002.

[32] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in ACL,
1994, pp. 133–138.

[33] P. Resnik, “Using information content to evaluate semantic similarity in
a taxonomy,” in IJCAI, 1995, pp. 448–453.

[34] D. Lin et al., “An information-theoretic definition of similarity.” in
ICML, 1998, pp. 296–304.

[35] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” in ROCLING, 1997, p. 1933.

[36] C. Leacock and M. Chodorow, Combining local context and WordNet
similarity for word sense identification. Cambridge: The MIT Press,
1998.

[37] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in IJCAI, 2007, pp.
1606–1611.

[38] C. Manning, D. Jurafsky, and P. Liang, “Stanford parsing tool,” https:
//nlp.stanford.edu/software/, 2017.

[39] L. Logeswaran and H. Lee, “An efficient framework for learning
sentence representations,” in ICLR, 2018, pp. 1–16.

[40] E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski, “Bag of tricks for
efficient text classification,” in EACL, 2017, pp. 427–431.

[41] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating semantic
models with (genuine) similarity estimation,” Computational Linguistics,
vol. 41, no. 4, pp. 665–695, 2015.

[42] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin, “Placing search in context: The concept revisited,”
in WWW, 2001, pp. 406–414.

[43] J. Mitchell and M. Lapata, “Vector-based models of semantic composi-
tion,” in ACL, 2008, pp. 236–244.

[44] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in AAAI, 2016, pp. 2786–2792.

[45] Y. Wang, H. Huang, C. Feng, Q. Zhou, J. Gu, and X. Gao, “Cse:
Conceptual sentence embeddings based on attention model,” in ACL,
2016, pp. 505–515.

[46] J. Wieting and K. Gimpel, “Revisiting recurrent networks for paraphras-
tic sentence embeddings,” in ACL, 2017, pp. 2078–2088.

[47] S. Takase, N. Okazaki, and K. Inui, “Composing distributed represen-
tations of relational patterns,” in ACL, 2016.

[48] W. Ling, Y. Tsvetkov, S. Amir, R. Fermandez, C. Dyer, A. W. Black,
I. Trancoso, and C. Lin, “Not all contexts are created equal: Better word
representations with variable attention,” in EMNLP, 2015, pp. 1367–
1372.

[49] N. T. Pham, G. Kruszewski, A. Lazaridou, and M. Baroni, “Jointly
[58] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-

tations from tree-structured long short-term memory networks,” in ACL,
2015, pp. 1556–1566.

optimizing word representations for lexical and sentential tasks with
the C-PHRASE model,” in ACL, 2015, pp. 971–981.

[50] M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning of
sentence embeddings using compositional n-gram features,” in NAACL-
HLT, 2018, pp. 528–540.

[51] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” in ACL, 2014, pp. 655–665.

[52] H. He, K. Gimpel, and J. J. Lin, “Multi-perspective sentence similarity
modeling with convolutional neural networks,” in EMNLP, 2015, pp.
1576–1586.

[53] Z. Wang, H. Mi, and A. Ittycheriah, “Sentence similarity learning by
lexical decomposition and composition,” in COLING, 2016, pp. 1340–
1349.

[54] Z. Gan, Y. Pu, R. Henao, C. Li, X. He, and L. Carin, “Learning
generic sentence representations using convolutional neural networks,”
in EMNLP, 2017, pp. 2390–2400.

[55] A. Wu and K. Lowery, “From prosodic trees to syntactic trees,” in ACL,
2006, pp. 898–904.

[56] M. Collins and N. Duffy, “Convolution kernels for natural language,” in
NIPS, 2001, pp. 625–632.

[57] R. Tian, K. Mineshima, and P. Martı́nez-Gómez, “The challenge of
composition in distributional and formal semantics,” in IJCNLP, 2017,
pp. 16–17.

[59] Y. Zhou, C. Liu, and Y. Pan, “Modelling sentence pairs with tree-
structured attentive encoder,” in COLING, 2016, pp. 2912–2922.

[60] Y. Xia, Z. Wei, and Y. Liu, “An efficient cross-lingual model for sentence
classification using convolutional neural network,” in ACL, 2016, pp.
126–131.

[61] D. Tang, B. Qin, F. Wei, L. Dong, T. Liu, and M. Zhou, “A joint
segmentation and classification framework for sentence level sentiment
classification,” IEEE/ACM Trans. Audio, Speech & Language Process-
ing, vol. 23, no. 11, pp. 1750–1761, 2015.

[62] I. Heo and W. A. Sethares, “Classification based on speech rhythm via
a temporal alignment of spoken sentences,” IEEE/ACM Trans. Audio,
Speech & Language Processing, vol. 23, no. 12, pp. 2209–2216, 2015.

[63] A. Skabar and K. Abdalgader, “Clustering sentence-level text using a
novel fuzzy relational clustering algorithm,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 1, pp. 62–75, 2013.

[64] M. A. Sultan, V. Castelli, and R. Florian, “A joint model for answer
sentence ranking and answer extraction,” TACL, vol. 4, pp. 113–125,
2016.

[65] R. Ferreira, R. D. Lins, F. Freitas, S. J. Simske, and M. Riss, “A new
sentence similarity assessment measure based on a three-layer sentence
representation,” in ACM Symposium on Document Engineering, 2014,
pp. 25–34.

[66] Y. Ji and J. Eisenstein, “Discriminative improvements to distributional
sentence similarity,” in EMNLP, 2013, pp. 891–896.

[67] C. Spiccia, A. Augello, G. Pilato, and G. Vassallo, “Semantic word error
rate for sentence similarity,” in ICSC, 2016, pp. 266–269.

[68] Y. Le, Z. Wang, Z. Quan, J. He, and B. Yao, “Acv-tree: A new method
for sentence similarity modeling,” in IJCAI, 2018, pp. 4137–4143.

