
THE JOURNAL/CONFERENCE NAME SHALL BE INSERTED BY THE EDITOR 1

Cover Trees Revisited: Exploiting Unused Distance and
Direction Information
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Abstract—The cover tree (CT) and its improved version are hierarchical data structures that simplified navigating nets while
maintaining good runtime guarantees. They can perform nearest neighbor search in logarithmic time and provide efficient
computation in practice. In this paper, we revisit cover trees for nearest neighbor search, and propose a more competitive
method. The central idea of our method is to fully exploit the unused distance and direction information. More specially, our
method introduces three novel concepts/techniques: (i) range list, (ii) quadrant information, and (iii) vectorial angle cosine. These
techniques are seamlessly integrated into our suggested data structure and search algorithms. As an extra bonus, we explore
approximate nearest neighbor and k nearest neighbor based on the proposed techniques, and present algorithms for handling
updates. Extensive experimental results, based on both real and synthetic datasets, consistently demonstrate that our method is
attractive and competitive, compared against existing cover tree structures for nearest neighbor search and its variants.
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1 INTRODUCTION

Nearest neighbor search is a basic computational tool that
can be applied to many domains including machine learn-
ing [15], data mining [31], and databases [39]. Data structure
plays a key role in nearest neighbor search. It can be used
to speed up the k-nearest neighbor classification algorithm,
and many other tasks including clustering [4], [26], [5], local-
ized support vector machines [28], dimensionality reduction
[23], reinforcement learning [33], and image search [29], [30].

The basic nearest neighbor problem is as follows: Given a
set S of n points in some metric space (X, d), the problem is
to preprocess S so that given a query point q ∈X , one can
find efficiently a point p∗ ∈ S which minimizes d(q, p∗),
i.e., the distance between q and p∗. The naive method
for computing nearest neighbor search problem involves a
linear scan of all the data points and takes time O(n). This
method, however, is obviously expensive. So far, many data
structures have been created to speed up this process. When
the Euclidean dimension is low, one typical approach is to
use the famous structure kd-trees [10]. When the Euclidean
dimension is high, or the metric is non-Euclidean, the ball
tree [34] is often used, since it is simple and competitive
in many practical applications [13]. Although the ball tree
is attractive for its simplicity, it provides only the trivial
runtime guarantee that queries will take time O(n). To this
end, subsequent researches focused on obtaining stronger
runtime guarantees. Thereby, more complicated data struc-
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tures like the metric skip list [19] and the navigating net
[20] were developed. Because these data structures were
complex and had large constant factors, they were mostly of
theoretical interest. Later, Beygelzimer et al. [1] proposed the
cover tree (CT) —– a leveled tree where each level is a cover
for the level beneath it. It is a hierarchical data structure that
simplifies navigating nets while it maintains good runtime
guarantees. It only consumes linear space and logarithmic
time. Recently, Izbicki and Shelton [18] further developed
the simplified nearest ancestor cover tree (SNACT), which
provides a simpler definition, reducing the number of nodes
from O(n) to exactly n. Moreover, SNACT introduces an
“additional” invariant, i.e., nearest ancestor invariant, that
makes queries faster in practice.

Although the cover tree and its improved version
achieved significant improvement for nearest neighbor
search, several major insights motivate us to revisit cover
tree structures. (i) Existing cover tree structures have in-
tegrated some distance information to improve the search
performance, but some other intuitive and useful distance
information seems to be ignored in previous works. For
example, CT [1] employed the upper bound of d(p, p′) to
prune unqualified nodes and/or subtrees, where p′ denotes
any descendant node of p; SNACT [18] used the maxdist(p)
to achieve this mission, where maxdist(p) refers to the
actual maximum value from p to any descendant node, and
it is usually much tighter than the upper bound of d(p, p′).
Nevertheless, the distance information from p to its children,
children’s children and so on, remains unexploited fully. (ii)
Given two points p and p′ in some metric space (X, d),
traditionally, users easily associate them with the distance
between them. Essentially, if one imagines point p as the
original point of a coordinate system, then point p′ must be
located in some quadrant (or at some axis) of the coordinate
system. The quadrant information is also useful for users
to prune unqualified nodes. Yet, such a concept seems to
be thoroughly novel, compared against existing cover tree
structures. These ideas yield a novel data structure, dubbed
as CT++ for short.

Based on the above data structure, we develop a much
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more efficient algorithm for nearest neighbor search. Our
search algorithm not only takes full use of the proposed data
structure, but also introduces a concept, called the vectorial
angle cosine, to further speed up the search performance.
The rationale behind this idea is surprisingly simple, yet
it is useful and has not been exploited in existing cover
trees based nearest neighbor search algorithms. In brief,
given a line segment or vector pq, one can image that
there exists a hyperplane, which is vertical to pq and passes
through endpoint p; then the hyperplane divides the data
space into two parts. It is easy to see that, if p is currently
the nearest neighbor of q, then any point in the other part,
namely the part that does not contain p, is definitely not to
be the nearest neighbor of q. (See Section 5.1 for a visual
example.) Besides the above contributions, we also extend
our techniques to approximate nearest neighbor search and
k nearest neighbor search. Moreover, we present algorithms
for handling updates, which are a little bit complicated
than existing cover tree structures, since more attributes are
needed to maintain. Nevertheless, our updating operations
have only a little more cost in both theory and practice.
To summarize, the main contributions of this paper are as
follows.
• We present a new structure that is an improved version

of SNACT. Our structure integrates unused distance
and direction information that are not exploited in
existing cover tree structures.

• We present a new algorithm for nearest neighbor search
that takes full use of the proposed structure. Mean-
while, our algorithm integrates a technique called vec-
torial angle cosine that further speeds up the perfor-
mance of our method.

• We extend our method to approximate nearest neighbor
search and k nearest neighbor search. Besides, we also
present the algorithms for handling updates including
insertion and removal (i.e., deletion) operations.

• We conduct extensive experiments to demonstrate the
efficiency and effectiveness of our proposed method.

The rest of the paper is organized as follows. Section 2
provides some preliminaries necessary for understanding
the rest of the paper. Section 3 presents an overview of our
solution. Section 4 presents the details of our data structure.
Section 5 presents our method for nearest neighbor search.
Sections 6 and 7 address how to achieve approximate and k
nearest neighbor search, respectively. Section 8 handles the
updates of our structure. Section 9 discusses and analyzes
the experimental results, and finally Section 10 concludes
the paper.

2 PRELIMINARIES

This section first describes some notations and formulates
the problem, and then revisits cover tree structures in-
cluding CT [1] and SNACT [18], and finally reviews other
relevant work.

Notations. Following prior works, we use T to denote a
tree structure, and for a node p in T , we use children(p)
and descendants(p) to denote its children and descen-
dants, respectively. We also use desc(p) for short, when
the context is clear. In addition, we use maxdist(p) to
denote argmaxp′∈descendants(p) d(p, p′), as same as that in
[18]. Note that our paper also slightly abuses the notations
max and argmax, but its meaning should be clear from
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Fig. 1: Illustrations of the cover tree (CT) and the simplified
nearest ancestor cover tree (SNACT).

the context. Given a set S of n points in (X, d) where
S ⊂ X , we denote the closed ball of radius r around p
in S by BS(p, r) = {q ∈ S : d(p, q) ≤ r}. The expansion
constant of S is defined as the smallest value c ≥ 2 such
that |BS(p, 2r)| ≤ c · |BS(p, r)| for every p ∈ X and
r > 0. Meanwhile, the doubling constant, as an alternative of
expansion constant, refers to the minimum value c such that
every ball in X can be covered by c balls in X of half the
radius [18], [7], [20]. Following [18], throughout this paper,
if the constant c is mentioned, we refer to it as the doubling
constant, unless stated otherwise. In addition, when | · | is
used, it denotes the cardinality of the corresponding item.
For example, |S| = n.
Problem Statement. Let S be a set of n points in some
metric space (X, d), where S ⊂X . Given any two points p1

and p2 in X , denote by d(p1, p2) the distance in the metric
space (X, d). Given a point p and a set Q of points in X , we
use d(p,Q) to denote argminp′∈Q d(p, p′). The basic nearest
neighbor (NN) problem is as follows: Given S ⊂ X and
a query point q ∈ X , it finds a point p∗ ∈ S such that
d(q, p∗) = d(q,S).
Cover Tree. A cover tree T on a data set S containing n
points is a “leveled” tree where each level is a “cover” for
the level beneath it [1]. Each level is indexed by an integer
scale i which decreases as the tree is descended. Every node
in the tree is associated with a point in S. Each point in S
may be associated with multiple nodes in the tree; however,
it requires that any point appears at most once in every
level. Let Ci denote the set of points in S associated with
the nodes at level i. The cover tree follows three invariants
below for all i:
• (i) Nesting invariant, namely, Ci ⊂ Ci−1; this implies that

once a point p ∈ S appears in Ci then every lower level
in the tree has a node associated with p.

• (ii) Covering invariant, namely, for every p ∈ Ci−1, there
exists a q ∈ Ci such that d(p, q) < 2i and the node in
level i associated with q is a parent of the node in level
i− 1 associated with p.

• (iii) Separation invariant, namely, for all distinct p, q ∈ Ci,
d(p, q) > 2i.

These invariants above are essentially the same as that
used in navigating nets [20], except for (ii) where the cover
tree requires only one parent of a node rather than all
possible parents, significantly reducing the space to O(n).
Note that, for every node in level i − 1, a navigating net
keeps pointers to all nodes in level i that are within distance
γ · 2i, where γ ≥ 4 is some constant. Despite potentially
throwing out most of the links in a navigating net, all
runtime properties can be maintained.

To find the nearest neighbor of a query point q, it de-
scends through the tree level by level, keeping track of
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a subset Qi ∈ Ci of nodes that may contain the nearest
neighbor of q as a descendant. The algorithm iteratively
constructs Qi−1 by expanding Qi to its children in Ci−1,
while it throws (or prunes) any child that cannot lead to the
nearest neighbor of q. The major heuristic employed in the
pruning step is based on an upper bound of d(p, p′). That
is, given a node p in Ci, for any p′ ∈ descendants(p),
d(p, p′) ≤ 2i+1. Finally, the algorithm finds a point p (from
the final candidate set) that has the minimum distance to
q, and assigns it to p∗. For simplicity, it is easier to think
of the tree as having an infinite number of levels (with C∞
containing only the root, and with C−∞ = S). Algorithm
1 shows the framework of nearest neighbor search based
on CT. Meanwhile, for the sake of intuition, Fig. 1(b) shows
a running example of the cover tree (CT) indexing 5 two-
dimensional data points shown in Fig. 1(a).

Simplified Nearest Ancestor Cover Tree. It is a variant of
the cover tree. It introduces two simple yet useful ideas:
• (i) It provides a simpler definition. Specifically, it re-

moves the nesting invariant in CT [1], and defines an-
other invariant called the leveling invariant.

• (ii) It also introduces an additional invariant, named the
nearest ancestor invariant. Specifically, it ensures that
for every node p in the tree, if p′ is p’s ancestor, then
p′ must be the nearest ancestor of p. It defines that for
any sibling node p∗ of p′, satisfying d(p′, p) ≤ d(p∗, p).

The above two invariants make their method yield the
following benefits: (i) The simpler definition (i.e., replac-
ing nesting invariant with leveling invariant) reduces the
number of nodes from O(n) to exactly n. In other words, it
makes every data point in S corresponding to exactly one
tree node. (ii) The nearest ancestor invariant reduces the
upper bound of maxdist(·), and so it makes queries faster
in practice.

Algorithm 2 shows the nearest neighbor search algorithm
based on SNACT, in which it calls (see Line 3) a function
SubFindNN(·), detailed in Algorithm 3. In the algorithm,
the major heuristic employed in the pruning step (Line 4)
is based on maxdist(·), instead of the upper bound used in
Algorithm 1. As pointed out in [18], the search algorithm
takes O(c6 logn) time, since any node in the tree can have at
most O(c4) children, and the depth of any node in the tree is
at most O(c2 logn). To further understand the SNACT, Fig.
1(c) illustrates an example of SNACT that manages five data
points shown in Fig. 1(a).

Other Related Work. In addition to the works mentioned
previously (e.g., in Section 1), other relevant work can
be generally classified into two categories: (i) cover trees’
applications; and (ii) other approaches for nearest neighbor
search and its variants such as approximate and k nearest

Algorithm 1 NNS CT

Input: cover tree T , and query point q
Output: nearest neighbor p∗

1: Set Q∞ = C∞, where C∞ is the root level of T ;
2: for i from ∞ down to −∞ do
3: Set Q ={children(p): p ∈ Qi };
4: Set Qi−1 ={ p ∈ Q: d(q, p) ≤ d(q,Q) + 2i };
5: Set p∗ to be a point p′ ∈ Q−∞ such that d(q, p′) =

d(q,Q−∞);
6: return p∗;

Algorithm 2 NNS SNACT

Input: root node r, and query point q
Output: nearest neighbor p∗

1: p∗ = r;
2: if children(r) 6= ∅ then
3: p∗ = SubFindNN(r, q, p∗); // see Algorithm 3
4: return p∗;

Algorithm 3 SubFindNN

Input: node p, query point q, and nearest neighbor so far p∗
Output: updated p∗

1: if d(p, q) < d(p∗, q) then
2: p∗ = p;
3: for each child p′ ∈children(p) sorted by distance to q do
4: if d(p∗, q) > d(p∗, p′)−maxdist(p′) then
5: p∗ = SubFindNN(p′, q, p∗);
6: return p∗;

neighbor queries. One of major applications is in the field
of data exploration, where the cover trees are used for
query result diversification [9], [24], [40], [11]. Another interest-
ing application is for Bayesian reinforcement learning [33].
Moreover, cover trees are also used for fingerprint recovery
[12] and fast Sampling [37]. As for category (ii), in the past
decades various methods (e.g., ML-Index [8] were proposed,
and there are no less than 1,000 papers that discussed
nearest neighbor search [38], [16], [27], [21], [6], [32] and/or
its variants [36], [17], [14], [3]. Our work is complementary
to these works and is obviously different from them. A
complete survey of all those papers goes beyond the scope
of this paper. We refer the interested readers to recent works
[25], [2], [38] and/or surveys [22], [35] for entry points into
the literature. For example, a survey [22] experimentally
compares the performance of various approximate nearest
neighbour search algorithms (e.g., cover tree, KGraph, SRS,
VP-tree). In this paper, we focus our attetion on investigat-
ing cover tree based solutions.

3 SOLUTION OVERVIEW

This section describes our solution at a high level. We first
briefly introduce the construction of our data structure, and
then address the nearest neighbor search, based on our data
structure.

In a nutshell, our construction algorithm involves two
major steps. The first step is to construct a SNACT, which
can be achieved by directly using the algorithms in [18].
The second step is to precompute the range list and quadrant
information for nodes in the SNACT, and store them as
the additional attribute information in corresponding nodes.
Therefore, as same as the SNACT, our structure also main-
tains several invariants (i.e., leveling, covering, separating,
and nearest ancestor invariants), requires only exactly n
nodes, and any node in the tree has at most O(c4) children,
and the depth of any node in the tree is at most O(c2 logn).

To perform the nearest neighbor search, our method takes
full use of the additional information mentioned earlier. Be-
sides, we also leverage another important concept, vectorial
angle cosine, that is computed on-the-fly. All these ideas are
collaboratively used to prune unqualified sub-trees and/or
nodes. Generally speaking, our search algorithm involves
several main steps. First, we choose a point p as the current
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nearest neighbor, and then traverse the tree recursively.
Initially, one can choose the root r as the current nearest
neighbor. Then, in the process of traversing, at each level
we exploit the heuristics (including the ideas of range list,
quadrant, vectorial angle cosine) to prune some unquali-
fied subtrees and nodes; and for the remainder nodes, we
compute the distances to query point q, and update the
current nearest neighbor. We continue the above steps, until
the recursion reaches the leaf level of the tree. The current
nearest neighbor in the last iteration is the nearest neighbor
p∗. As same as the search algorithm in [18], the runtime of
our search algorithm is also bounded by O(c6 logn), since
every node can have at most O(c4) children and the depth
of the tree is bounded by O(c2 logn). Therefore, our search
algorithm has the same theoretical guarantee with that in
[18], while it makes queries significantly faster than the
competitors in practice.

4 CONSTRUCTION OF DATA STRUCTURE

Since the first step of our construction algorithm is essen-
tially to construct SNACT, this section focuses more of our
attention on the second step, i.e., computing the additional
attributes and attaching them to the corresponding nodes.
Generally, in our data structure we introduce two novel
concepts: range list and quadrant information. In what follows,
we first expatiate these two concepts, and then present the
implementation for computing them, and finally analyze the
runtime of constructing our data structure.

4.1 Range List
This idea is similar in spirit to the concept of maxdist(p)
mentioned in [18], where it pre-computes and stores the
maximum distance between node p and all its descendants,
instead of storing only maxdist(p). The rationale behind our
method is that, for every non-leaf node p, we exploit a list
to store the range information for each level beneath the
reference node p. That is, we store the maximum distance
from p to its children, and then from p to its children’s
children, and so on. Although the essence of our idea is
to use some “unused” distance information, this idea is
especially useful for pruning some unqualified nodes that
cannot be pruned by only maxdist(p). By doing so, it shall
directly speed up the search process, since we do not need
to compute much more distance information on-the-fly.

Formally, we use level(p) to denote the corresponding
level of a given node p, and denote by rl the range list.
Then, the jth (|rl| − 1 ≥ j ≥ 0) element in rl is computed
as

rl[j] = argmax
q ∈ descendants(p)

level(p)− 1− j ≤ level(q) ≤ level(p)− 1

d(p, q)

The equation above implies that rl[j] stores the maximum
distance from p to its descendants whose levels are in the
corresponding range. Let rlfinal denote the final element in
rl, i.e., rlfinal = rl[|rl|−1]. The following lemma shows the
characteristic of our range list.

Lemma 1: Given a range list rl which consists of rl[0], rl[1],
rl[2], ..., rl[i], rl[i + 1], ..., rlfinal, the values in rl are
monotonously increasing.
Proof. It follows directly from the fact that for any j ≥ 0,
rl[j] stores the maximum value from p to its descendants
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Fig. 2: Illustration of our strategies. Here q is the query
point, p1 is viewed as the original point, and the dashed
line divides the data space into two parts.

ranging from level(p)−1 to level(p)−1−j, while rl[j+1]
stores the maximum value from p to its descendants ranging
from level(p)− 1 to level(p)− 2− j. �

For any point p′, and assume p is the current NN (found
so far) of q, our range list has two advantages, shown in the
following lemmas.

Lemma 2: When d(p′, q)− rlfinal ≥ d(p, q), the whole subtree
rooted at p′ can be pruned safely.

Proof. Consider a sphere or hypersphere ⊕ centered at point
p′ with radius rlfinal. Then, the minimal distance between⊕
and query point q is d(p′, q)−rlfinal. By Lemma 1, we have
that ⊕ covers p′ and its descendants. In addition, d(p′, q)−
rlfinal ≥ d(p, q) implies that, for any node p◦ contained in
⊕, d(p◦, q) ≥ d(p′, q) − rlfinal] ≥ d(p, q), and so p◦ cannot
be nearer than p to q. Pulling all together, this completes the
proof. �

Lemma 3: When d(p′, q) − rlfinal < d(p, q), if there exists an
appropriate j such that d(p′, q) − rl[j] ≥ d(p, q) > d(p′, q) −
rl[j + 1], then all nodes (in the subtree) whose levels are in
[level(p′)− 1− j, level(p′)] can be pruned safely.

Proof. The proof is similar to that of Lemma 2; omitted for
saving space. �

Example 1: Fig. 2 shows a running example of range list.
It can be seen that, for node p3, its range list contains one
element, i.e., {rl[0] = d(p3, p6)}, where rl[0] = rlfinal. In this
case, d(p6, q) − rlfinal > d(p1, q). Thus, the whole subtree
rooted at p6 can be pruned. In addition, consider node p2

as another example. Its range list contains two elements,
i.e., {rl[0] = d(p2, p4), rl[1] = d(p2, p5)}, where rlfinal =
rl[1]. Although rlfinal in this case cannot prune the whole
subtree rooted at p2, we can find that, for j = 0, we have
d(p2, q)− rl[0] ≥ d(p1, q) > d(p2, q)− rl[1]. This means that
we can prune nodes (in the subtree) whose levels are in the
range of [level(p2)−1−0, level(p2)]. As a result, p2 and
p4 can be pruned safely. �

4.2 Quadrant Information
As for quadrant information, the first idea we used is the
opposite quadrant. The intuition behind this idea is that, for
any node p (except the root node), one can view its corre-
sponding parent node as the original point of a Cartesian
coordinate system, while the vertical and horizontal axes of
the coordinate system divides naturally the data space into
many disjointed parts (or quadrants). It is easily understood
that for any part P⊥, there exists another part P> that is
“complementary” to P⊥. Vividly speaking, for two points
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p and p′, if p ∈ P⊥ and p′ ∈ P>, then they are in the
opposite quadrant. It is obvious that for any node p (except
the root node), we can pre-compute and store its quadrant
information by using its parent node as the original point.
This way, in the search phase we can leverage this type of
information to quickly prune nodes that are in the opposite
quadrant of some reference point.

Formally, let ψ denote the dimension of data points, the
horizontal and vertical axes of a ψ-dimensional Cartesian
coordinate system divides the data space into 2ψ parts,
numbered as 0 to 2ψ−1. For a node p, denote by parent(p)
its parent node. We can view parent(p) as the original
point (of the coordinate system), and then define p’s quad-
rant information below.

p† =

ψ−1∑
i=0

2i, s.t. p[i] < 0

The equation above essentially accumulates all 2i such that
p[i] < 0, where p[i] refers to the ith dimension value of
point p. Given any other point p′, we say p and p′ are in
the opposite quadrant if and only if p† + p′† = 2ψ − 1. This
concept is helpful for us to prune unqualified nodes, since
one can replace p′ with the query point q. The following
lemma establishes its usefulness.

Lemma 4: Given a query point q, and a node p, if p† + q† =
2ψ − 1, then p can be safely pruned.

Proof. To prove this lemma, it suffices to show d(q, p) > d(q,
parent(p)). The central idea is to convert p† and q† into
ψ-bit binary numbers based on the definition of quadrant
information. Denote by p[i] (resp., q[i]) the ith coordinate
value of p (resp., q). Specifically, when p[i] (resp., q[i]) is
negative, we view the ith number of p† (resp., q†) as 1;
otherwise, it is viewed as 0. Then, p† + q† = 2ψ − 1
implies that, for any i ∈ [0, ψ − 1], the ith number of p† is
complementary to the ith number of q† (e.g., 1010 vs. 0101).
By the definition of quadrant information, we can conclude
that the signs of p[i] and q[i] are opposite. In addition,
our definition views parent(p) as the original point of the
coordinate system. Thus, we have:

d(q, p) =

√√√√ψ−1∑
i=0

(q[i]− p[i])2 >

√√√√ψ−1∑
i=0

q[i]2 = d(q, parent(p))

. �

Example 2: See Fig. 2 again, one can first view p1 as
the original point, and then we can obtain the quadrant
information of q and p2. Here q† = 0, and p† = 20 + 21 = 3.
In this case, q† + p† = 22 − 1, and so q and p2 are in the
opposite quadrant w.r.t. the original point p1. Thus, p2 can
be pruned safely. �

Besides, we also apply another idea to prune points in
some quadrants. The rationale behind this idea is that,
assume p is the current NN (found so far) of query point q,
for any i (i ∈ [0, ψ − 1]), we check whether d(p, q) < ‖q[i]‖,
and if so we perform the pruning operation by lerageving
the hyperplane P that is vertical to the ith axis, where
q[i] refers to the ith dimension value of point q, and ‖·‖
refers to the absolute value. In other words, for any i, if
d(p, q) < ‖q[i]‖, points in 2ψ−1 quadrants can be pruned. For
example, consider the example of q = (1,−3), d(p, q) = 2, as
shown in Fig. 3(a). In this example, when i = 1, q[i] = −3;

q
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Fig. 3: Illustrations of quadrant pruning.

clearly, ‖q[1]‖ = 3 > d(p, q) = 2. Hence, we can perform the
pruning operation by leveraging the hyperplane P that is
vertical to y-axis (remark: here the hyperplane P is degraded
into a line, i.e., x-axis). We can see that all points in the above
two quadrants (cf., the grey parts) can be pruned. Similarly,
Fig. 3(b) shows the case when ‖q[0]‖ > d(p, q), where any
point in the left two quadrants can be pruned. Note that, for
each i (i ∈ [0, ψ−1]), if d(p, q) < ‖q[i]‖ (in the best case), then
points in 2ψ−1 quadrants can be pruned; see e.g., Fig. 3(c).
Essentially, the core observation of the above idea is that,
‖q[i]‖ is the lower bound of the closest distance between q
and those quadrants, given d(p, q) < ‖q[i]‖. Formally, we
have:
Lemma 5: Given p is the current NN (found so far) of query
point q, for any i (i ∈ [0, ψ − 1]), if d(p, q) < ‖q[i]‖, then any
point p′ can be safely pruned if p′[i]× q[i] < 0.
Proof. By analytic geometry, it is trivial to show d(q, p′) >
d(q, p); omitted for saving space. �

Algorithm 4 CompAttrs

Input: root r of tree T ,
Output: updated tree T

1: Set Q∞ = C∞, where C∞ is the root level of T ;
2: SubCompAttrs(r); // see Algorithm 5
3: for i from ∞ down to −∞ do
4: Set Q ={children(p): p ∈ Qi };
5: for each p′ ∈ Q do
6: SubCompAttrs(p′); // see Algorithm 5
7: return r;

4.3 Implementation
The second step of our construction method is to compute
the attributes (including range list and quadrant informa-
tion), detailed in Algorithm 4. This algorithm first handles
the root node r (Line 2), and then handles the rest of nodes
(Lines 3-6). In this algorithm, the function SubCompAttrs(·)
performs the specific calculation operations, detailed in
Algorithm 5. This algorithm first performs initialization for
the integer i, point set C, and a distance value maxdisti
(Lines 1-2), and then computes range list rl (Lines 3-9). Note
that, descendants(p)[i] denotes node p’s descendants at
level i (see Lines 2 and 9). Finally, our algorithm computes
the quadrant information (Lines 10-16). In our implemen-
tation we check whether p∗[j] − p[j] > 0 (Line 15). This is
essentially equal to the idea of viewing p∗ as the original
point.
Theorem 1: The runtime for constructing our data structure is
bounded by O(c12n logn).
Proof. Our construction algorithm includes two major steps.
The first step is to build a SNACT with n nodes. It takes
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Algorithm 5 SubCompAttrs

Input: node p of tree T
Output: updated node p

1: Set i =level(p)− 1;
2: Set Q =descendants(p)[i], maxdisti = 0;
3: while Q 6= ∅ do
4: if i =level(p)− 1 then
5: Set maxdisti = d(p,Q);
6: else
7: Set maxdisti = argmax(maxdisti, d(p,Q))

8: Set rl[level(p)− 1− i] = maxdisti, i = i− 1;
9: Set Q =descendants(p)[i];

10: if p is the root node then
11: Set p† = −1; // a special value for root’s quadrant
12: else
13: Let p∗ =parent(p);
14: for j from 0 to ψ − 1 do
15: if p∗[j]− p[j] > 0 then
16: Set p† = p† + 2j ;
17: return p;

O(c12n logn) time [18]. The second step shown in Algo-
rithms 4 and 5 takes O(c6n logn) time, since the dominant
step of Algorithm 5 is to compute rl that takes at most
O(c6 logn) time for any node. Combining all these results,
this completes the proof. �

5 NEAREST NEIGHBOR SEARCH

As mentioned in Section 3, our nearest neighbor search
method fully exploits the information integrated in our data
structure, and meanwhile it introduces another novel con-
cept called vectorial angle cosine. This section first expatiates
this idea and then presents the implementation for nearest
neighbor (NN) search.

5.1 Vectorial Angle Cosine
The rationale of this idea is as follows. Assume that p is the
current NN (found so far) of query point q, one can imagine
that there exists a hyperplane P that is vertical to segment pq
and passes through p. This implies that P divides the data
space into two parts. Clearly, for any point p′ located in the
part that does not contain point q, it is never to be the NN of
q. Here the vectorial angle cosine is just used to determine
such a relation by exploiting pq and pp′. Formally, denote
by vac the vectorial angle cosine, we have:

Lemma 6: Given the current NN p of query point q, and any

other point p′, if pq · pp′ < 0, then p′ can be pruned safely.

Proof. First, we can know that vac = cosθ = pq·pp′
|pq|×|pp′| . Then,

when pq · pp′ < 0, it implies that vac < 0, since |pq| ×
∣∣pp′∣∣

is never smaller than 0. Meanwhile, vac < 0 implies that θ
should be larger than 90◦. By analytic geometry, hence the
lemma holds. �

Example 3: Let’s take p3 in Fig. 2 as an example. Clearly,
one can calculate the vectorial angle cosine between p3p1

and qp1. Here vac = (−2×1.5+1×1)√
(−2)2+1+

√
1.52+1

< 0. Thus, p3 can

be pruned. �

Remarks: On one hand, users can easily understand from
Section 4.2 that the opposite quadrant can be used to prune
some nodes. On the other hand, users can also notice that,

nodes in the quadrant same to query point q, may have
more chances to be the nearest neighbor of q, although the
nearest neighbor of q is not definitely in such a quadrant.
�

Algorithm 6 NNS OUR

Input: root node r, and query point q
Output: nearest neighbor p∗

1: Set p∗ = r;
2: if children(r) 6= ∅ then
3: Set RN = ∅;
4: p∗ = FuncFindNN(r, q, p∗, RN ); // see Algorithm 7
5: return p∗;

5.2 Implementation
To perform nearest neighbor search, our method is detailed
in Algorithm 6. In this algorithm, RN is used to store the
remainder nodes at the corresponding level (Line 3). More
specifically, RN [k] stores the remainder nodes at level k.
Here remainder nodes refer to those nodes that are not be
pruned. For example, when we process nodes at level k,
some node p might be pruned while children(p) may be
not pruned currently. In this case, one can store them in
RN [k−1], and process them in the rest of steps. The function
FuncFindNN(·) is invoked when the root node has children
(Line 4).

Algorithm 7 covers the detailed implementation of this
function, which is executed recursively. Firstly, it updates
the current nearest neighbor if point p (to q) is nearer than
the current nearest neighbor p∗ (Lines 1-2). It then sets the
integer j (which is used to handle or remember the level of
some node), and the node set C (which is to be handled in
this time of recursion); see Line 3. After that, it chooses a
point p◦, from the set C◦ of points whose quadrants equal
to that of q, such that d(p◦, q) = d(q, C◦); and it uses p◦ as
the new nearest neighbor of q, if d(q, p◦) < d(p∗, q) (Lines
4-7). The reasons we attempt to find such a point p◦ as the
current nearest neighbor are twofold: (i) it is consistent to
the observation mentioned in Section 5.1, namely, points in
the quadrant same to q are more likely to be the nearest
neighbor of q; and (ii) such a point may have a smaller
distance to q, which in turn benefits to the range list based
pruning operation executed in Lines 9-14, since a smaller
d(p∗, q) (cf., Lines 9 and 11) is more likely to prune a subtree
rooted at some node p′.

If nodes or subtrees cannot be pruned by the range list
based pruning operation, our algorithm shall execute the
quadrant based pruning operation (Lines 15-20). Generally,
as for the quadrant based pruning operation, it mainly
contain two steps. Firstly, we need to remove the node p′

from C, only if p′ is in the opposite or same quadrant of q
(Lines 15-17). This step is to avoid repetitive comparisons
and calculations in the rest of steps. The reader could be
curious why we here need to remove p′ when it is in the
same quadrant of q. The underlying reason is that, we
have attempted to find the nearest neighbor of q in such
a quadrant (recall Lines 5-7), other points (when we found
such a p◦), or all points in C◦ (when no such a point p◦

exists), must be not the nearest neighbor at the level j.
Secondly, we then consider the case when point p′ is in other
quadrants (Lines 18-20). The goal of this step is to prune
point p′ satisfying the conditions mentioned in Lemma 5.
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Algorithm 7 FuncFindNN

Input: node p, query point q, and nearest neighbor so far p∗,
RN

Output: updated p∗

1: if d(p, q) < d(p∗, q) then
2: Set p∗ = p;
3: Let j =level(p)− 1, C =children(p)

⋃
RN [j];

4: Compute q’s quadrant q† using p as reference point;
5: Let C◦ ⊂ C be set of points whose quadrants equal to q†;
6: if d(p∗, q) > d(q, C◦) then
7: Let p∗ = p◦ // where p◦ ∈ C◦ such that d(p◦, q) =

d(q, C◦)
8: for each p′ ∈ C do
9: if d(p′, q)− rl[0] ≥ d(p∗, q) then

10: for i from |rl| − 1 to 0 do
11: if d(p′, q)− rl[i] ≥ d(p∗, q) then
12: if i < |rl| − 1 then
13: Put desc(p′)[j − i− 1] into RN [j − i− 1];
14: Set C = C − p′;
15: else if p′ is in the opposite or same quadrant of q then
16: Put desc(p′)[j − 1] into RN [j − 1];
17: Set C = C − p′;
18: else if d(p∗, q) < ‖q[i]‖ && p′[i] × q[i] < 0 (i ∈ [0, ψ])

then
19: Put desc(p′)[j − 1] into RN [j − 1];
20: Set C = C − p′;
21: else if p∗q · p∗p′ ≤ 0 then
22: Put desc(p′)[j − 1] into RN [j − 1];
23: Set C = C − p′;
24: else
25: p∗ = FuncFindNN(p′, q, p∗, RN );
26: return p∗;

Correspondingly, when the above two pruning operations
are not performed, our algorithm attempts to invoke the
vectorial angle based pruning operation (Lines 21-23). It
is worth noting that, although both the quadrant based
pruning operation and the vectorial angle based pruning
operation use the direction information, the latter needs to
compute the vectorial information on-the-fly. This is why we
use it after the quadrant based pruning operation, which
needs less on-the-fly computation. Finally, when all the
above operations cannot prune the corresponding node, our
algorithm invokes the recursive function, FuncFindNN(·), to
further explore the data points at the next level (Lines 24-
25). A flowchart of NN search can refer to Appendix A.

Theorem 2: Our method can perform nearest neighbor search at
most O(c6logn) time.

Proof. It follows from two facts that (i) the depth of our data
structure is at most O(c2 logn) and the number of children
of any node is at most O(c4), which are the same as that
of SNACT; and (ii) the dominant step of Algorithm 6 is the
recursive function, whose runtime is bounded by the depth
of our data structure and the number of children of any
node. �

6 APPROXIMATE NEAREST NEIGHBOR

Approximate nearest neighbor (ANN) search is useful when
users care about more on the response speed (i.e., query
latency) and allow a little deviation in the query accuracy.
The approximate nearest neighbor search can be formulated
as follows. Given a query point q ∈ X , and the query
accuracy ε > 0, the approximate nearest neighbor search

Algorithm 8 kNN

Input: root node r, and query point q, k
Output: priority queue Q //where Q stores k nearest neigh-

bors
1: Set Q = ∅;
2: if children(r) 6= ∅ then
3: Set RN = ∅; // RN is the same as that in Algo. 6
4: Q = FuncFindkNN(r, q,Q, RN ); // see Algo. 9
5: else
6: Enqueue r into Q; // only 1 node is returned in this

special case
7: return Q;

is to find a point p ∈ S satisfying d(q, p) < (1 + ε)d(q,S).
Note that, ε is a user-defined parameter, whose size can be
adjusted according to specific application requirements.

To perform ANN search, the basic idea of our method is
to use the upper bound for d(q, C) and lower bound for
the level j to stop the iterations when the intervals implied
by the bounds are sufficiently small. The following lemma
shows that we can terminate the iteration (or recursion) in
the early stage.

Lemma 7: Given the query accuracy ε, we can stop the iteration
when 2j+1(1 + 1/ε) ≤ d(q, C), where j =level(p) − 1 and
C =children(p)

⋃
RN [j].

Proof. We prove it by showing d(q, C) ≤ (1+ε)d(q,S), where
S is the set of all n data points. Assume, without loss of
generality, that the nodes in the j level is Qj . One can easily
know that Qj is at distance at most 2j+1 from the exact
nearest neighbor of q (i.e., the upper bound mentioned in
Section 2). In addition, one can verify that d(q, C) essentially
equals to d(q,Qj). This is because the remainder nodes at
the level j, namely RN [j], are all possible nearest nodes at
this level; other nodes that have been pruned, namely nodes
in Qj−C, are definitely not to be the nearest neighbor of q.
Therefore, we have that d(q, C) = d(q,Qj) ≤ d(q,S) + 2j+1.
Combining with 2j+1(1 + 1/ε) ≤ d(q, C), this yields:

2j+1(1 + 1/ε) ≤d(q,Qj)

≤d(q,S) + 2j+1

The above formulation can be further rewritten as 2j+1 ≤
ε · d(q,S). Therefore, putting all the above results together,
we have d(q, C) ≤ d(q,S) + 2j+1 ≤ d(q,S) + εd(q,S) =
(1 + ε)d(q,S). This completes the proof. �

Implementation. With the above concept in mind, it is not
hard to achieve the approximate nearest neighbor search
by revising the pseudocodes shown in Algorithm 7. Specif-
ically, one can add a clause, “if 2j+1(1 + 1/ε) > d(q, C)”,
as a condition to execute Lines 4-25. Naturally, when this
condition does not hold, the algorithm shall not further
execute the iterations (or recursion).

Complexity. Let dmax and dmin be the maximum and
minimum interpoint distance in S. The time complexity
follows from the inspection of Lemma 2.6 in [20]. It takes at
most cO(1) log ∆+(1/ε)O(log c)

time for an approximate near-
est neighbor query, where ∆ is the aspect ratio defined
as ∆ = dmax/dmin. This result can be further written
as O(log ∆) + (1/ε)O(1). Therefore, the query time of our
approximate nearest neighbor algorithm essentially is the
same as those in [18], [20].
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7 k NEAREST NEIGHBORS

The k nearest neighbor (kNN) search problem can be formu-
lated as follows. Given a set S of n data points, and a query
point q ∈X where S ⊂X , it aims to find k nearest points
of q. To perform kNN search based on our data structure,
the basic idea is to employ a priority queue Q to store k
nodes at first, and then updates the priority queue Q when
better candidates are found. Formally, let p∇ ∈ Q be the kth
nearest neighbor of q currently. One can dequeue node p∇

from Q and enqueue node p′ into Q, if p′ has the nearer
distance than d(q, p∇). Remark that, when |Q| < k, one can
view p∇ as the |Q|th nearest neighbor of q currently. In this
case we do not need to dequeue p∇ from Q. In addition, the
general pruning rules developed for the nearest neighbor
search can also work, except that we here need to use p∇ in
Q to build the pruning rules. More specifically, by Lemmas
2 and 3, we have an immediate corollary below.

Corollary 1: Given the priority queue Q and any node p′, the
whole subtree rooted at p′ can be pruned safely if d(p′, q) −
rlfinal ≥ d(p∇, q). Otherwise, if there exists an appropriate j
such that d(p′, q)− rl[j] ≥ d(p∇, q) > d(p′, q)− rl[j+ 1], then
all nodes (in the subtree) whose levels are in [level(p′)−1− j,
level(p′)] can be pruned safely. �

With the similar argument, by Lemma 6 one can obtain
the following corollary.

Corollary 2: Given the priority queue Q, query point q, and any
other point p′, if p∇q · p∇p′ < 0, then p′ can be pruned safely.
�

Implementation. The general framework of our method for
kNN search is shown in Algorithm 8. In this algorithm, the
function FuncFindkNN(·) is invoked when children(r) is
not empty (Line 4). The details of the FuncFindkNN(·) are
shown in Algorithm 9. The notations RN , p◦, C, C◦, and
q† used here have the same meaning with that in Section 5.
This algorithm puts node p into Q directly only if |Q| < k
(Lines 1-2). Otherwise, it checks whether p is nearer than
p∇ ∈ Q to q, and updates Q if the above condition holds
(Lines 3-4). After that, it attempts to find the nearer point
in the quadrant same to q† and updates Q using the newly
found point p◦ (Lines 5-9), where p◦ ∈ C◦ is such a point
that d(p◦, q) = d(q, C◦). Next, it employs pruning rules to
remove unqualified nodes and/or subtrees (Lines 11-25),
and yet it further invokes the recursive function for the
remainder candidate node (Lines 26-27).

Complexity. Compared to algorithms in Section 5, kNN
search algorithm here needs to use an extra O(log k) time
for adjusting the queue Q in each iteration. Combining
Theorem 2, it is not hard to verify that the overall runtime
is bounded by O(c6 logn(1 + log k)).

8 HANDLING UPDATES

Updates mainly include inserting new data point(s) and
removing (a.k.a., deleting) node(s) from our data structure.
These two operations are somewhat intricate, since inserting
and/or removing node(s) may incur range list and quadrant
information changed; besides, it may violate some invari-
ants (e.g., nearest ancestor invariant). All of these are needed
to be handled carefully. In this section, we address them in
detail.

Algorithm 9 FuncFindkNN

Input: node p, query point q, and Q, RN
Output: updated Q

1: if |Q| < k then
2: Enqueue p into Q;
3: else if d(p, q) < d(p∇, q) then
4: Dequeue p∇ from Q and Enqueue p into Q;
5: Let j =level(p)− 1, C =children(p)

⋃
RN [j];

6: Compute q’s quadrant q† using p as reference point;
7: Let C◦ ⊂ C be set of points whose quadrants equal to q†;
8: if d(p∇, q) > d(q, C◦) then
9: Dequeue p∇ and Enqueue p◦;

10: for each p′ ∈ C do
11: if d(p′, q)− rl[0] ≥ d(p∇, q) then
12: for i from |rl| − 1 to 0 do
13: if d(p′, q)− rl[i] ≥ d(p∇, q) then
14: if i < |rl| − 1 then
15: Put desc(p′)[j − i− 1] into RN [j − i− 1];
16: Set C = C − p′;
17: else if p′ is in the opposite or same quadrant of q then
18: Put desc(p′)[j − 1] into RN [j − 1];
19: Set C = C − p′;
20: else if d(p∗, q) < ‖q[i]‖ && p′[i] × q[i] < 0 (i ∈ [0, ψ])

then
21: Put desc(p′)[j − 1] into RN [j − 1];
22: Set C = C − p′;
23: else if p∇q · p∇p′ ≤ 0 then
24: Put desc(p′)[j − 1] into RN [j − 1];
25: Set C = C − p′;
26: else
27: Q = FuncFindkNN(p′, q,Q, RN );
28: return Q;

8.1 Insertion

Given the root node r of our tree structure T , a new data
point q ∈X , the insertion operation aims to insert q into T
at the corresponding location, while the new tree can still
maintain several invariants and also the correct attribute
information (e.g., range list and quadrant information).

The basic idea of our method is to use separating, cov-
ering and/or nearest ancestor invariants to determine the
rough location to be inserted, and meanwhile our method
maintains two sets, Sr and Sq , to store the nodes whose
range list and quadrant information might be changed,
respectively. After finishing the initial insertion, although
point q can maintain several invariants, the descendants of
its sibling nodes might violate some invariant (specifically,
the nearest ancestor invariant). Our method readjust (or re-
balance) them by using the approach in [18]. This approach

Algorithm 10 Insert

Input: root r of tree T , data point q to be inserted,
Output: root r of updated tree T

1: Sr = ∅, Sq = ∅;
2: (r, Sr, Sq) ← SubInsert(r, q, Sr, Sq); // see Algo. 11
3: for each node p ∈siblings(q) do
4: for each node p′ ∈children(p) do
5: (M, S, p′) ← Readjust(q, p ,p′);
6: for each m ∈M do
7: (q, Sr, Sq) ← SubInsert(q,m,Sr, Sq); // see Algo. 11
8: Set Sr = Sr

⋃
ancestor(q), Sq = Sq

⋃
q;

9: Compute rl for nodes in Sr and quadrants for nodes in Sq ;
10: return r;
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Algorithm 11 SubInsert

Input: root node r of tree or subtree T , data point q to be
inserted, Sr and Sq

Output: root r of updated tree or subtree T
1: Set i =level (r);
2: if d(r, q) > 2i then
3: if d(r, q) ≥ 2i+1 then
4: p← Choose a leaf node from T ;
5: Set Sr = Sr

⋃
ancestor(p);

6: Set point p as the parent of r, Sq = Sq
⋃
{p, r};

7: else
8: Set q as the parent of r, Sr = Sr

⋃
{q}, Sq = Sq

⋃
{q, r};

9: else
10: Let C =children(r), i =level(r)-1;
11: Find a point c∗ ∈ C such that d(q, c∗) = d(q, C)
12: if d(c∗, q) < 2i then
13: (c∗, Sr, Sq)← SubInsert(c∗, q, Sr, Sq);
14: else
15: Set q as the child of r;
16: Set Sr = Sr

⋃
ancestor(q), Sq = Sq

⋃
{q};

17: return {r, Sr, Sq};

gets two sets of points, say S and M. The points in S need
to be reinserted along some specific path, which is handled
by a function called Readjust(·). Yet, the points in M cannot
remain at some specific path. For these points, we need to
insert them into the subtree rooted at q. After we insert
the new node and readjust some nodes, the range list and
quadrant information of some nodes might be changed,
therefore we finally recompute their attribute information.

Implementation. Let siblings(p) denote a node p’s sibling
nodes. Algorithm 10 shows the framework of our method.
This algorithm first inserts q at some location (Line 2), by
using a function named SubInsert(·). Then, it handles nodes,
specifically siblings(q), whose descendants might violate
the nearest ancestor invariant (Lines 3-8). Note that, the
function, Readjust(·) shown in Line 5, is the same as the
Rebalance(·) function in [18]. It is a recursive function, in
which points in S shall be reinserted along some path; yet,
points in M are to be inserted into the subtree rooted at
q (Lines 6-7). Finally, it collects all nodes whose attribute
information might be changed, and computes attributes for
nodes in Sr and Sq (Lines 8-9). Note that, to understand
Algorithm 11, several places are key of points: (i) exploiting
the distance bound of covering invariant (Lines 2 and 9);
(ii) using the distance bound of descendants (Lines 3 and 7);
(iii) leveraging the property of the nearest ancestor (Line 11);
and (iv) utilizing the distance bound of separating invariant
(Line 13).

Theorem 3: The runtime for insertion operation is bounded by
O(c20 logn).

Proof. It stems from the facts that (i) the dominant step of our
insertion algorithm is the Readjust operation, which takes
at most O(c12 logn) [18]; (ii) the Readjust function is to be
called at most O(c4) × O(c4) times, since each loop (Line
3 or 4) is bounded by O(c4) (i.e., the width of the tree [1],
[18]). Pulling all together, this completes the proof. �

8.2 Removal

The removal operation aims to delete some target point q
from the tree T , while the new tree still maintains these

Algorithm 12 Remove

Input: root node r of tree T , to be removed point q
Output: root r of updated tree T

1: Set Sr = ∅, Sq = ∅;
2: if q is the root node r then
3: p←Choose a leaf node, and replace root q with point p;
4: Set Sr = Sr

⋃
{p}, Sq = Sq

⋃
children(p);

5: else if q is the leaf node then
6: Set Sr = Sr

⋃
ancestor(q), and delete q;

7: else
8: Set S =siblings(q);
9: if |S| > 0 then

10: Set C =children(q), Sr = Sr
⋃
ancestor(q);

11: R←SubtreeAttach(r, S, C); // see Algo. 13
12: Delete subtree rooted at q;
13: for each point p in C −R do
14: Sr = Sr

⋃
ancestor(p), Sq = Sq

⋃
ancestor(p);

15: while |R| > 0 do
16: Set C′ = ∅, S′ = ∅;
17: for each point p ∈ R do
18: Set C′ = C′

⋃
children(p);

19: r ←Insert(r, p); // see Algo. 10
20: for each point p′ ∈ S do
21: Set S′ = S′

⋃
children(p′);

22: R←SubtreeAttach(r, S′, C′); // see Algo. 13
23: else
24: Find a leaf node p∗ ∈leaf(q) such that

d(parent(q),p∗) = d(parent(q),leaf(q));
25: Set Sr = Sr

⋃
ancestor(p∗), replace q with p∗, Sq =

Sq
⋃
{p∗}, and delete q;

26: Compute rl for nodes in Sr and quadrants for nodes in Sq ;
27: return r;

invariants and also the correct attribute information. The
central idea of our method is to attach subtrees rooted at
nodes to some other nodes. Given a subtree rooted at node
p, in what follows, we use leaf(p) to denote all leaf nodes
of node p.

Implementation. Algorithm 12 covers the detailed imple-
mentation of our method. When q is just the root node or
leaf node, it is trivial as shown in Lines 1-6. For other cases,
it is somewhat complicated. The basic idea of our method is
to find a sibling node of q that can attach the subtree rooted
at q’s child(ren), as shown in Lines 9-22. It is possible that
subtrees rooted at some nodes cannot be attached to any

Algorithm 13 SubtreeAttach

Input: root node r of tree T , a set S of candidate parent nodes,
a set C of subtrees’ root nodes to be attached to nodes in
S

Output: a set R of points that cannot be attached to nodes in
S

1: if |C| > 0 then
2: for each point p ∈ C do
3: for each p′ ∈ S sorted by distance to p do
4: if p′ as the parent of p is without violating several

variants then
5: Attach subtree rooted at p as the descendants of

p′;
6: if p cannot be as the child of any p′ ∈ S then
7: Set R = R

⋃
p;

8: else
9: R = ∅

10: return R;
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sibling node of q (Lines 15-22). In this case, we shrink the
subtrees “level by level”, and attempt to attach them to the
corresponding nodes (see Lines 18, 21 and 22). Another case
is that q may have no any sibling nodes (Lines 23-25). Our
method employs the node in leaf level to handle it, which
is similar to that in Algorithm 11. Note that, the function
SubtreeAttach(·) shown in Algorithm 13 attempts to attach
some subtrees, rooted at nodes in C, to some candidate
parent nodes in S, and it returns a set of nodes, R, whose
subtrees cannot be attached to any nodes in S.

Theorem 4: The runtime for removal operation is bounded by
O(c24 logn).
Proof. It is easy to verify that the dominant step of our
method takes O(c20 logn) time, since it calls the insertion
operation (Line 19). In addition, the function Insert(·) is
called at most O(c4) times, since the children of any node
is at most O(c4). Hence, the theorem holds. �

9 EXPERIMENTAL STUDY

This section first describes the experimental settings (Section
9.1), and then covers the experimental results (Sections
9.2∼9.3), and finally discusses the limitations of our algo-
rithms and summarizes our findings (Section 10).

9.1 Setup

Datasets. In our experiments, we employed several stan-
dard benchmark datasets which are obtained from http:
//archive.ics.uci.edu/ml/index.php to evaluate our algo-
rithms. The used datasets include yearpredict, corel, cover-
type, artificial40, which are briefly described below:
• yearpredict. It is a dataset about the prediction of the

release year of a song from audio features.
• corel. It is a dataset containing image features extracted

from a Corel image collection.
• covertype. It is a forest cover type dataset.
• artificial40. It is a 10000 × 40 artificial dataset consists

of randomly generated numbers.

dataset number of points dimension
yearpredict 515,345 90
covertype 581,012 55

corel 68,040 32
artificial40 10,000 40

syn 10,000∼10,000,000 10∼150

TABLE 1: Summary information of our datasets

Besides artificial40, we also used another synthetic dataset
(called syn) when we studied the impact of different pa-
rameters. The points of the syn dataset was generated
randomly. Let ψ and n be the dimension and number

of data points, respectively. For the syn dataset, we set
n =[10, 000, ..., 10, 000, 000] and ψ =[10, ..., 150], where
n = 50000 and ψ = 20 are the default settings. In addition,
when we studied the kNN search, k was set to [1, ..., 20],
where k = 10 is the default value. For ease of reference,
Table 1 summarizes the statistics of these datasets.

Competitors. For brevity, we use CT++ to denote our
method. In our experiments, we compared with the follow-
ing competitors.
• CT: It is the original cover tree (CT) proposed in [1].
• SNACT: It is the simplified nearest ancestor cover tree

(SNACT) proposed in [18].
To investigate the effectiveness of the proposed tech-

niques, we also implemented several other algorithms,
which are the variants of SNACT: (i) QI, which employs
the quadrant information; (ii) RI, which employs the range
list information; and (iii) DI, which employs the direction
information (including quadrant and vectorial angle). For a
fair comparison, all algorithms were implemented in C++,
and all tests were executed on a single machine with an
Intel(R) Core(TM) E5-2620 CPU 2.40GHZ and 64GB RAM.

Metrics. To measure the query cost, we randomly generated
1,000 query points and used them as the query inputs, the
execution time for performing the corresponding queries
was recorded. As for the construction cost, we refer to
the time for building the corresponding data structures
(e.g., CT, SNACT, and CT++). When we studied the up-
date cost, we randomly chose the points to be removed
from the corresponding datasets, and then these points
were inserted into the corresponding data structures. We
removed/inserted 1000 points from/into the data struc-
tures, and recorded its update time. Similar to [18], we also
normalized query/construction/update cost by the corre-
sponding baseline, for ease of comparison. For example,
two methods, say A and B, use 10 and 2 seconds for query,
respetively, then the normalized values of the query cost are
1 and 0.2, respectively. That is, the number “1” or “1.0” in
our results refers to the cost of the corresponding baseline.
In addition, sometimes we also use “K” and “M” to denote
the numbers “1,000” and “1,000,000” for short.

Roadmap. We first cover the main experimental results
including query performance and effectiveness of proposed
techniques. Then, we show the impact of different param-
eters including n, k, ε, and ψ. Remark that, other find-
ings/results are placed in Appendix, due to space limit.

9.2 Query Performance and Effectiveness
The central goal of this work is to improve existing cover
tree structures for nearest neighbor search, thus we studied
the query performance and effectiveness of the proposed
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Fig. 4: Query cost comparison.
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Fig. 5: Study of effectiveness.
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Fig. 6: Approximate query cost comparison.
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Fig. 7: kNN query cost comparison.
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techniques in the first set of experiments. All the experimen-
tal results in this part were obtained based on four standard
benchmark datasets mentioned in Section 9.1.

NN query. Figure 4 covers the comparison results of the
nearest neighbor search. It can be seen that, among these
methods our proposed method, CT++, achieves the best
performance for all these datasets. For example, on the
corel dataset, CT++ takes only 3.955 seconds to perform
nearest neighbor search for 1,000 query points (i.e., about
4 milliseconds for each single nearest neighbor query on
average), whereas SNACT and CT take 7.05 and 12.385 sec-
onds, respectively. This essentially demonstrates the com-
petitiveness and efficiency of our proposed method. On
the other hand, we find that SNACT reduces the query
cost by 16.4%∼45.8%, while our method, CT++, can re-
duce the query cost by 42.8%∼68%, compared against CT.
Particularly, even for the stronger baseline SNACT, our
method outperforms it by 31.6%∼43.9%. These observations
further demonstrate the efficiency and competitiveness of
our proposed method. Moreover, when we look a bit deeper
into the results, we find that CT++ achieves different per-
formance improvements on these datasets with different
distributions, implying that data distributions may affect the
performance.

Effectiveness. To understand the effectiveness of various
techniques, we tested several algorithms including SNACT,
QI, RI, DI, and CT++ on these benchmark datasets. Figure 5
plots the comparison results. On one hand, we realized that
each technique is benefitial to the performance speedup. For
example, on the corel dataset QI, RI, and DI used 6.507,
5.725, 5.132 seconds, respectively. Yet, SNACT used 7.05
seconds. Particularly, our method CT++, which integrates
all these techniques, achieves the maximum performance
speedup (about 37.3%, 34.8%, 43.9%, and 31.6% on yearpre-
dict, covertype, corel, and artificial40 datasets, respectively).
Additionally, it is usually that more nodes/subtrees are
pruned, less distance computations invlove. To verify, we
examined the number of distance computations. In general,
CT++ involves less distance computations than others. For
example, on the core dataset, the number of distance com-

putations by CT++ is about 5.4K, while that of DI, RI, QI
and SNACT are about 7.1K, 8.2k, 9.4K, 10.1K, respectively.
Combining all these observations, it essentially confirms
that pruning nodes/subtrees indeed speeds up the search
process.

ANN query. Since SNACT [18] did not cover approxi-
mate nearest neighbor search, we adapted our approxi-
mate nearest neighbor search algorithm to achieve this. In
brief, we revised Algorithm 3 by adding an “if” clause
before Lines 3-5. The “if” clause is similar in spirit to
that mentioned in Section 6. By fixing ε = 0.1 and using
1,000 randomly generated query points, we studied the
approximate query performance of these three methods.
Figure 6 plots the comparison results over four bench-
mark datasets. Generally, compared against CT, SNACT ob-
tains 15.4%∼44.3% performance speedup, while our method
achieves 39.3%∼66.1% performance speedup. Particularly,
even for the stronger competitor SNACT, our method
outperforms it by 28.3%∼42.6%. These evidences further
demonstrate the competitiveness of our proposed method,
and also verify, from another perspective, the effectiveness
of techniques developed in Sections 4 and 5. On the other
hand, as expected, on all these datasets the approximate
query cost is less than that of exact nearest neighbor
query. For example, on the corel dataset CT, SNACT and
CT++ used 12.385, 7.05 and 3.955 seconds, respectively, for
performing exact nearest neighbor search based on 1,000
randomly generated points. Yet, with the same query points,
they used only 3.494, 2.065 and 1.184 seconds for perform-
ing approximate nearest search, respectively. These results
essentially demonstrate that the early termination strategy
suggested in Section 6 is effective.

kNN query. As for kNN search, both CT [1] and SNACT [18]
did not cover kNN query algorithms. We adapted our kNN
algorithm to achieve this. That is, we also used a priority
queue to store current k nearest neighbors and updated the
queue in the search phase; others are the same as that in
CT [1] and SNACT [18], respectively. By fixing k = 10 and
using 1,000 randomly generated query points, we studied
kNN query performance of these three methods. Figure 7
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plots the comparison results over four benchmark datasets.
It can be seen that, among these methods CT++ achieves
the best performance for all these datasets. Specifically, com-
pared against CT, it achieves 67.3%, 60.8%, 68.4%, and 43%
performance speedup on yearpredict, covertype, corel, and
artificial40 datasets, respectively. For the stronger baseline
SNACT, our method outperforms it by 38.2%, 36.5%, 44%,
32.3% on these datasets, respectively. This demonstrates the
competitiveness of our method. Meanwhile, it essentially
reflects, from another perspective, the effectiveness of main
techniques suggested in Sections 4 and 5, since these three
kNN algorithms used the same strategy discussed in Section
7. Another interesting finding is that, on all these datasets,
the kNN query cost is only a little bit more expensive
than that of nearest neighbor query, instead of k times
cost of nearest neighbor query. For example, on the corel
dataset, CT++ used 3.955 and 3.981 seconds to perform
nearest neighbor search and kNN search respectively, based
on 1,000 randomly generated points. This implies that the
strategy suggested in Section 7 is effective (remark: a naive
method to find k nearest neighbors is to execute k times
nearest neighbor queries. Such a method is definitely ex-
pensive, since it could be about k times slower than our
proposed method).

9.3 Impact of Parameters
This section presents the impact of different parameters, includ-
ing dataset size n, number of nearest neighbors k, data point
dimension ψ, and query accuracy ε, respectively.

Effect of n. Fixing ψ = 20, k = 10, and ε = 0.1, we studied
the impact of n on NN search, kNN search, and ANN
search, respectively. Figure 8 plots the experimental results
by varying n from 10K to 10M. It can be seen that there are
several major features. Firstly, for all these algorithms the
query cost goes up when n increases. This is mainly because
there are more nodes in the corresponding trees, and thus
these algorithms need more time to perform the correspond-
ing searches. Nevertheless, the growth speed of the query
cost is acceptable for all these algorithms. For example, even
for the baseline method CT, when n is set to 10M it used less
than 2 times of query cost, compared against n =10K. This
essentially demonstrates that these algorithms have good
scalability. Secondly, when we look a bit deeper, we can see
that the curve of CT++ goes up slower. This implies that our
proposed method has better scalability, compared against
the baselines. This is mainly owing to the much powerful
pruning mechanisms integrated in our method, which avoid
more node traversals. Thirdly, our proposed method CT++
is obviously better than the competitors for all these queries,
as shown in Figures 8(a), 8(b) and 8(c). These results are
basically consistent with the results reported in Section 9.2.

In other words, the results shown in Figure 8 essentially
further demonstrate the efficiency and competitiveness of
our proposed method.

Effect of ε. We studied the impact of ε on the approximate
query using real and synthetic datasets. Fixing n = 50, 000,
ψ = 20 for the synthetic dataset, and we varied ε from
0.1 to 0.9 for both real and synthetic datasets. For the real
dataset, we used corel as a representative, since other sev-
eral datasets have the similar performance tendency. Figure
9 plots the experimental results. From these results, one
can observe several major features. Firstly, the query cost
goes down when ε increases. This is mainly because when
larger ε is used, the bound used in the pruning strategy
shall be more relax. This way, more levels (or nodes) in the
tree are free from being traversed, and so the query cost
is less. Secondly, the proposed method CT++ is obviously
superior than the baselines. Specifically, compared against
CT and SNACT, on average it reduces the query cost by
about 70.9% and 46.5% (resp., about 78.4% and 52.1%) on
the synthetic (resp., real) dataset, respectively. These results
further validate the efficiency and competitiveness of our
method.

Effect of ψ. Fixing n = 50, 000, k = 10, and ε = 0.1, we
studied the impact of ψ on NN search, kNN search, and
ANN search, respectively. Figure 10 plots the experimental
results by varying ψ from 10 to 150. It can be seen that
the curves go up when ψ increases, implying that larger
ψ incurs much more query cost. This is mainly because
computing distances between points are much more time-
consuming when ψ is larger. Nevertheless, the query cost is
acceptable. For example, even if we set ψ = 150, our pro-
posed method used only 12.46 seconds to perform nearest
neighbor queries for 1,000 randomly generated points (i.e.,
about 12 milliseconds for each single nearest neighbor query
on average). Besides the above finding, one can also observe
that our proposed method is superior than the competitors,
and this advantage is more obvious when ψ is larger. This
further demonstrates the efficiency and competitiveness of
our method. Additionally, it also demonstrates that the pro-
posed method is much more suitable for higher dimensional
data, compared against the competitors.

Effect of k. We studied the impact of k on the kNN query
using real and synthetic datasets. Fixing n = 50, 000, ψ = 20
for the synthetic dataset, and we varied k from 1 to 20 for
both real and synthetic datasets. With the similar argument,
we used corel as a representative of the real datasets. Figure
11 plots the experimental results. One can observe that the
query cost is slightly increasing when larger k is used.
This is mainly because kNN search algorithms maintain a
priority queue that stores k nearest neighbors found so far,
and a priority queue with more elements (i.e., a larger k)
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usually takes more time to adjust the queue. Nevertheless,
one can see that the growth speed of the query cost is very
slow when k increases. This demonstrates that parameter k
has little impact on the overall performance. This reflects,
from another perspective, the effectiveness and feasibility
of our strategy suggested in Section 7. On the other hand,
one can clearly observe that our proposed method signifi-
cantly outperforms the competitors, regardless of synthetic
or real dataset, or the size of k. This further validates the
competitiveness of our method.

Summary. We find that (i) CT++ is feasible and com-
petitive, compared against its competitors CT and SN-
ACT. Our method CT++ can reduce the query cost by
42.8%∼68% compared against CT. Particularly, even for the
stronger baseline SNACT, our method outperforms it by
31.6%∼43.9%. (ii) The techniques suggested in this paper
are effective. Our method CT++, which integrates all these
techniques, achieves the maximum performance speedup
(about 37.3%, 34.8%, 43.9%, and 31.6% on yearpredict,
covertype, corel, and artificial40 datasets, respectively). (iii)
For ANN and kNN queries, our method CT++ also exhibits
excellent performance. Compared against CT, it achieves
39.3%∼66.1% (resp., 43%∼ 68.4%) performance speedup,
while it outperforms SNACT by 28.3% ∼42.6% (resp.,
32.3%∼44%), in terms of ANN (resp., kNN). (iv) The query
cost goes up when n (resp., ψ) increases, and our method
exhibits better scalability than the competitors. The query
cost of CT++ (resp., CT) with n = 80K is 1.27∼1.63 (resp.,
1.25∼ 1.8) times that of CT++ (resp., CT) with n = 1K. (v)
As for kNN query, the parameter k has little impact on the
overall performance. The query cost of CT++ with k = 20
is only 1.02 times that of CT++ with k = 1. (vi) The query
cost goes down when ε increases, and CT++ obviously
outperforms the competitors especially when ε is larger.
Compared against CT and SNACT, on average it reduces
the query cost by about 70.9% and 46.5% (resp., about 78.4%
and 52.1%) on the synthetic (resp., real) dataset, respectively.
(vii) Our method also suffers from some limitations such as
more construction and update cost. Nevertheless, the overall
construction and update performance is acceptable, and the
performance gap between CT++ and SNACT is significantly
smaller than the one between SNACT and CT, as shown in
Appedix C.

10 CONCLUSION

Cover trees based solutions for nearest neighbor search
have been shown many advantages, including strong the-
oretical guarantees and quick response efficiency in prac-
tice. Although these existing solutions achieved significant
improvement for nearest neighbor search, some important
and useful features are not fully exploited. Inspired by
these, this paper has revisited cover tree structures for
nearest neighbor search, and proposed a novel method
called CT++. Our key propositions are threefold: (i) the
range list defines the concept of multi-level distance in-
formation that were not fully exploited in prior works;
(ii) the concept of quadrant information was developed; it
defines the relation among query point, parent and child
nodes; this idea is thoroughly novel, compared against the
existing cover tree structures; (iii) the concept of vectorial
angle cosine was introduced into our algorithm to further
speed up the search performance. In addition, we have

extended our algorithms to answer the variants of nearest
neighbor search, including approximate nearest neighbor
search and k nearest neighbor search. We have justified
that our proposed algorithms maintain the same theoretical
guarantees in terms of runtime, and have experimentally
validated that the proposed algorithms made queries much
faster in practice. We have also discussed the limitations of
our method, and demonstrated that the overall performance
of our method is still favourable, compared against the
competitors.
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Fig. A1: A detailed flowchart of our NN search.
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Fig. A2: Consturction time cost comparison.
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Fig. A3: Space cost comparison.

APPENDIX
A. The Flowchart of Our Main Algorithm.
For ease of understanding our algorithms, Figure A1 shows
the flowchart of our algoirithm.

B. Complexity Results of CT, SNACT, and CT++.
Table A1 compares the compelexity results of CT, SNACT,
and CT++. Our results are the same as that in SNACT.

C. Other Results and Discussion
Although we have witnessed many advantages of our
method, it is necessary to mention the limitations of our
method. Overall, the limitations are mainly arisen from the
indexing part. To understand, Figure A2 plots the construct

methodology space construction query
CT O(n) c6n logn c12 logn

SNACT O(n) c12n logn c6 logn
CT++ O(n) c12n logn c6 logn

TABLE A1: Complexity related to space, construction, and
query; where c is the expansion constant, and n is the number
of objects. For SNACT and/or CT++, the number of nodes in
the data structure is exactly n.

time cost on these benchmark datasets. It can be seen that, (i)
among these methods CT consumes less construction time,
while SNACT and CT++ consume more time to construct
the corresponding data structures (e.g., on the core dataset
we used only 129.732 seconds to construct CT, we instead
used 362.335 and 370.114 seconds to construct SNACT and



THE JOURNAL/CONFERENCE NAME SHALL BE INSERTED BY THE EDITOR 16

50 100 200 400 500
distance

1

50

100

150
normalized update cost (x1)

50 100 200 400 500
distance

1

50

100

150
normalized update cost (x1)

CT SNACT CT++

50 100 200 400 500
distance

1

50

100

150
normalized update cost (x1)

50 100 200 400 500
distance

1

50

100

150
normalized update cost (x1)

10K 1M 3M 5M 8M 10M
number of points

1

500

1000

1500

2000normalized space cost (x1)

(a) space

10K 1M 3M 5M 8M 10M
number of points

1

2000

4000

6000

8000normalized const. cost (x1)

(b) construction
Fig. A4: Space and construction cost vs. data volume n.

CT++, respectively); and (ii) the performance gap between
CT and SNACT is large on most of these datasets, while
the gap between SNACT and CT++ is small on almost all
these datasets. As for the above phenomena, it is mainly
because SNACT and CT++ need to readjust (i.e., rebalance)
the trees in order to maintain the nearest ancestor invariant.
Naturally, they use more time to construct corresponding
trees. The large performance gaps on some datasets (e.g.,
yearpredict, corel, artifical40) imply that there are much
more nodes that may violate the nearest ancestor invariant,
and so more cost is used to readjust the trees in the
construction phase.

The readers could be curious why the gap between CT
and SNACT is relatively small on the covertype dataset,
as shown in Figure A2(b). In fact, this is mainly because
the number of nodes in SNACT is only about 60% of the
number of nodes in CT, and so this reduces the performance
gap (although SNACT needs to readjust the tree), while the
number of nodes in SNACT is close to that in CT on other
several datasets. For example, on the covertype dataset
there are about 970K and 580K nodes in CT and SNACT,
respectively. In contrast, on the corel dataset there are about
78K and 68K nodes in CT and SNACT, respectively. In fact,
Figure A3 also reflects similar findings. That is, (i) on the
covertype dataset, SNACT uses less space than CT (17.8 MB
vs. 22.2 MB); and (ii) on most of datasets SNACT and CT++
use more space than CT (e.g., on the corel dataset, CT uses
about 1.79 MB, while SNACT and CT++ consume 2.04 MB
and 2.32 MB, respectively). As for (ii), this is mainly because
SNACT needs to store distance information maxdist(·) for
each non-leaf node and CT++ needs to store some extra
distance and quadrant information. Besides the results on
these benchmark datasets, we also compare the trend of
space (resp., construction) cost over different data volume.
On one hand, from Figure A4(a) we can easily see that the
space cost increases when the data volume enlarges. This
is because the data structures need to store more nodes
when the data size increases. On the other hand, we can
find the similar trend about the construction cost, as shown
in Figure A4(b). This is mainly because more nodes need to
be inserted into the data structures.

Additionally, Figure A5 plots the update performance
comparison on these benchmark datasets. It can be seen
that, (i) CT++ consumes more time than SNACT for both in-
sertion and removal operations; and (ii) removal operations
are much more time-consuming than insertion operations.
As for (i), the main reason could be that CT++ needs to
maintain additional properties such as quadrant informa-
tion, and so more update cost is used when inserting or
removing nodes. As for (ii) the main reason could be that
removal operations need to shrink the subtrees “level by
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Fig. A5: Update cost comparison.

level” when some nodes cannot be attached to any sibling
node of q. Nevertheless, the overall update performance is
acceptable. For example, on the corel dataset, our method
CT++ used only 5.35 and 8.51 seconds to perform insertions
and removals of 1,000 points, respectively.

Remark that, similar to SNACT, our method sacrifices
some performance (e.g., construction and update) to achieve
stronger search performance, which is the central goal of
our paper. Besides the efficiency of the proposed method,
the completeness of the results is also important. One could
argue that, it is possible that the duplicated data points may
exist in some datasets. As for these cases, an immediate
solution, similar to other data structructs such as binarty
tree, is to use an interger variable, say count, to remember
the number of duplicate points, instead of creating multiple
entries for them in the tree.

Furthermore, some readers may realize that our method
relies on well-defined, totally ordered coordinates in the
dimensions to construct the quadrants, it would be hard to
index unstructured data such as text, trajectories, etc., where
a distance measure can be defined (e.g., Hausdroff distance).
This could be viewed as a limitation or a new challenge
needing to be further researched (we leave this as the futuer
work). Nevertheless, it could be interesting to compare it
with some spatial data structures (e.g., k-d tree, Quad-tree,
R-tree). To this end, we conduct a set of experiments to
investigate them. Specifically, we generate randomly a set
of two-dimensional points, and then use these algorithms
to perform nearest neighbor queries, respectively. Figure A6
shows the comparison results. It can be seen that, R-tree and
Quad-tree perform better when the data size is small. With
the increase of the data size, CT++ and k-d tree exihibit
better performance, and k-d tree performs always better
than CT++. Nonetheless, k-d tree is mainly used in the
scenario when the Euclidian dimension is low, as mentioned
in [15,16]. Moreover, we would like to mention that R-tree
and its variants (called also R-tree family) could be still the
most favorably choice for spatial data management, due to
the excellent characteristics including dynamically update,
handling various geometries, etc.
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Fig. A6: A comparison with other data structures.


