
454 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 1, JANUARY 2023

Semantic-Aware Dehazing Network With
Adaptive Feature Fusion

Shengdong Zhang , Wenqi Ren , Member, IEEE, Xin Tan , Graduate Student Member, IEEE,
Zhi-Jie Wang , Member, IEEE, Yong Liu , Jingang Zhang , Xiaoqin Zhang ,

and Xiaochun Cao , Senior Member, IEEE

Abstract—Despite that convolutional neural networks (CNNs)
have shown high-quality reconstruction for single image dehaz-
ing, recovering natural and realistic dehazed results remains
a challenging problem due to semantic confusion in the hazy
scene. In this article, we show that it is possible to recover
textures faithfully by incorporating semantic prior into dehaz-
ing network since objects in haze-free images tend to show
certain shapes, textures, and colors. We propose a semantic-
aware dehazing network (SDNet) in which the semantic prior
is taken as a color constraint for dehazing, benefiting the
acquisition of a reasonable scene configuration. In addition, we
design a densely connected block to capture global and local
information for dehazing and semantic prior estimation. To elim-
inate the unnatural appearance of some objects, we propose
to fuse the features from shallow and deep layers adaptively.
Experimental results demonstrate that our proposed model per-
forms favorably against the state-of-the-art single image dehazing
approaches.

Index Terms—Adaptive feature fusion, dehazing, image
restoration, semantic aware.
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I. INTRODUCTION

S INGLE image dehazing aims to regain a haze-free image
from a hazy input directly, which is a fundamental

problem in the image processing field since dehazing can
greatly facilitate related high-level tasks [1], for example,
image recognition and scene understanding. In the litera-
ture, the image degradation process caused by air particles
is mathematically formulated as [2]

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x) denotes the degenerative hazy image, the scene
radiance needs to be recovered is represented by J(x), A is
the environment lighting, and the transmittance map is rep-
resented by t(x) that depends on scattering coefficient β and
scene depth d(x).

Early methods [2], [3] employ multiple images or additional
depth information to remove haze. However, it is hard to obtain
the multiple images for the same scene or additional depth
information in real cases. To overcome this problem, single
image dehazing methods are proposed [4], [5] capitalized on
sharp image priors. He et al. [6] discovered a dark channel
prior (DCP) to predict the transmission map. However, DCP
may be ineffective for the scene objects that are similar to the
atmospheric light. Fattal [7] observed that pixels in a haze-free
patch form a line in the RGB color space and recover trans-
mission maps based on this prior. Berman et al. [8] introduced
a haze-line prior, based on the fact that hundred color clusters
can be used to represent a haze-free image well [8].

Recently, deep neural networks provide significantly
improved performance in terms of peak signal-to-noise
ratio (PSNR) in the single image dehazing task [9], [10].
Cai et al. [11] employed convolutional neural network (CNN)
to extract more effective low-level features to predict the trans-
mission map. Ren et al. [12] introduced a multiscale deep
model to predict the transmission map, in which a large
network is employed to predict a coarse transmission map,
and then a small network is used to refine the coarse trans-
mission map. However, such networks exhibit limitations in
terms of faithful texture recovery.

In this work, we propose an efficient algorithm to predict
semantic segmentation for single image dehazing. Suppose the
semantic segmentation of the scene is known, this prior can
characterize the semantic class of an object region (e.g., sky,
building, and grass) and constrains the reasonable solution
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Fig. 1. Visual comparisons on a challenging real-world dense hazy example.
Without using the semantic information, the network cannot recover a reason-
able scene, for example, the sky region tends to be dark. In contrast, with the
guidance from semantic information, our algorithm generates a visual faithful
result. (a) Hazy input. (b) Without semantic prior. (c) Semantic segmentation.
(d) With semantic prior.

space for dehazing. On the other hand, we note that a hazy
image and the corresponding haze-free image share the same
semantic information, which can be used to bridge the gap
between synthetic training data and real-world hazy images.

Motivated by the above insights, we attempt to develop a
method that can fully utilize the correlation between color
space and semantic segmentation probability maps. To this
end, we design a semantic-aware dehazing network (SDNet),
which generates haze-relevant features and semantic prior
based on the fusion of high-level and low-level features.
Low-level features help recover texture details, and high-level
features contain much semantic information, which also ben-
efits the dehazing and semantic prior estimation. As shown
in Fig. 1, the proposed SDNet generates faithful colors when
considering the semantic prior.

Another advantage of using semantic prior is that semantic
information could reduce the gap between synthetic training
data and real-world test images. We note that most existing
learning-based dehazing approaches ignore the gap between
synthetic and real hazy images. This article employs semantic
prior to bridge the gap between synthetic and real images since
both share the same classifications and categories. Therefore,
semantic labels of objects in training data can be gener-
alized to the same ones in real photographs. To this end,
we develop a benchmark dataset consisting of outdoor hazy
images, semantic segmentations, and ground-truth depth maps
from the SYSU-Scene dataset [13]. In addition, we note that
directly fusing the shallow layers and deep layers results in
artifacts in the final dehazed image. To address this issue, we
propose an adaptive fusion module. The adaptive fusion mod-
ule can pass the most representative features and rescale the
weight of high-level and low-level features, which are helpful
to generate a natural dehazed result.

The main contributions of this article are as follows.
1) We propose an SDNet to solve semantic segmentation

and image dehazing simultaneously in a unified
framework. Reconstruction of a dehazed image with

rich semantic regions can be achieved by the learned
semantic priors.

2) We propose an adaptive fusion module to fuse the fea-
tures from shallow layers and deep layers adaptively.
The adaptive fusion module is helpful to remove the
unnatural artifact in the final dehazed image.

3) We develop a benchmark dataset consisting of outdoor
hazy images and semantic segmentations to train the
proposed network. We show the learned SDNet is able
to dehaze real-world hazy images well with the semantic
prior.

4) We evaluate the proposed dehazing method through
extensive experiments on both synthetic datasets and
real-world images. In addition, ablation studies are con-
ducted to demonstrate the effectiveness of different
modules in the proposed SDNet.

II. RELATED WORK

In this section, we review the most related work of single
image dehazing and semantic knowledge learning.

Single Image Dehazing: The presence of haze reduces
the color saturation and contrast of haze-free images, which
degrades the performance of most high-level computer vision
tasks. Dehazing methods can be mainly grouped into two cat-
egories: 1) image restoration methods based on sharp image
priors and 2) deep-learning-based dehazing networks.

There existed many image restoration methods via hand-
crafted features [8], [14]–[16]. Based on the observation that
haze-free image patch has at least one pixel with one color
channel tends to be zero, He et al. employed DCP to predict
the transmission map effectively in general cases. However,
DCP cannot be applied to white scenes and sky regions.
To improve the generalization ability of DCP, Meng et al.
proposed a boundary-constraint prior (BCCR). Zhu et al. [15]
proposed a linear model to predict the depth and solved
the parameters of the model with a supervised machine-
learning method. Chen and Huang [17] introduced an edge
collapse-based dehazing algorithm, which dynamically repairs
the transmission map and obtains satisfactory visibility dehaz-
ing results. Kim et al. [18] introduced a fast dehazing method
based on transmission map estimation.

Recently, thanks to the development of CNNs, researchers
introduce numerous deep models for image dehazing, such
as DehazeNet [11], DCPDN [19], DDN [20], HDDNet [21],
and MSCNN [12]. DehazeNet [11] and MSCNN [12] are
designed to predict transmission maps by stacking some
CNN layers. DCPDN [19] recovers the final dehazed result
via embedding the atmospheric scattering model into the
network. EPDN [22] models the dehazing as an image-to-
image translation problem. Chen et al. [23] introduced a
deep-learning-based method to improve the generalization of
DCP. Li et al. [24] introduced a progressive dehazing network
with a haze-level aware. Liu et al. [25] introduced a deep prior
for single image dehazing. By considering the nonlocal sim-
ilarity [26], Zhang et al. [27] proposed a nonlocal dehazing
network. Deng et al. [28] proposed to obtain different dehazed
results and then fuse the intermediate results to obtain a
high-quality dehazed result. A perception-inspired method [29]
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Fig. 2. Architecture of the proposed SDNet. The proposed network consists of four main parts: shallow feature extraction, dense dilated net for capturing
global information and semantic prior, adaptive multiscale feature fusion module, and image reconstruction block. The first and last convolutional layers are
shallow feature extractor and reconstruction layer, respectively.

was proposed to improve the dehazing quality. A radial basis
function (RBF)-based dehazing method [30] was proposed
through artificial neural networks dedicated to effectively
removing haze effect while retaining the visible edges and the
brightness of restored images. Huang et al. [31] introduced
joint semantic learning for object detection, which improves
the object detection performance in inclement weather con-
ditions. Wang et al. [32] modeled the dehazing task as an
image-to-image transform problem. Zhu et al. [33] designed
a dehazing generator, which outputs the transmission map,
air-light, and final dehazed result from the hazy input image.
Zhang et al. [21] proposed a hierarchical density-aware dehaz-
ing network, which employs haze density to improve dehazing
quality. Hong et al. [34] employed knowledge distillation for
dehazing, which transfers the knowledge of clean image to stu-
dent network. Dong et al. [35] designed a U-Net architecture to
improve the dehazing performance by employing boosting and
error feedback. Pang et al. [36] studied the binocular image
dehazing problem and proposed a binocular image dehazing
network (BidNet), which can remove haze both the right and
left hazy images of binocular images.

The closest to ours is the research of [37] and [38],
which employ semantic information to improve the dehaz-
ing performance. There exist four main differences between
the proposed method and these two semantic-based dehazing
approaches. First, the semantic segmentation of [37] and [38]
is extracted by the pretrained VGGNet [39] and refineNet [40]
on sharp images, respectively. In contrast, our semantic prior
is trained on a hazy dataset, which can boost the accuracy
of estimated semantic prior on real hazy images. Second,
compared with SSD [37], our model can capture the relations
between low-level and high-level features, which is critical

for identifying the category of a pixel. Third, SSD captures
image-level semantic information, while the proposed model
captures pixel-level semantic information which keeps the
spatial information. Finally, the method of [38] employs the
semantic to estimate the transmission map. However, inac-
curate transmission estimation would result in undesirable
results. In contrast, our proposed model directly exploits the
semantic to reconstruct the clean image from the hazy image.

Semantic Knowledge Learning: CNNs have been demon-
strated to be effective in a lot of high-level tasks [41]–[46] and
low-level tasks [47]–[49], which benefits from semantic knowl-
edge learning. For example, VGGNet [39] increases the depth of
layers for better feature extraction and becomes the basic model
of many high-level works [50], [51]. To overcome the training
difficulty of VGGNet, ResNet [41] was proposed by adding
the residual connection, which achieves strong performance in
many semantic knowledge learning tasks [52], [53]. Moreover,
to overcome the heavy shrink of deep-learning model, the dila-
tion convolution [54] was presented and shows effective in
semantic segmentation. To better utilize the feature information
in different layers, DenseNet [43] was developed by using
the dense connection strategy, which receives the encourag-
ing results in image classifications. In our work, we integrate
the dilation and dense strategy to capture the global semantic
features to guide the haze removal.

III. PROPOSED METHOD

A. Network

The architecture of the proposed SDNet is shown in Fig. 2.
Let I and J denote as the hazy input and haze-free ground
truth, respectively. The reconstructed image can be obtained
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by F(I), where F(·) denotes the function of our proposed
SDNet.

As shown in Fig. 2, the first and last convolutional layers are
shallow feature extractor and reconstruction layer, respectively.
We propose a dense dilated net to extract hierarchical features,
which can capture the global structure of the hazy input and
preserve the main structure well. In addition, an adaptive fea-
ture fusion module is employed to fuse low- and high-level
features for semantic estimation. Finally, we reconstruct the
dehazed result capitalized on the intermediate features and seg-
mentation probability map. We next introduce the details of
the proposed SDNet.

Dense Dilated Net: Our dense dilated net is constructed by
stacking several dilated convolutional layers shown in Fig. 2.
To detect or identify the semantic of a pixel without contextual
information is a challenging task since little information about
the scene structure is available. To consider more contextual
information, it essentially fuses the merits of dilated convolu-
tion and dense connections. The key point in the dense dilated
net is how to grasp larger scope information (i.e., larger recep-
tive field size) so that it is possible to obtain more sophisticated
high-level semantic knowledge. One possible solution is to
perform max pooling several times as used in conventional
semantic segmentation methods. However, our dehazing task
needs more pixel-level accurate results. Max pooling would
lose lots of details of the image. To alleviate such drawbacks,
we propose to use stacked dilated convolutions to enlarge
receptive field size. In addition, low-level details in the image
are important to recover the boundary. To this end, we employ
dense connections to preserve the main structure of the input.
Such connection learning tends to preserve more low-level fea-
tures and allows us to form deep networks for high-quality
image dehazing with stronger representation ability. Inspired
by the above demands, the densely connected dilated network
is naturally presented. In this way, it allows us to not only
incorporate the semantic information into dehazing but also
capture the global structure and local details well.

Specifically, in our model, the dense connections contain
11 dilated convolutional layers, and each layer receives differ-
ent types of feature maps from previous layers. This can be
formulated as

Fdl = DConv(C(F0, Fd1, . . . , Fdl−1)), l = 1, 2, . . . , 11 (2)

where Fdl denotes the intermediate feature maps learned by
the dense dilated net at the lth dilated convolutional layer, for
example, Fd1 is the output of Dilated Conv1, F0 means the
shallow features extracted from the first convolutional layer
and downsampled by the average pooling layer (it makes the
resolution of features reduce to 1/2 size of the input). In
addition, DConv and C are the dilated convolution and the con-
catenation operations, respectively. In this case, our network
is trained on the high-resolution features to keep the mid- and
high-frequency for the realistic appearance.

Compared with the typical dilated residual network [54],
we use a more light network to keep the capacity to
recover the detailed photographic appearance of scene objects.
Furthermore, our model can capture multiscale objects well.
For example, each dilated layer is equivalent to a kernel

Fig. 3. Architecture of the proposed cross-scale attention module, which
receives the input from high-resolution feature maps and low-resolution
feature maps as inputs and outputs the most informative feature maps.

in different scales, for example, different receptive fields.
Consequently, our model can obtain a feature map with many
more scales, which helps the model capture multiscale objects
well.

Adaptive Feature Fusion Module: After obtaining the high-
level features Fd11 from the dense dilated net in (2), we further
estimate the segmentation probability map and dehazed result
based on the extracted features. However, we note that only
using the high-level feature maps from the dense dilated net
would result in some artifacts in the estimated segmentation
and the final dehazed result. Therefore, we propose an adaptive
feature fusion module to fuse both low-level features (from the
second convolutional layers, i.e., F2) and high-level features
(from the dense dilated network, i.e., Fd11) to improve the
performance of semantic segmentation. The proposed adaptive
feature fusion module consists of three main parts: 1) a cross-
scale attention module; 2) an instance normalization layer; and
3) a concat layer. We note that the semantic properties of deep
layers are more abstract, while the shadow layers have more
low-level features. Directly fusing these two types of features
may cause feature incompatibility. To circumvent this issue,
we present an adaptive feature fusion method to alleviate the
gap between the high-level and low-level features by using
instance normalization [55], [56]. This can be formulated as

Ffuse = C(σ (CA(F2, Fd11)), u ↑ (Fd11)) (3)

where σ(·) is the instance normalization operation, u ↑ is
the upsampling layer, CA denotes as cross-scale attention,
and F2 is the output of Conv2. There are several choices to
serve as upscale modules, such as a transposed layer, bilinear
upsampling, and nearest-neighbor upsampling. In this work,
we directly use a simple bilinear upsampling layer to resize
the output features from the dense dilated network.

The proposed cross-scale attention is designed to choose
the most representative features and pass them to the instance
normalization layer. As shown in Fig. 3, cross-scale atten-
tion receives features from shallow and deep layers and then
uses the deep layer features to activate the most informa-
tive features from shallow layers. Conventional deep dehazing
methods handle channelwise features equally, which is not
suitable for our network. Our model is designed to use shal-
low features to compensate for the deep features. Especially,
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we design cross-scale attention to determine which channels
are helpful to restore the semantic segmentation and final
dehazed image. The proposed cross-scale attention is different
from the conventional channel attention [57]. First, channel
attention employs the global pooling of the input features
to determine the informative channelwise features, while our
cross-scale attention employs the global pooling of the high-
level features to determine the informative low-level features.
Second, cross-scale attention is designed to choose the features
which can compensate for high-level features, while chan-
nel attention only chooses the most informative features. The
proposed cross-scale attention is different from the squeeze-
and-excitation (SE) module [58] and nonlocal module [59].
First, the SE module and nonlocal module obtain new fea-
tures from one feature map. In comparison, the proposed
cross-scale attention performs between two feature maps that
are far away from each other. Second, NL blocks compute
the response at each position by attending to all other posi-
tions and computing a weighted average of the features in all
positions, which incurs a large computation burden. In com-
parison, the proposed cross-scale attention extracts high-level
features using a densely connected network and collects useful
low-level features by cross-scale attention, which can capture
global and local features and avoid a large computation burden.

The instance normalization in our work has two advantages
in our work. First, we note that hazy inputs often lack of
contrast due to attenuation, while we aim to enhance the con-
trast in the dehazed result. Therefore, the reconstructed result
should not, in general, depend on the contrast of the hazy
image. Fortunately, instance normalization is able to learn a
highly nonlinear contrast normalization function for enhancing
the contrast in the dehazed result. Second, instance normal-
ization could address the problem of feature incompatibility
caused by low- and high-level features [60]. With the fused
features, our model could effectively take advantage of both
low-level structural and high-level semantic information. As a
result, the semantic segmentation map M can be generated by

M = Conv(Ffuse) = Conv(C(σ (Fca), u ↑ (Fd11))) (4)

where Fca = CA(F2, Fd11), which extracts most representative
features for the next stage.

Image Reconstruction: In this block, we seek to use seman-
tic prior to improve the dehazing quality. Objects in the scene
tend to have limited color appearance for a given semantic
prior. For example, trees and grasses tend to show a green
appearance. Therefore, providing a category (based on the
scene context) for a pixel may make the network generate
a reasonable color appearance easily. Specifically, our basic
idea is to use the constrain between color space and semantic
segmentation probability maps. To achieve this, we design a
module that models the dehazing as a posterior problem. The
module can allow us to generate a clean image conditional on
the segmentation probability maps by identifying which cate-
gory the pixel belongs to. In this way, it shall provide us the
additional information to remove haze. The generated dehaz-
ing feature maps and the segmentation probability maps are

fused to restore the final dehazed result as

F(I) = Conv(C(Conv(Ffuse), M)) (5)

where F(I) means the reconstructed image by the proposed
SDNet conditioned on the segmentation map.

B. Loss Functions

To train our semantic-aware model, we use a pixelwise soft-
max classifier to predict a class label for each pixel. The class
label will be used to generate the segmentation probability
maps, defined as follows:

Lsem
(
s, s∗) = − 1

P

∑

i

s∗
i log(si) (6)

where P is the number of pixels in an image, si =
exp(zi)/

∑
s exp(zi,s) is the class prediction at pixel i given

the output z of the semantic module, and s∗ is the ground-
truth semantic label. Moreover, for the dehazed result, we also
define a reconstruction loss between the recovered image and
the ground truth based on the L1 norm

Lrec = 1

N

N∑

i=1

‖F(Ii,�) − Ji‖1 (7)

where N is the number of images in the training dataset, ‖ ·‖1
is the L1 norm, J is the ground-truth haze-free image, and �

keeps the weights of the learned filters.
In particular, to further improve the dehazing quality, we

propose to exploit a smooth loss by restricting the predict
results having the same gradient with ground truths, which is
formulated as

Lg = 1

N

N∑

i=1

‖∇(F(Ii,�) − ∇Ji‖1 (8)

where ∇ denotes the gradient extraction operation.
Finally, by combining the semantic loss and reconstruction

losses for dehazing, our final loss function is

Ltotal = Lrec + λ1Lsem + λ2Lg (9)

where λ1 and λ2 are the positive weights, which are used to
control the importance degree of the corresponding loss.

C. Training Dataset

There is no existing dataset that contains a hazy image,
ground-truth haze-free image, and the semantic segmentation
for training our network. To solve this issue, we make the fol-
lowing efforts. First, we collect 1200 images from the public
segmentation dataset of SYSU-Scene [13], then we estimate
the depth map for each image using the depth estimation
method [67] and synthesize hazy images by following the
protocol of learning-based dehazing methods [12], [19], [64].
Specifically, we choose ten random β ∈ [0, 0.5] for t(x) =
e−βd(x). We do not use a big β ∈ [0.5,∞], since such a set-
ting generates a very small transmission, which may be not
plausible for real case. As a result, we synthesize 12 000 hazy
images and corresponding clean ones as well as ground-truth
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Fig. 4. Visual examples of the proposed dataset. The depth can represent the
distance between the objects and camera, and the semantic label can represent
the object class.

semantic segmentations in the training set. For the segmen-
tation labels, we directly use the 37 labels defined in [13],
including building, grass, car, person, sea, airplane, bag, ball,
bench, bicycle, bird, boat, bottle, bus, camera, cat, cellphone,
chair, cow, cup, dog, glasses, horse, laptop, motorbike, racket,
rail, sheep, sky, sofa, street/road, suitcase, table, train, tree,
tv/monitor, and umbrella. We show the generated dense and
light hazy images accompanied with semantic label and depth
map in Fig. 4.

D. Implementation Details

It has been shown that identity initialization [68] is bet-
ter than Gaussian random variables for dilation layers. In our
implementation, we initialize the weights of dilation layers
using the identity initializer. We utilize Leaky ReLU after each
convolutional and dilated convolutional layer as an activation
function. During training, all modules are trained end to end
using the loss function defined in (9). ADAM is employed to
train the proposed model as the optimization solver and set
the initialized learning rate as 0.0001 to train our network.
We decrease the learning rate by 0.5 every 25 epochs. We
train our model for 150 epochs, which takes about 48 h on an
RTX 2080Ti. We use a batch size of 2 with a patch size of
300 × 300 cropped randomly from hazy images. All experi-
ments were conducted using Python 3.6 and PyTorch 1.1. We
set λ1 = 0.5 and λ2 = 0.001 in our experiments. In addition,
we use dilation rates of 1, 2, 4, 8, 16, 32, 16, 8, 4, 2, and 1 for
the 11 dilated convolutional layers of the densely connected
dilated network, respectively, which help the net to leverage
more context to capture structure information well.

IV. EXPERIMENTS

In this section, an ablation study is conducted to show
the improvements obtained by the proposed modules in
the model, and then we compare our method against
state-of-the-art dehazing methods, including AOD-Net [62],
GFN [69], DCPDN [19], BCCR [16], CAP [15], GRM [61],
DCP [14], NLD [8], DehazeNet [11], MSCNN [12],
PDN [63], EPDN [22], GridDehazeNet [25], BPPNet [70],
PhysicsGan [71], FFA-Net [72], and MSBDN [35] on hazy
images. (We will release the source code, trained model, as
well as the dataset on our project website.)

TABLE I
QUANTITATIVE COMPARISON RESULTS ON THE HAZERD DATASET

USING DIFFERENT PROPOSED MODULE

TABLE II
AVERAGE PSNR AND SSIM OF HAZY IMAGES FROM OUTDOOR

IMAGES FROM RESIDE

TABLE III
AVERAGE PSNR AND SSIM OF DEHAZED RESULTS ON THE HAZERD

DATASET WITH DIFFERENT BATCH SIZES

A. Ablation Study

To demonstrate the improvements of each component
introduced in our network, we conduct an ablation study
on the HazeRD dataset using four variant methods: 1) full
model without adaptive feature fusion module (w/o AFF);
2) full model without semantic prior (w/o semantic); 3) full
model without cross-scale attention (w/o CSA) module; and
4) full model without densely connected block (w/o DCB).
The compared results are listed in Table I. It is observed
that densely connected block is critical for improving the
dehazing performance, which enlarges the receptive field size
of the model. Semantic information restricts the solve space
and improves the dehazing performance. The adaptive feature
fusion module and cross-scale attention module contribute to
the performance improvements. In addition, from Fig. 5, we
can observe the adaptive feature fusion module can be used
to improve the contribution of low-level features and make
the dehazing result smoother and remove the artifacts and
color distortion [see the sky region in (c)]; while the seman-
tic prior is beneficial to recover a semantic reasonable result
and help the model generate a clearer result [observed on the
building in (d)].

To reveal the influence of training data, we investigate the
performance of models trained on different datasets. As sug-
gested, we obtain a semantic segmentation by EncNet [53]
for O-HAZE, Dense-Haze, and Hazerd. Then, we trained
the proposed model on these datasets. Finally, we eval-
uate the performance of the trained models on outdoor
haze images from RESIDE. The performance of models
is listed in Table II. As shown in Table II, the model
trained on the proposed dataset has a good generalization
ability. We also show one example for each dataset in
Fig. 6.

We experiment with the influence of batch size. We use
batch sizes 1 and 2 to train dehazing network. We list the
performance of different batch sizes in Table III. When the
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Fig. 5. Visual comparisons of dehazed results with different modules on a challenging real-world hazy example. Semantic information helps the network
recover faithful color information and adaptive feature fusion module could generate smooth result and avoid color distortion and artifacts. (a) Input. (b) w/o
semantic. (c) w/o AFF. (d) SDNet.

Fig. 6. Visual results of different training dataset. The first row is from O-
HAZE. The second row is from Dense-Haze. The third row is from Hazerd.
(a) Hazy image. (b) Semantic label. (c) GTs.

batch size is set to 1, the dehazing result tends to show overen-
hancement. When the batch size is set to 2, the result tends
to show a normal dehazing result. Based on the experiment
on real hazy image and simulated hazy images, we trained the
proposed model with batch size 2.

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON THE TEST PART OF THE

PROPOSED DATASET WITH DIFFERENT ACCURATE OF ESTIMATED

SEMANTIC MAP

Fig. 7. Visual results of dehazed result and semantic label. (a) Input. (b)
Semantic label. (c) Dehazed result.

The proposed method is depending on the information
provided by the estimated semantic map. We do an exper-
iment to show the relation between the accuracy of the
estimated semantic map and dehazing performance. We test
the segmentation and dehazing performance on the test
part of the proposed dataset, the pixelwise accurate of the
proposed method is 69.46% and the PSNR is 25.13, which
shows that the dehazed result can be boosted from the
coarse estimated semantic map. As shown in Table IV, we
can observe that the dehazing PSNR increases with the
increase of the accuracy of the estimated semantic map.
The estimated semantic map is a rough structure represent-
ing the scene, which is helpful for dehazing. As shown
in Fig. 7, some areas (marked as gray) are labeled as
road, however, these areas still achieve a reasonable dehazed
result.
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TABLE V
QUANTITATIVE COMPARISON RESULTS OF VARIOUS DEHAZING METHODS AND PROPOSED METHOD ON OUTDOOR IMAGES FROM THE RESIDE

DATASET [64], HAZERD DATASET [65], AND O-HAZE DATASET [66]

TABLE VI
QUANTITATIVE COMPARISON RESULTS OF VARIOUS DEHAZING METHODS AND PROPOSED METHOD ON THE INDOOR HAZY IMAGES OF SOTS TEST

DATA FROM THE RESIDE DATASET [64]

Fig. 8. Visual comparisons of dehazed results of various dehazing methods and proposed method on the RESIDE dataset. (a) Input. (b) DCP [12]. (c) CAP
[13]. (d) GRM [58]. (e) AOD-Net [59]. (f) PDNet [60]. (g) DCPDN [17]. (h) SDNet. (i) GTs.

Fig. 9. Visual comparisons of dehazed results of various dehazing methods and proposed method on the HazeRD dataset. (a) Input. (b) DCP [12]. (c) CAP
[13]. (d) GRM [58]. (e) AOD-Net [59]. (f) PDNet [60]. (g) DCPDN [17]. (h) SDNet. (i) GTs.

B. Quantitative Evaluations on Benchmarks
We evaluate the proposed network on the public dahazing

test dataset HazeRD [65], RESIDE [64], and O-HAZE [66].

All these datasets contain the ground-truth haze-free images,
which can make us able to evaluate the performance of dehaz-
ing methods qualitatively. We compare the proposed method
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Fig. 10. Visual comparisons of dehazed results of various dehazing methods and proposed method on real-world hazy images. It can be observed that dehazed
results of the proposed method are much clearer than the results of other state-of-the-art methods. (a) Hazy input. (b) DCP [12]. (c) FVR [70]. (d) RF [71].
(e) CAP [13]. (f) DehazeNet [9]. (g) MSCNN [10]. (h) NLD [8]. (i) AOD-Net [59]. (j) DCPCN [17]. (k) GFN [66]. (l) EPDN [19]. (m) GridDehazeNet [22].
(n) SDNet.

with the state-of-the-art methods [8], [11], [12], [14]–[16],
[19], [62], [63], [69], [73] using PSNR and SSIM.

Evaluations on the RESIDE Dataset [64]: RESIDE is a
large-scale hazy image dataset, which includes two simulated
test datasets of indoor and outdoor scenes, respectively. We
first quantitatively compare the proposed SDNet with other
state-of-the-art methods in Table V. As indicated, the proposed
model outperforms the competitor in terms of SSIM and PSNR
metrics. For example, compared with PDNet, SDNet achieves
better results by up to 3.67 dB and 0.06 in terms of PSNR
and SSIM, respectively. The proposed algorithm also advances
0.76 dB in terms of PSNR than the very recent work of EPDN.

We also show visual comparisons of various methods on the
RESIDE dataset in Fig. 8. As shown, most compared dehazing
methods tend to remain some haze in the dehazed results. In
contrast, the proposed SDNet obtains clearer details and vivid
colors in outdoor scenes as shown in Fig. 8.

In order to conduct a fair comparison, we trained the
proposed model on indoor hazy images from the RESIDE
dataset as other learning-based methods and report the result
on the tested dataset of RESIDE. As shown in Table VI, we
can see that the proposed model achieved the highest dehazing
performance.

Evaluations on the HazeRD Dataset [65]: The HazeRD
dataset contains natural outdoor images and the corresponding
high-accuracy depth maps, therefore, can simulate more real-
istic haze to evaluate the performance of dehazing methods.
Note that the images in HazeRD are not used by all of the
CNN-based methods as training data. Table V shows the com-
pared results. It can be seen that the proposed SDNet obtains
the highest SSIM and PNSR on the HazeRD testing data.
In particular, our algorithm exceeds the second best method

(PDNet [63]) by up to 2.36 dB and 0.03 in terms of PSNR
and SSIM, respectively.

We further show two examples from the HazeRD dataset
in Fig. 9. As shown, our method generates more close results
to the ground-truth haze-free images than other state-of-the-
art methods. From the zoomed-in area, we can see that the
leaves generated by CAP, AOD-Net, and DCPDN seem to
remain in some haze and the details are lost. The results
by GRM seem to show some blurry artifacts. In addition,
the window area in the dehazed result by DCP shows some
color distortions. Compared with the state-of-the-art methods,
our algorithm produces more visually pleasant results that are
similar to ground truths.

Evaluations on the O-HAZE Dataset [66]: Although we
have evaluated the performance of SDNet on the RESIDE
and HazeRD datasets, we note that synthetic hazy images from
these two benchmarks are different from real scenes. Different
from RESIDE and HazeRD, hazy images in O-HAZE are cap-
tured in the presence of real haze produced by haze machines.
We quantitatively compare our method against the state-of-
the-art dehazing approaches in Table V. We can observe that
our model achieves the best performance in terms of SSIM
and PSNR.

C. Evaluations on Real-World Hazy Images

We further qualitatively evaluate the proposed SDNet on
the natural hazy images from [74]. Fig. 10 shows several
real-world hazy images and the dehazed results gener-
ated by the proposed approach and state-of-the-art dehazing
methods [14], [73], [74], [15], [11], [12], [8], [19], [69],
[22], [25].
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Fig. 11. Visual comparisons of dehazed results of various dehazing methods and proposed method on real-world hazy images. It can be observed that
dehazed results of the proposed method are much clearer than the results of other state-of-the-art methods. (1a) Hazy input. (1b) NLD [8]. (1c) MSCNN
[10]. (1d) BPPNet [67]. (1e) FFA-Net [69]. (1f) MSBDN [33]. (1g) PhysicsGan [68]. (1h) AOD-Net [59]. (1i) DCPCN [17]. (1j) GFN [66]. (1k) EPDN [19].
(1l) GridDehazeNet [22]. (1m) SDNet. (1n) Semantic. (2a) Hazy input. (2b) NLD [8]. (2c) MSCNN [10]. (2d) BPPNet [67]. (2e) FFA-Net [69]. (2f) MSBDN
[33]. (2g) PhysicsGan [68]. (2h) AOD-Net [59]. (2i) DCPCN [17]. (2j) GFN [66]. (2k) EPDN [19]. (2l) GridDehazeNet [22]. (2m) SDNet. (2n) Semantic.

It can be observed that the traditional dehazing methods
of DCP [14], FVR [73], and RF [74] fail to generate clear
images and tend to introduce some color distortion as shown
in Fig. 10(b)–(d). NLD [8] and EPDN [22] overestimate the
haze density and obtain darker results than others such as the
second and third images in Fig. 10(h) and (l). MSCNN [12]
and GridDehazeNet [25] tend to leave haze in the results and
methods of DehazeNet [11] tend to result in color distortion
(which can be found in the area of the sky region of the
first row).

In addition, we note that atmospheric model-based dehaz-
ing methods of [11], [12], and [19] use the conventional
atmospheric model in (1) to recover clear images. However,
due to the imperfect estimated transmission maps, the
final recovered images contain some artifacts, as shown in
Fig. 10(f), (g), and (j). Furthermore, the end-to-end deep-
learning networks proposed in [62] and [69] use a CNN to
directly predict haze-free images from hazy inputs. However,
these methods fail to regain clean images as shown in
Fig. 10(i) and (k).

In contrast, the proposed SDNet utilizes the semantic
information and alleviates the traditional atmospheric con-
straint in (1). Thus, our model captures the global structure
and reduces the gap between the synthetic and real-world hazy
images, which facilitates haze removal and avoids artifacts. It
can be observed that the results generated by our algorithm in
Fig. 10(n) are much clearer than the ones generated by other
algorithms.

We compare the proposed method with some recently state-
of-the-dehazing methods [35], [70]–[72] in Fig. 11. As shown
in Fig. 11(1d) and (2d), BPPNet [70] tend to show white
appearance. As shown in Fig. 11(1e), (2e), (1f), and (2f), FFA-
Net [72] and MSBDN [35] tend to retain haze in dehazed
result. As shown in Fig. 11(1g) and (2g), PhysicsGan [71] tend
to show a dark appearance. In contrast, the proposed method
can obtain a visual pleased dehazed result as shown in 11(1m)
and (2m). In addition, we also show the estimated semantic
label in Fig. 11(1n) and (2n) for the input hazy images.

To further evaluate the proposed method on real-
world images, we compare our method with recent
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Fig. 12. Visual comparisons of dehazed results of various dehazing methods and proposed method on real-world dense hazy images. AOD-Net, DCPDN,
and GridDehazeNet leave some haze, while GFN and EPDN generate some artifacts in the dehazed results. In contrast, our method removes haze moderately
and preserves the image details well. (a) Dense hazy input. (b) AOD-Net [62]. (c) DCPDN [19]. (d) GFN [69]. (e) EPDN [22]. (f) GridDehazeNet [25].
(g) SDNet.

TABLE VII
AVERAGE RUNNING TIME ON THE RESIDE DATASET

deep-learning-based dehazing methods on dense hazy images.
As shown in Fig. 12, AOD-Net [62], DCPDN [19], and
GridDehazeNet [25] cannot remove haze effectively in heavily
hazy scenes. GFN [69] and EPDN [22] generate some color
distortions in the dehazed results. In contrast, the proposed
method yields visually pleasing results and removes haze as
much as possible.

D. Runtime

We show the runtime of state-of-the-art image dehazing
methods and the proposed method on the same machine
(8-GB memory and i5-6300HQ CPU@2.3 GHz) without
using GPU implementation. We select 100 images from the
RESIDE dataset [64]. Table VII shows the average run-
ning time of all the methods. The traditional algorithms of
DCP [14], BCCR [16], and NLD [8] are time consuming due
to a complex optimization process. Therefore, MSCNN [12],
DehazeNet [11], GFN [69], PDNet [63], and DCPDN [19]
utilize CNNs to estimate haze-free images. However, they are
still time consuming since the traditional atmospheric model-
based recovering method or the complicated networks. The
results in Table VII show the high efficiency of our proposed
method.

V. CONCLUSION

In this article, we have proposed a novel SDNet to learn the
semantic prior for a single image dehazing task. Our method

models the dehazing problem as a maximizing the probabil-
ity of color conditioned on the semantic information, which
is achieved by obtaining a semantic prior with a dense dilated
network. Thus, the proposed SDNet is capable of generating
distinct and vivid colors by incorporating the categorical labels
into the dehazing network. To efficiently estimate semantic
prior, we present a densely connected dilated network, which
can leverage more contextual information and capture scene
structures. In addition, we propose an adaptive feature fusion
module to fuse the multiscale features and adopt the instance
normalization to remove artifacts and smooth the dehazed
result. Extensive experiments on both synthetic and real-world
datasets demonstrate that the proposed algorithm performs
favorably against the state-of-the-art dehazing methods.

Our work currently relies on 37 semantic categories given
in the SYSU-Scene dataset [13], and thus does not consider
semantic priors of finer categories, such as valley, trucks,
bridge, and river. In such a case, it puts forward challeng-
ing requirements for segmentation tasks from a hazy input. In
future work, we will address this issue by considering more
semantic categories.
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