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Saliency Detection via Multi-Scale Global Cues
Xiao Lin, Zhi-Jie Wang, Lizhuang Ma, and Xiabao Wu

Abstract—The saliency detection technologies are very useful
to analyze and extract important information from given multi-
media data, and have already been extensively used in many mul-
timedia applications. Past studies have revealed that utilizing the
global cues is effective in saliency detection. Nevertheless, most
of prior works mainly considered the single-scale segmentation
when the global cues are employed. In this paper, we attempt
to incorporate the multi-scale global cues for saliency detection
problem. Achieving this proposal is interesting and also challeng-
ing (e.g., how to obtain appropriate foreground and background
seeds effectively? how to merge rough saliency results into the
final saliency map efficiently?). To alleviate the challenges, we
present a three-phase solution that integrates several targeted
strategies: (i) a self-adaptive strategy for obtaining appropriate
filter parameters; (ii) a cross-validation scheme for selecting
appropriate background and foreground seeds; and (iii) a weight-
based approach for merging the rough saliency maps. Our
solution is easy-to-understand and implement, but without loss of
effectiveness. Extensive experimental results based on benchmark
datasets demonstrate the feasibility and competitiveness of our
proposed solution.

Index Terms—Saliency region; global prior; image smoothing
and segmentation

I. INTRODUCTION

With the rapid increase in multimedia services, a huge
amount of multimedia data is created everyday, e.g., speech,
text, image, video, and graphics. Therefore, it is drawing much
attention to analyze and extract important information from
given multimedia data [1]–[3]. The saliency detection tech-
nologies, which exploit the most important areas for natural
scenes, are very useful in practice, and have already been
widely used in many multimedia applications such as coding,
retrieval, tracking, adaptation, classification, segmentation, and
streaming [4]–[10].

Generally speaking, saliency detection is to extract the target
area, suppress the background noise, and represent the final
saliency map in an appropriate way, such as the grey mode
with normalized values ranging from 0 to 1 [11], [12]. In the
existing literature there are two representative approaches: (i)
the top-down approaches, which generate the final saliency
map by utilizing the high-level prior knowledge [13]–[20];
and (ii) the bottom-up approaches, which are data-driven, and
generate the final saliency map by directly simulating the
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underlying visual information [1]–[3], [8], [11], [12], [21]–
[36]. These two types of approaches have their own advantages
(e.g., bottom-up approaches are simple, easy-to-understand,
and can extract low-level features directly from the images,
while top-down approaches can learn semantic content hidden
in the image) [11], [20], [23]. In this paper, we restrict our
attention on the bottom-up approaches.

Some excellent works in this branch consider the local prior
cues, i.e., utilizing either the prior cues from the background
[37], or only the prior cues from the foreground [34], [38].
Here prior cues are referred as to prior knowledge such as
contrast, spatial information, etc [25], [34], [35], [37], [38].
Meanwhile, there are also many classic papers considering
the global prior cues, i.e., employing the prior cues from
both the background and foreground [25], [35], [39], [40].
Utilizing the global prior cues has been shown more effective,
especially for complicate images [25], [35]. Although existing
works employ the global prior cues, they mainly consider
the single-scale segmentation. That is, they adopt only a
single scale in terms of the number of superpixels [41],
when they separate/segment an input image. Most single-scale
segmentation based saliency detection algorithms are sensitive
to the size of scale [42], as the sizes of objects (or targets)
in images could be not the same. In other words, the single
scale segmentation could not well fit in all images. See Fig.
1 for an illustration. Besides the sizes of objects in images,
some other elements such as background, color and contrast
in images might be also sensitive to the size of scale. See Fig.
2 for an illustration. All these phenomena imply that, using
the single-scale segmentation could be not very appropriate
for saliency detection.

The multi-scale segmentation [43] is “complement to” the
single-scale segmentation. That is, it adopts multiple scales
in terms of the number of superpixels (when they sepa-
rate/segment an input image), and so it allows users to
obtain more features based on different scales [11]. Existing
approaches that employ multi-scale segmentation are either
top-down approaches (e.g., [16], [44]–[46]), or only use local
prior cues (e.g., [43], [47]). To the best of our knowledge, in
existing bottom-up approaches, few attention has been made
on the multi-scale segmentation when the global prior cues
are used. (A more comprehensive review will be given in
Section II.) Motivated by these, this paper attempts to study
the saliency detection problem, by incorporating multi-scale
global cues. Our main goal is to examine (i) the feasibility
and challenges (to incorporate multi-scale global cues), and
(ii) the final effect (if feasible) or the reasons (if infeasible).

To achieve the proposal above, we suggest a solution
consisting of three main phases: (1) it first segments the
image based on multiple scales; and then (2) extracts the
prior cues from background and foreground to generate rough
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(a) (b) (c) (d)
Fig. 1. Examples of superpixels with different scales and their corresponding
salient maps: (a)t1=20; (b) t2=50; (c) t3=100; (d) t4=200, where ti (i ∈
[1, 2, 3, 4]) denotes the number of superpixels. In general, the larger the size
of the superpixels is, the fewer the number of superpixels is.

background-based and foreground-based (known as RBB and
RFB) saliency maps respectively; and finally (3) merges the
available RBB and RFB saliency maps, obtaining the final
saliency result. To develop our solution above, the main
challenges needing to be addressed are threefold (a more
detailed analysis is covered in Section IV): (i) how to assign
appropriate filter parameters for different scales? (ii) how to
obtain appropriate foreground and background seeds easily and
effectively? and (iii) how to merge all the rough saliency maps
such that the final saliency result is with the good quality?
To alleviate these challenges, three targeted strategies are
presented in Sections VI∼ VIII: (1) a self-adaptive strategy for
obtaining appropriate filter parameters; (2) a cross-validation
scheme for selecting appropriate background and foreground
seeds; and (3) a weight-based approach for merging the rough
saliency maps. Viewed from a macro perspective, similar to
many saliency detection methods in the literature, the proposed
solution also partially inherits several nice proposals such as
manifold ranking, and objectness likeness map, whereas we
advance existing results from various aspects. To summarize,
our main contributions are as follows.

• We propose a novel bottom-up model for the saliency
detection problem. To our knowledge, this is the first
bottom-up model that suggests the use of multi-scale
segmentation and global cues together.

• We develop a self-adaptive strategy that allows us to flex-
ibly and automatically choose the appropriate smoothness
for different scales.

• We develop a cross-validation scheme that can select the
useful foreground/background seeds effectively.

• We develop a weight-based strategy to fusion rough
saliency results. Our strategy takes full consideration into
the effects of different scales and also the similarity from
the pixel to foreground/background seeds.

We provide the rigorous theoretical analysis on the compu-
tational complexity of our algorithm (Section IX). Also, we
examine the feasibility of our proposed solution through ex-
tensive experiments, and verify its superiorities by comparing
against classic and state-of-the-art algorithms (Section X). In

the next section, we review prior works most related to ours,
followed by introducing some preliminaries that will be used
in the remainder of the paper (Section III).

II. RELATED WORK

As stated before, in this paper our focus is on the bottom-
up approaches, and so we mainly review prior works in
this branch. (Nevertheless, some representative works in other
branches could be also mentioned, when they bear some sim-
ilarities with our work.) In general, the bottom-up approaches
can be classified into two categories according to whether the
prior cues are used. In existing literature, some works did
not employ the prior cues (e.g., [11], [12], [23], [48], [49]),
while most of prior works (e.g., [25], [34], [35], [37], [38])
incorporated the prior cues. Similar to the latter, our proposed
solution also employs the prior cues. Next, we go into more
details about the previous works in this category.
B Local prior cues based model. For methods in this model,

their common characteristic is to use only the local prior cues
[34], [37], [38], [43], [47]. In other words, they utilized either
the prior cues from the background [37], [50], or only the prior
cues from the foreground [34], [38], [43]. For example, in [37]
the Markov chain technique was employed to achieve better
boundary prior cues (as the background seeds). In addition,
Wang et al. [50] proposed a background-driven salient object
detection (BD-SOD) method to more comprehensively exploit
the background prior. On the other hand, the authors in [34]
proposed using the convex hull prior cues (as the foreground
seeds). Moreover, in [38] the center-prior (as the foreground
seeds) was employed. Hu et al. [47] used the central bias and
the reweighting of the salient regions in the convex hull to
guide the prior map. Compared with these nice works, the
major difference is that we use the global prior cues, instead
of local prior cues. Among these works, the ones most similar
to our could be [43], [47], in which they also used the multi-
scale segmentation. Yet, these works are different from ours.
For example, the method proposed in [43] used the average
value-based method to merge the rough saliency results, while
our work presents a more competitive approach; again, our
solution considers the global, instead of the local prior cues
(which was employed in these papers). Nevertheless, we
would like to point out that, besides these works, there are
some excellent top-down approaches such as convolutional
neural network based solutions that also consider multi-scale
segmentation [16], [44]–[46]. Note that, as stated earlier, the
focus of this paper is on the bottom-up approaches, instead of
top-down approaches. It is not hard to understand that their
works are different from ours.
B Global prior cues based model. A common characteristic

of the methods in this category is to use the global prior cues
[25], [35], [39], [40]. That is, they choose the prior cues from
both the background and foreground. For example, Li et al
[25] put forward a unified approach to incorporate low-level
features and the objectness measure for saliency detection via
label propagation, where labels are extracted from the most
certain background and object regions. Wu et al. employed
the Bayesian framework to classify each pixel into salient
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(a) (b) (c) (d)
Fig. 2. Example for explaining other elements: (a) input images; (b)
ground-truth; (c) saliency maps using ti = 10; (d) saliency maps
using ti = 100. Although the sizes of objects in these two images
are almost the same, their saliency maps are significantly different
even if we use the same scale; see the 3rd (or 4th) column.

object or background object. Wang et al. [40] employed two
complementary correspondence strategies: a global matching
scheme based on scene-level analysis and a local matching
scheme based on patch-level inference, and also introduced
two refinement measures to further refine the saliency maps.
In existing literature, methods in this category mainly involve
the use of the single-scale segmentation. In other words, they
separate the image according to a single scale. Compared with
these distinguished works, the concern of our work is the
use of the multi-scale segmentation. Among these works, the
one most similar to ours is [35]. This is because both of two
papers utilize the global prior cues and the manifold ranking
technique. Yet, our method is different from that work in
several points at least: (i) we select background and foreground
seeds by the cross-validation strategy, which is a novel strategy
and is not covered in the domain of saliency detection; (ii) we
consider the multi-scale segmentation, instead of the single-
scale segmentation that was used in their paper; and also (iii)
selecting appropriate filter parameters and merging multiple
rough saliency maps are not covered in that work. We remark
that this article is a full version of the preliminary work [51].
In the article, we made the following extra contributions: (i)
we give a more comprehensive review on previous works; (ii)
we provide more insights into our algorithms; (iii) we give
the rigorous theoretical analysis for our proposed algorithms;
and (iv) we conduct more comprehensive experimental com-
parisons.

III. PRELIMINARIES

For ease of understanding the rest of the paper, we here
review some necessary concepts [25], [35], [52] , which will
be used extensively later.

B Manifold ranking. It is a saliency calculation method
originated from graph theory [35]. Its general steps are as
follows. It first constructs an affinity matrix W by checking
the relationship between the superpixel-level regions, and finds
a series of seed regions Y , based on the prior knowledge (e.g.,

(a) (b) (c) (d)
Fig. 3. Illustration of smoothing and segmentation. (a) segmentation without
smoothing; (b) segmentation with a slight smoothing; (c) segmentation with
an appropriate smoothing; (d) segmentation with an over-large smoothing.
Note that, the bottom four images are the partial enlarged drawings of the top
four images, respectively.

the boundary and/or center prior). Then, it computes a value f ,
between the seed region and other regions, using the following
equation:

f = (D − αW)−1 ∗ Y (1)

where W = {wi,j}n×n, D = diag{d11, . . . , dnn}, dii =∑
j wi,j . Finally, it obtains the saliency result by normalizing

the values of f .
B Bilateral filter. Its basic principle is to consider both the

spatial relationship and the color similarity between pixels,
when one attempts to smooth an image while preserving edges
(i.e., the contours of objects/targets in the image) [52]. The
bilateral filter can be described formally as follows [52].

h(x) = k−1(x)

∫ +∞

−∞

∫ +∞

−∞
f(ξ)c(ξ, x)s(f(ξ), f(x))dξ (2)

where k(x) =
∫ +∞
−∞

∫ +∞
−∞ c(ξ, x)s(f(ξ), f(x))dξ is used for

normalization; x and ξ denote the neighborhood center and
a nearby point, respectively; c(ξ, x) and s(f(ξ), f(x)) are
usually computed as{

c(ξ, x) = e
− 1

2 (
‖ξ,x‖
σd

)2 (3a)

s(f(ξ), f(x)) = e−
1
2 (

‖f(ξ),f(x)‖
σr

)2 (3b)

where the parameters σd and σr are two important compo-
nents, which determine the final effect of the smoothed image.
Specifically, σr is used to control smoothness — the larger the
value is, the smoother the image shall be; and σd is used to
control the sharpness of the edges — the larger the value is,
the more blurry the edges are.
B Objectness likelihood map. The objectness likelihood

map (OLM) is used to describe the probability of the pixel
belonging to the foreground [25]. In brief, its general steps
are as follows. It first generates a set M of (sampling) image
windows. For each image window imi (∈M ), we denote by
wi, hi, and (xci , y

c
i ) its width, height and center, respectively.

Then, for each image window imi (∈M ) it computes the ob-
jectness score [53], denoted by OSi, based on low-level cues.
The low-level cues, to some extent, reflect the likelihood of a
given image window containing an object/target. Usually, three
types of low-level cues “color-contrast, multi-scale saliency,
and edge density” are used, in order to obtain the objectness
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Low resolution High resolution(a)Low resolution High resolution(b)
Fig. 4. Example of images segmented using M-RSST algorthm with
different resolutions: (a) low resolution; (b) high resolution.

score of a given (sampling) image window. Next, it computes
the pixel-level objectness, denoted by O(p), as follows.

O(p) =

|M |∑
i=1

OSi ∗ exp[−(
(xp − xci )2

2δ2x
+

(yp − yci )2

2δ2y
)], (4)

where xp and yp denote the location of a pixel p; in addition,
δx and δy are set to 0.25wi and 0.25hi, respectively. Note
that, the above equation can be essentially viewed as a multi-
plication of two components: (i) an overlapping score, i.e., the
objectness score OSi; and (ii) the Gaussian smoothing kernel
of all sampling windows, i.e., exp[−( (xp−x

c
i )

2

2δ2x
+

(yp−yci )
2

2δ2y
)].

Finally, it computes the superpixel-level objectness likelihood
map as follows.

O(spi) =
1

k

∑
p∈spi

O(p), (5)

where k denotes the number of pixels in a superpixel. Here
the superpixel-level objectness likelihood map corresponds to
the concept of region-level objectness map in [25].

IV. A DEEP ANALYSIS ON THE CHALLENGES

To understand the difficulty of introducing the multi-scale
global cues for saliency detection, this section examines the
challenges in more detail.
B Challenge 1. Most of multi-scale segmentation based

algorithms fail to flexibly select the size of the scale [54]–
[56]. A recent proposal, the simple linear iterative clustering
(SLIC) algorithm [41], can allow users to flexibly set the size
of the scale. Observe that the texture and noise information
could appear in most of images, which can incur the poor
results if one directly uses the SLIC algorithm; see Fig. 3(a),
for example. To alleviate this issue, a natural solution is to first
smooth the image, instead of executing the SLIC algorithm at
the beginning. There are many proposals for smoothing the
image, and most of which easily lead to loss of information
on the edges [43], [57]. The bilateral filter can efficiently
address this limitation. That is, it can smooth the image while
preserving the edges [58], [59]. So, it is pretty natural to use
the bilateral filter to smooth the image.

However, there is a trouble needing to be alleviated. Specifi-
cally, most of prior works apply the bilateral filter for the case
of single-scale segmentation (see e.g., [58], [59]). In those
works, the “filter parameters” (i.e., σr and σd, recall Section
III) are chosen manually. In our context, if one directly extends

(a) (b) (c) (d)
Fig. 5. Example of all boundary regions as the background seeds. (a) Input
image; (b) ground truth; (c) all boundary regions as background seeds; (d)
our method.

existing bilateral filter algorithms, it would be pretty tedious to
adjust the parameters for different scales1. Then, the following
natural question arises: How to assign the appropriate filter
parameters for different scales?

Remark. The SLIC algorithm used in our paper is different
from the classic M-RSST algorithm [60], the former operates
the image at the superpixel level with different scales; it can
segment the image into superpixels with different sizes, as
shown in the first row of Fig. 1. In contrast, the latter operates
the image or frame (in video sequences) at the pixel level with
different resolutions, and it is initially developed for motion
and color segmentation (the segmentation effect is as shown
in Fig. 4). Since the framework proposed in the paper needs to
operate the image at the superpixel level with different scales,
it is natural to use the SLIC algorithm.
B Challenge 2. To generate the final saliency map, most

of recent methods first generate RBB and RFB saliency maps
respectively, and then merge them using various techniques.
The quality of RBB and RFB saliency maps are closely
related to the effect of the final saliency map [25]. Particularly,
selecting the appreciate background (resp., foreground) seeds
is extremely important for constructing the RBB (resp., RFB)
saliency map [25], [35].

On one hand, the boundary prior has been extensively
used and shown to be effective in selecting the background
seeds [25], [30], [36], [38]. However, if one chooses all
boundary regions as the background seeds, it could lead to
poor results as shown in Fig. 5(c); this is because objects
in some images could appear in the boundary regions. This
observation motivates recent works (see e.g., [35]) to filter out
part of background seeds by contrasting the color similarity of
each boundary region and other regions. Yet, as pointed out
in [25], this line of methods could produce poor results when
the background of the image is complicate.

On the other hand, the center-prior has been shown effective
in selecting the foreground seeds [11], [38]. Yet, such method
could not work well (c.f., Figs 6(b) and 6(f)) when the saliency
object does not appear at the center of the image. The convex
hull based methods can capture the location of object [34],
[61], whereas some background regions could be mistaken
for the foreground seeds (c.f., Figs 6(c) and 6(g)). Recently,
the objectness likelihood map (OLM) technique has been also
used in the construction of the RFB saliency map [25], whereas
the threshold parameters (involved in this line of methods)
cannot be determined easily. A “bad” threshold could incur

1Note that, different filter parameters shall incur different smoothness [43],
[52], and for a certain scale an “appropriate” smoothness (e.g., Fig. 3(c)) is
vital when segmenting the image [58], [59]. This implies that a “bad” filter
parameter could incur the poor segmentation results as shown in Figs 3(b)
and 3(d).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Illustration of center prior, convex hull prior, and objectness likeness
map: (a) Input image; (b) center prior; (c) convex hull prior; (d) objectness
likelihood map (OLM); (e) ground truth; (f) saliency result via center prior;
(g) saliency result via convex hull prior; (h) saliency result via OLM.

superabundant foreground seeds, getting a poor RFB saliency
map; see Figs 6(d) and 6(h).

Essentially, the above issues further emphasize the impor-
tance of selecting the background (resp., foreground) seeds.
Then, how to select “useful” background and foreground seeds
easily and effectively?

B Challenge 3. Without loss of generality, assume that we
have obtained |T | RBB and |T | RFB saliency maps. Denote
by Sib (resp., Sif ) the ith RBB (resp., RFB) saliency map.
To obtain the final saliency map, an easily brought to mind
method is computing the average value of all rough saliency
results (for each pixel p). Let Sib(p) (resp., Sif (p)) be a pixel
from the ith RBB (resp., RFB) saliency map. Denote by V (p)
the pixel of the final saliency result. It is computed as

V (p) =

∑|T |
i=1 S

i
b(p) +

∑|T |
k=1 S

i
f (p)

2× |T |
. (6)

This natural method, however, could produce pretty poor
results as shown in Fig. 7(c). This is because (i) it ignores
the fact that different segmentation scales may have different
effects even if one segments the same image; and (ii) it ignores
the differences of information from the RBB and RFB saliency
maps (c.f., Fig. 8). Note that, although some rough saliency
map may has the poor effect (e.g., the RFB saliency map in
Fig. 8(d)), a single rough saliency map with poor effect cannot
make decisional impact on our final salient result; see Fig. 7(c)
or Fig. 7(d) for an illustration.

Another potential method is the cross-product based
method. That is,

V (p) =
1

|T |

|T |∑
i=1

Sib(p)× Sif (p) (7)

This approach also easily produces poor results as shown in
Fig. 7(d), since the pixels’ feature values in RBB saliency

(a) (b) (c) (d)
Fig. 7. Example of fusion: (a) Input image; (b) ground truth; (c) result by
Eq. 6; (d) result by Eq. 7.

(a) (b) (c) (d)
Fig. 8. RBB saliency maps (c.f., the first row) and RFB saliency maps (c.f.,
the second row) based on different scales: the scale ti (from left to right) is
50, 100, 200, 500, respectively.

maps are usually small, the cross-product operation weakens
the difference between the saliency object region and back-
ground region.

The above issues immediately highlight the need for de-
veloping a more competitive approach (to merge the rough
saliency maps). That is, how to merge, in a better way, all
rough saliency maps such that the final saliency map can have
better quality?

V. A THREE-PHASE SOLUTION

This section describes our solution at a high level. Fig. 9
covers the general framework of our solution. It consists of
three main phases: (1) segmenting the image based on multi-
scales; (2) choosing the prior cues from background and
foreground; and (3) refining the rough saliency results.
B Phase 1. The main goal in the first phase is to sepa-

rate/segment the image into superpixels according to different
scales. This way, multiple images shall be generated. As dis-
cussed in previous sections, the texture and noise information
could appear in most of images. Our solution employs a
bilateral filter to smooth the image, before segmenting the
image. In the context of our concern, the filter parameters
are not easy-to-modulate. To address this issue, we present
a self-adaptive strategy to obtain appropriate filer parameters
for different scales. The difficulty in developing this strategy
is to construct a relationship between the smoothness and filter
parameters. Our approach first constructs an objective function
by incorporating pixels’ color differences and filter parameters,
and then to solve the function using a simple algorithm.
B Phase 2. The second phase mainly serves as selecting

“useful” background/foreground seeds as the prior cues. These
prior cues can be immediately used to generate RBB and
RFB saliency maps, using the manifold ranking technique
(c.f., Section III). To select useful background/foreground
seeds, we propose a new scheme that employs an idea “cross-
validation”. Generally speaking, our cross-validation idea first
generates “initial” background and foreground seeds via exist-
ing techniques; it then removes part of initial background seeds
by exploiting the feature information from initial foreground
seeds, getting the “refined” background seeds; and finally it
removes part of initial foreground seeds by exploiting the
feature information form refined background seeds. A central
observation utilized by this phase is that, the differences
between the background and foreground are usually larger
than the differences between internal regions in background
or foreground.
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Fig. 9. Overview of our solution. Three phases are involved in our solution: (i) segmenting the image based on multi-scales; (ii) choosing the prior cues
from background and foreground; and (iii) refining the rough saliency results. In this figure, three boxes in blue corresponding to three phases of our solution,
respectively; and the texts in blue corresponding to strategies/approaches that address challenges in these three phases.

B Phase 3. The third phase is to merge rough salient maps
obtained before, in order to get the final salient result with
a good quality. To achieve it, we suggest a weight-based
approach, in which two novel concepts “scale weight” and
“seed weight” are proposed. The main idea of our approach is
that, for each single pixel p, we consider the differences among
various segmentation scales, and also the similarity from p to
the refined foreground/background seeds; we then utilize fully
these information in the merging phase.

In what follows, we detail each key step of our solution
(Sections VI∼VIII).

VI. OBTAINING FILTER PARAMETERS

As mentioned earlier, the challenge in the first phase is on
how to choose the appropriate filter parameters for different
scales. Observe that, preserving edges is urgently needed
for subsequent segmentation operation; this allows us to set
conservatively the parameter σd to a relatively small value, so
as to the “smoothed” image can still have enough sharpness
of the edges. Naturally, the salient object shall be not totally
removed; see Fig. 3(c) for an illustration. In our experiment,
σd is empirically chosen and set to 0.2, unless stated otherwise.
However, it remains unclear on how to set an appropriate value
for σr.

To attack the challenge mentioned above, we propose a
self-adaptive strategy that can assist us to flexibly and auto-
matically choose the appropriate filter parameters for different
scales. The rationale behind our strategy is to construct an
objective function by incorporating pixels’ color differences
and filter parameters, and then to solve the function using a
simple algorithm. The intuition for constructing the objective
function is that, if the smoothness is insufficient, then the color
differences of pixels (located in the same superpixel) is large,
implying that the segmentation effect is not good. The formal
steps of our approach are introduced below.

Let T be a set consisting of |T | integers, and let each
element (i.e., integer) ti ∈ T denote the number of superpixels
when we separate the image. Assume, without loss of general-
ity, that the image is to be segmented using a scale ti. That is,
there would be ti superpixels in the image. For a superpixel

spj , let k be the number of pixels in it, ci,j (={l, a, b}T ) be a
pixel pi’s feature vector in terms of CIELab color space, and
c(j) (= 1

k

∑
ci,j) be the average feature vector of all ci,j in the

corresponding superpixel spj .
For the jth superpixel, one can roughly measure the “local”

smoothness in the superpixel region by computing the sum of
all k pixels’ color differences, i.e.,

∑k
i=1 ‖ci,j − c(j)‖. For all

superpixels in the image, a “global” smoothness, denoted by
S, can be measured as

S =

ti∑
j=1

k∑
i=1

‖ci,j − c(j)‖. (8)

Then, one can obtain the following (using the intuition
mentioned earlier):

F = argminσr∈R(S + cσr), (9)

where c is a constant real number, which is used to keep
the two components (i.e., S and σr) in the same order of
magnitude. In our experiment, c is set to 100, unless stated
otherwise. For the latter parts (i.e., cσr) in the above equation,
one can essentially view them as the penalty factors, which
are used to alleviate a too large global smoothness (notice: an
over-large smoothness shall incur great loss of information,
which makes no contribution or even negative contribution to
the subsequent operations; see Fig. 3(d), for example.

It is easily verified that the equation above essentially char-
acterizes an optimization problem. One can solve the above
optimization problem trivially by executing the following sim-
ple method2, which can be viewed as a simple version of the
gradient descent algorithm [62]. To understand this method, it
could be better to explain the following important observation:
“S is inversely proportional to σr”. This is because the larger
σr is, the smoother the image shall be. In this case, the
difference between ci,j and c(j) shall be smaller. Naturally,
S shall be smaller (by Equation 8). Specifically, our method
first sets σr as a small value, and then increases it gradually,

2Remark that, the approach executes the segmentation operation many
times, since (i) our algorithm needs multiple times iterations, in order to
find the appropriate value for the parameter σr ; and (ii) it needs to compute
S according to Equation 8.
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and it finally terminates the iteration when the value of F turns
larger. This way, one can obtain the appropriate value for the
filter parameter σr at scale ti. Clearly, given the “multi-scale”
set T , one can apply the above strategy to determine the value
of σr at any other scale tj ∈ T .

We may need to emphasize that, the difficulty in developing
the self-adaptive approach is not to solve the optimization
problem described in Equation 9. Essentially, the difficulty is
to construct a relationship between the smoothness and filter
parameters.

VII. SELECTING BACKGROUND/FOREGROUND SEEDS

This section describes our cross-validation scheme for se-
lecting the background/foreground seeds. The rationale be-
hind our scheme is utilizing an observation, “the differences
between the background and foreground are usually larger
than the differences between internal regions in background
or foreground”, to remove part of the “initial” background
and foreground seeds, which are obtained based on existing
techniques. Particularly, the operation for removing part of ini-
tial background (resp., foreground) seeds employs the feature
information from initial foreground seeds (instead, “refined”
background seeds).

Specifically, for each image3 we first use the objectness
likelihood map technique mentioned in Section III to get
the “initial” foreground seeds, and conservatively use the
boundary of the image as initial background seeds4. Without
loss of generality, assume that m initial foreground seeds and
n initial background seeds are obtained. Denote by isjb the
jth initial background seed, and isif the ith initial foreground
seed.

For each initial background/foreground seed (e.g., isjb), we
utilize two types of feature information: (i) color, i.e., {l, a, b}
in CIELab color space; and (ii) location, i.e., {x, y}T in
Euclidean space. Denote by cjb (resp., cif ) the “color” feature
vector of isjb (resp., isif ), and by ljb (resp., lif ) the “location”
feature vector of isjb (resp., isif ).

Let D(isjb,isf )
be the sum of the differences from isjb to each

initial foreground seed. It can be computed as

D(isjb,isf )
=

m∑
i=1

(‖cjb − c
i
f‖+ θ‖ljb − l

i
f‖) (10)

where θ is a parameter used to adjust the weight of the location
information. In our experiment, it is empirically chosen and
set to 0.5, unless stated otherwise.

For ease of discussion, we dub the above value as the
credit score of the background seed isjb. Naturally, we can
get n credit scores (using the method above), since there are
n initial background seeds. That is, we shall obtain a set with

3Note that, we previouslly segmented the image into superpixels according
to different scales. Now we have |T | images.

4The reason we use the objectness map technique to obtain the initial
foreground seeds is that, it allows us to capture the location of saliency
object(s); this nature is important for applying our subsequent operations.
In addition, the reason we use the naive method, “choosing the boundary of
the image as the background seeds”, is that, the background seeds chosen
by existing approaches may have loss of information; it will make negative
impact on our subsequent operations.

n real numbers: {D(is1b ,isf )
, D(is2b ,isf )

, ..., D(isnb ,isf )
}. Next,

we are ready to remove a part of initial background seeds
whose credit scores are small. This is based on the following
intuition — if an initial background seed is with a small credit
score, it is usually more like to share the high similarity with
the foreground. To this step, one could ask: how much initial
background seeds should be removed?

Specifically, we do as follows. We first sort the credit score
in ascending order. For clarity, we renumber the sorted credit
scores as cs1, cs2, ..., csn, such that for any k ∈ [1, n − 1],
csk ≤ csk+1. Then, for each k ∈ [1, n − 1] we compute the
value of csk+1 − csk. This way, n − 1 values are generated.
Without loss of generality, assume that the maximum value
among all the n − 1 values is obtained when k = γ. We set
the credit score csγ to be a “dividing line”. Note that, selecting
the dividing line in this way is essentially an implementation
to the rationale mentioned at the beginning of this section.
Finally, for any initial background seed whose credit score is
less than or equal to csγ , we remove it. This way, we obtain
the “refined” background seeds.

On the other hand, for m initial foreground seeds, we can
also obtain their credit scores; and then sort the m credit
scores; and finally remove some initial foreground seeds, using
the method similar to the above. A minor difference is that we
employ the feature information from the “refined” background
seeds5, instead of the one from the initial background seeds.
The details are omitted, for saving space. (As mentioned
in previous sections, once the refined background/foreground
seeds are obtained, one can use the manifold ranking technique
to get |T | RBB and also |T | RFB saliency maps.)

Notice that, although selecting seeds based on color and
geometric distances was extensively used in the literature,
the cross-validation strategy is novel. It is not covered in the
domain of saliency detection, and it is effective to improve the
quality of saliency results, as demonstrated in Section X.

VIII. REFINING ROUGH SALIENCY RESULTS

This section suggests a weight-based approach for merging
the RBB and RFB saliency maps. Our general idea is to first
compute two weights (one is known as the scale weight, which
reflects the effects of different segmentation scales; another is
known as the seed weight, which reflects the similarity from
a pixel p to foreground/background seeds), and then to merge
the RBB and RFB saliency maps, by incorporating these two
weights. The intuitions behind our idea are: (i) for a given
image, different segmentation scales usually incur different
effects, and if a scale has the better segmentation effect, it
usually has the larger contribution to generate the saliency
map with a good quality; and (ii) if a pixel is more similar
to the foreground (resp., background) seeds, it usually has a
higher probability to be similar to the corresponding pixel in
the RFB (resp., RBB) saliency map.

Recall that we have obtained (i) |T | images that have been
segmented (Phase 1); and (ii) |T | RBB and |T | RFB saliency

5The reason we use refined background seeds is that, these seeds have
better quality than the initial background seeds, and so it is more likely to
obtain the refined foreground seeds with good quality.
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maps (Phase 2). Our approach shall take full use of these
available information. Note that, in the following discussion,
we focus on considering a single pixel. Other pixels in the
final saliency map can be obtained one by one, using the same
method introduced below. Specifically, our approach works as
follows.

Let c(p) = {l, a, b}T , and
∑
p be all pixels in a superpixel

containing p. First, for each scale ti ∈ T , we compute the
pixel p’s scale weight, denoted by scwi(p), as follows.

scwi(p) =
∥∥∥c(p)− ci(p) + ε

∥∥∥−1 (11)

where ci(p) is the average feature vector of
∑
p {l, a, b}

T , and
ε is an arbitrary small constant, which is used to avoid the
base to be zero. (As a remark, the computation above exploits
the results obtained in Phase 1.) The equation above directly
reflects the similarity, in terms of color, between a pixel p
and the superpixel containing p. Essentially, it also reflects
indirectly the segmentation effect at the scale ti, viewed from
another perspective. One can view scwi(p) as a bridge (or
connector) between the color similarity and the segmentation
effect.

Assume, without loss of generality, that we have obtained
m′ (resp., n′) refined foreground (resp., background) seeds in
Phase 2. Denote by

∑m′

p (resp.,
∑n′

p ) all the pixels in the m′

(resp., n′) refined foreground (resp., background) seeds. Next,
for each scale ti ∈ T , we compute the pixel p’s seed weight,
denoted by sewi(p), as follows.

sewi(p) =

∥∥∥c(p)− cm′
i (p)

∥∥∥∥∥∥c(p)− cn′
i (p)

∥∥∥+ ∥∥∥c(p)− cm′
i (p)

∥∥∥ (12)

where cm′
i (p) (resp., cn′

i (p)) denotes the average feature vector
of
∑m′

p {l, a, b}
T (resp.,

∑n′

p {l, a, b}
T ).

Finally, we obtain the final saliency result for the pixel p
by incorporating these two weights and the information in |T |
RBB and |T | RFB saliency maps. (For short, we write scwi(p)
and sewi(p) as ω1 and ω2, respectively.) Let V (p) be the pixel
p’s result in the final saliency map. It is computed as

V (p) =

∑|T |
i=1 ω1 × [(1− ω2)× Sif (p) + ω2 × Sib(p)]∑|T |

i=1 ω1

(13)

where Sib(p) (resp., Sif (p)) denotes the corresponding pixel’s
information value in the ith RBB (resp., RFB) saliency map.
Remark that, in our approach the scale and seed weights
are computed inspired by heuristics or intuitions mentioned
earlier; and our approach is not optimal for each type of image,
as same as all existing salient detection algorithms.

IX. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we discuss the computational cost of our
proposed method. In the following discussion, we use N to
denote the number of pixels in the image, and use K to denote
argmaxi∈[1,|T |] ti. As stated before, our method consists of
three phases. In phase 1, our method adopts |T | scales, and it
segments the image using SLIC algorithm [41]. As a result, the
corresponding cost for segmentation is O(|T | ∗N), since the

computational complexity of the SLIC algorithm is O(N), and
independent of the number of superpixels. Next, our method
chooses appropriate parameter for each scale and uses the bi-
lateral filter to smooth the images. To get the appropriate
parameter, the dominant step is to compute Eq. 8, which
needs O(N) cost. As for the smoothing operation, it takes
O(2∗N), which can be understood from [52]. Thus, the overall
cost for choosing appropriate parameters and for smoothing is
O(|T | ∗N), since we have |T | scales. To summarize, the first
phase takes O(|T | ∗N + |T | ∗N) cost, i.e., O(|T | ∗N).

As for phase 2, our method first generates initial foreground
and background seeds via objectness likelihood map technique
and boundary prior. In this process, the dominant step is to
compute Eq. 4, which needs O(|M |∗N) cost, since computing
objectness score OSi takes O(N) time [53]. Note that, here
|M | << N , so the above result is approximately O(N). Next,
our method obtains refined foreground and background seeds
via the cross-validation scheme. Obtaining refined background
and foreground seeds takes O(m∗n+n log n) and O(m∗n+
m logm) cost, respectively. Note that, here m < ti, n < ti,
and m+n < ti, since the foreground and background seeds are
chosen from superpixels. Thus, obtaining refined foreground
and background seeds takes O(2 ∗m ∗n+n log n+m logm)
cost, i.e., O(t2i ). In addition, the manifold ranking technique
takes O(t3i ). Overall, the second phase takes O(|T | ∗ (N +
t3i + t2i )) cost, since we have |T | scales. Note that, this result
is approximately O(|T | ∗ (N + t3i )).

In the 3rd phase, our method first computes scale and seed
weights, respectively. Since the average feature vector has been
computed in phase 1, Eq. 11 takes constant time. Similarly,
since m′ << N and n′ << N , Eq. 12 takes also constant
time. Furthermore, since we have |T | scales, the overall com-
plexity for computing the above two scales is O(|T |). After
that, our method merges the RFB and RBB saliency maps
via Eq. 13, which takes O(|T |) time. To summarize, phase 3
takes O(|T | ∗ N) cost, since each image contains N pixels.
Putting all together, the overall computational complexity of
our method is O((|T | ∗N)+ (|T | ∗N + |T | ∗ t3i )+ (|T | ∗N)),
i.e., O(|T | ∗ N + |T | ∗ t3i ). Note that, ti is upper bounded
by K, so the theoretical time complexity of our algorithm is
O(|T | ∗ (N +K3)). As a remark, |T | << N in practice.

X. EXPERIMENTS

In this section, we first describe the datasets, evaluation
metrics, and existing methods used in our experiments (Section
X-A), and then cover the experimental results (Sections X-B
∼ X-D).

A. Experimental settings

We evaluate our method using six datasets (available for
public use):
• ASD [21]. This dataset is selected from MSRA-5000

dataset. It is widely used in prior works (see e.g., [30],
[38]).

• OMRON [35]. It is one of most challenging datasets, in
which 5168 images are included.
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(b) OMRON

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CA FT
GC

GM
R HS IT

LM
LC LP

S
M

AP
PCA RC SF

SVO

OURS
 

 

P R F MAE

(c) ECSSD
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(d) THUS
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(e) SED2
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(f) PASCAL

Fig. 10. The results are obtained based on various methods over different datasets (including ASD, OMRON, ECSSD, THUS, SED2, and PASCAL).

TABLE I
THE NUMERICAL RESULTS: F-measure (F) AND mean absolute error (MAE)

Metric Dataset
Method

CA FT GC GMR HS IT LMLC LPS MS PCA RC SF SVO OURS

F

ASD 0.558 0.640 0.820 0.898 0.865 0.412 0.790 0.891 0.835 0.796 0.719 0.834 0.579 0.908
OMRON 0.355 0.313 0.464 0.533 0.525 0.313 0.434 0.510 0.492 0.462 0.499 0.456 0.392 0.545
ECSSD 0.418 0.380 0.556 0.650 0.615 0.296 0.552 0.612 0.636 0.548 0.647 0.521 0.341 0.658
THUS 0.581 0.593 0.762 0.835 0.810 0.426 0.760 0.812 0.151 0.744 0.817 0.743 0.552 0.840
SED2 0.497 0.633 0.657 0.739 0.710 0.474 0.513 0.738 0.623 0.641 0.683 0.719 0.531 0.721

PASCAL 0.427 0.397 0.535 0.619 0.595 0.453 0.470 0.571 0.601 0.548 0.456 0.506 0.400 0.622

MAE

ASD 0.232 0.205 0.100 0.074 0.114 0.194 0.135 0.071 0.106 0.155 0.237 0.130 0.336 0.070
OMRON 0.253 0.249 0.197 0.188 0.227 0.197 0.276 0.172 0.209 0.205 0.187 0.182 0.408 0.169
ECSSD 0.342 0.327 0.255 0.237 0.268 0.314 0.296 0.237 0.250 0.290 0.236 0.273 0.420 0.235
THUS 0.237 0.234 0.139 0.125 0.148 0.213 0.164 0.123 0.794 0.185 0.137 0.175 0.331 0.118
SED2 0.222 0.203 0.183 0.162 0.155 0.243 0.264 0.138 0.185 0.194 0.145 0.176 0.339 0.152

PASCAL 0.264 0.261 0.215 0.184 0.223 0.259 0.289 0.190 0.186 0.209 0.294 0.216 0.368 0.179

• ECSSD [11]. It includes a lot of images with compli-
cated background. Some of which are selected from the
Berkeley-300 dataset.

• THUS [23]. It contains 10000 images, labelled with pixel-
wise ground truth masks.

• SED2 [63]. It contains 100 images in which multiple
objects/targets appear, and the objects are with different
sizes.

• PASCAL [64]. It contains 1500 images with pixel-wise
ground truth masks.

We compare our algorithm against the classic and/or some
state-of-the-art methods, including IT [12], FT [21], CA [24],
SVO [22], RC [23], SF [29], GS [33], PCA [28], LMLC [34],
HS [11], GC [65], GMR [35], DSR [27], MS [43], WCO

[36], LPS [25], and MAP [31]. In the paper, we use 20 scales
ranging from 10 to 390, the incremental factor is 20 between
two adjacent scales. These diversified scales can allow us to
capture saliency information for various images (e.g., different
sizes in terms of salient object, different color distributions
or contrasts in images, etc). Same to [35], to evaluate the
methods, we use results provided by authors or run their
implementations based on the available codes or softwares.

In our experiments, we use several main evaluation metrics
below.
• Precision and recall. The precision value, denoted by vp,

refers to the ratio of salient pixels correctly assigned to all
the pixels of extracted regions. The recall value, denoted
by vr, refers to the percentage of detected salient pixels
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Fig. 11. The P-R curve diagram (notice: the vertical axis reflects the precession while the horizontal axis reflects the recall). The results are obtained based
on various methods over various datesets including ASD, OMRON, ECSSD, THUS, SED2, and PASCAL.

with regard to the ground-truth number. Following prior
works [30], [36], [38], we obtain P-R (precision-recall)
curve by binarizing the saliency map, using thresholds in
the range of 0 and 255.

• F-measure. It is for evaluating the quality of saliency
map. It is computed as

F =
(1 + η2)× vp × vr
η2 × vp + vr

, (14)

where η is used to control the ratio of precision and recall.
Following prior works [30], [38], η2 is set to 0.3.

• Mean absolute error. It is the mean difference between
the saliency map and the ground truth. Denote by Ema
the mean absolute error (MAE). It is computed as

Ema =
1

Np

Np∑
i=1

|S(pi)−GT (pi)|, (15)

where Np denotes the number of all pixels in the image.
S(pi) and GT (pi) denote the information of the ith
pixel from the saliency map and from the ground truth,
respectively.

In our experiments, we mainly report F-measure, mean
absolute error, precision, recall and also the precision-recall
(P-R) curve.

B. Comparing with existing methods

This section compares our proposed method with existing
methods. We first analyse the quantitative results, and then
compare the qualitative results of different saliency detection
methods.

1) Quantitative evaluation: Fig. 10 plots the experimental
results of various methods (including ours) over six datasets,
in terms of F-measure (F) and mean absolute error (MAE)
respectively. (Table I summarizes the numerical results, for
ease of comparison in detail.) In addition, the precision-recall
(P-R) curves for various methods over these datasets are
covered in Fig. 11.
B F-measure. On one hand, for the datasets in which

images are with a complex background (e.g., ASD, ECSSD
and PASCAL datasets), we can see from Figs 10(a), 10(c),
and 10(f) that, our proposed method has the larger F-measure
value6 than other methods, demonstrating that our method
performs well against the competitors. On the other hand, for
the more challenging datasets in which not only the images
are with complex backgrounds and texture structures, but also
the locations and sizes of objects/targets are diversified (e.g.,
OMRON and THUS datasets), we can see from Figs 10(b)
and 10(d) that, our proposed method has also the larger F-
measure values, compared with other methods. In summary,
these results show us that our proposed method could be more
competitive when the images are with complex background, or
more challenging scenarios. We have to point out that, for the
SED2 dataset (in which the images usually contain multiple
saliency objects), our proposed method is superior than most
of competitors, whereas it cannot beat all the competitors
(e.g., GMR and LPS methods). Nevertheless, one can find

6Note that, the F-measure takes both the precision and recall into account,
it is a comprehensive measurement on the effectiveness of the algorithms [30],
[36], [38]. Usually, the larger the F-measure value is, the better the algorithm
is.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
Fig. 12. Examples of saliency detection results: (a) Input image; (b) CA; (c) GC; (d) PCA; (e) MR; (f) HS; (g) LMLC; (h) MS; (i) LPS; (j) MAP; (k) OURS;
(l) Ground truth. Our solution obtains the saliency maps close to the ground truth.

from Table I that the gap between our method (with 0.721
F-measure value) and GMR or LPS (with 0.739 F-measure
value) is not very large. This phenomenon also happens in the
following experiments.

B Mean absolute error. As described in Section X-A, the
MAE is the average difference between the saliency map and
the ground truth map. Usually, the smaller the value is, the
better the algorithm is. From Figs 10(a), 10(c), 10(f), 10(b)
and 10(d), one can see that, for the datasets in which the
images are with complex background (e.g., ASD, ECSSD and
PASCAL) or the images are more challenging (e.g., OMRON
and THUS), our proposed method always has smaller values
than other methods. These results further demonstrate that our
proposed method could be more competitive for the datasets
in which the images are with complex background, or the
images are more challenging. Also, for the SED2 dataset, our
proposed method has smaller values than most of competitors.
Yet, the MAE values of our proposed method are larger than
the ones of LPS and RC methods (see Fig. 10(e) or Table I).
This fact demonstrates that there are still some improvement
spaces for us to further enhance the proposed method. Note
that, it is challenging to further narrow the gap (or even to
obtain better performance) on this types of datasets; we leave
this interesting problem as our future work.

B Precision-recall curve. As mentioned earlier, the P-R
curve is drawn by the value of the precision and recall; it can
more directly reflect the performance of an algorithm [36],
[38]. We can see from Fig. 11 that, for most of datasets
our algorithm (plotted as the red curve) shows the strong
robustness and performs well. Particularly, the precision of
our algorithm is pretty good. Specifically, on the ASD and
THUS datasets (c.f., Figs 10(a) and 10(d)), our proposed
solution achieves more than 90% precision value; and it has
the highest precision value, compared with other methods.

For other datasets, our proposed solution cannot achieve the
precision value up to 90%, whereas it is still pretty good —
the precision value of our proposed solution ranks in the top
three.

2) Qualitative evaluation: Fig. 12 shows a few saliency
maps generated by our solution and state-of-the-art ap-
proaches. From this figure, we can see that, for the complicate
scenarios where the images are with complex backgrounds
and texture structures, our solution can accurately highlight
the saliency object/target, and can preserve well the edges of
the object (see e.g., the first and second rows in Fig. 12).
Furthermore, our solution performs well even if the saliency
object is near to the boundary of the image (see e.g., the third,
fourth, fifth and seventh rows in Fig. 12). As noted earlier,
when the image are with multiple objects/targets, our solution
also achieves better results than most of methods, see e.g., the
sixth row in Fig. 12). All of the facts presented in Section
X-B demonstrate that the overall performance of our solution
is pretty good, implying that it is a competitive and attractive
solution.

C. Effectiveness of the proposed strategies

In this section, we examine the effectiveness of the strate-
gies/techniques employed in our solution. Recall that three
major strategies are developed: (i) a self-adaptive strategy
for obtaining the appropriate filter parameters; (ii) a cross-
validation scheme for selecting background and foreground
seeds; and (iii) a weight-based approach to merge the rough
saliency results. To evaluate the effectiveness of each tech-
nique, we replace it with the traditional approach, and then
compare it with our solution.

1) Self-adapative strategy: For ease of validating the effec-
tiveness of this technique, we compare our proposed solution
with the following baseline method: for different scales we



JOURNAL NAME, VOLUMN, NO., PAGE. 12

(a) (b) (c) (d)
Fig. 13. Effectiveness of self-adaptive technique. (a) Input image; (b) ground
truth; (c) choose the value of σr randomly; (d) self-adaptive approach.

randomly choose a value from (0, 100]7, and assign it to σr;
the rest of steps are the same as our proposed method. Fig.
13 shows the saliency results generated using a challenging
input image. Compared with the baseline method, we can see
from this figure that there are two major differences: (i) the
saliency map generated by our proposed method contains less
background noises; and (ii) the saliency map generated by
our proposed method is much more close to the ground truth.
These differences essentially reflect the effectiveness of the
self-adaptive strategy.

2) Cross-validation scheme: We compare our proposed
solution with the following baseline method: it uses our
self-adaptive scheme to choose filter parameters for different
scales, and then directly uses existing approaches (mentioned
in Section VII) to choose background and foreground seeds,
while it does not employ the cross-validation scheme; the rest
of steps are the same as our proposed method. Fig. 14 shows
the comparison result. Compared with the baseline method, we
can see from this figure that (i) the saliency object’s location
has been obtained more exact; and (ii) the background noises
have been well suppressed. These evidences demonstrate us
that the cross-validate scheme is effective.

3) Weight-based approach: We compare our proposed so-
lution with the following baseline methods: (1) we compute
the average value of all rough saliency results; and (2) we
compute the cross-product for getting the final saliency maps,
recall Section IV. Note that, similar to our previous settings,
the other steps are same to our proposed method. Fig. 15
compares the result of these three methods. We can see that
the saliency map generated by the first baseline method has
two major features: the foreground object contains a lot of
background noises; meanwhile, the background is not clear.
On the other hand, consider the saliency map generated by
the second baseline method. The background in the saliency
map is clear, while the saliency object is not well highlighted.
In contrast, compared with these two baseline methods, the
saliency map generated by our proposed method is clearer, re-
gardless of the background or the saliency object. Particularly,
the saliency object is well highlighted. These results validate
the effectiveness of the weight-based approach.

D. Limitation

Our method exposes many advantages, while it also bears
a major limitation. That is, its running time is somewhat
long. This section reports the average execution time of our

7Theoretically speaking, the upper bound can be +∞, we here empirically
use 100 as the upper bound for the baseline method, this is because a value
larger than 100 shall incur very blur effect, which is basically not benefit for
the segmentation operations.

(a) (b) (c) (d)
Fig. 14. Effectiveness of cross validation technique. (a) Input image; (b)
ground truth; (c) without the cross-validation; (d) our result.

algorithm and some representative algorithms. In our test,
we employ the widely used ASD [21] dataset. We run our
algorithm (and also the competitors) on this dataset to get
the overall execution time Ta, and then obtain the average
execution time on each image by computing Ta

N , where
N = 1000 refers to the number of images in ASD dataset.
All experiments are conducted on a machine with Intel(R)
Core(TM) i3 CPU @2.40 GHz and 3GB RAM.

Table II shows the results, in which the notation M denotes
Matlab, and C denotes C/C++. It can be seen that the execution
time of our algorithm is 18.832 seconds, while other methods
consume less time (e.g., GMR uses 2.461 seconds, MS uses
13.615 seconds, and PCA uses 16.342 seconds). It could
be mainly due to that Phases 1 and 2 in our solution are
time-consuming, since it self-adaptively chooses the filter
parameters for different scales and also chooses the foreground
and background seeds with a cross-validation scheme. Note
that, although the execution time is not the most important
evaluation metric for saliency detection, it is still interesting to
reduce the execution time. This could be another independent
and challenging work; in the future, we attempt to further
optimize our solution and compare with more algorithms.

E. Further Discussion

Furthermore, we would like to point out that, although this
paper focuses on bottom-up approaches (which are mostly
based on heuristics; sometimes they are called the hand-
crafted features based methods), it is interesting to give a
brief discussion on the deep learning based methods. For
completeness, we compare our method with several deep
learning based methods, including ELD [66], RFCN [67], DCL
[68], UCF [69]. Table III shows the F-measure and MAE
values on the PASCAL dataset. From this table, one can easily
see that this line of methods obtain higher F-measure values
and lower MAE values, which are better than our results.

Nevertheless, it is worth noting that, most of deep learning
based methods take a long time to train their models (e.g.,
DCL [68] consumes 25 hours on an NVIDIA Titan Black

(a) (b) (c) (d)
Fig. 15. Effectiveness of weight-based technique. (a) Input image; (b) fusion
by computing the average value; (c) fusion by computing the cross-product;
(d) our method.
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TABLE II
AVERAGE EXECUTION TIME

Method IT HS GMR MS PCA OURS
Time 1.152 2.135 2.461 13.615 16.342 18.832
Code M C M M M+C M

GPU and a 3.4GHz Intel processor, UCF [69] consumes 23
hours on an NVIDIA Titan X GPU and an i7-4790 CPU). On
the contrast, our method mainly relies on traditional heuristics
(just like the methods in [25], [34], [35], [37]–[40], [43],
[47]) and thus does not include this time-consuming training
process. We argue that both deep learning-based methods
and hand-crafted features based methods have their own
advantages. In the resource-constraint scenarios (e.g., time-
constraint and/or hardware-constraint), hand-crafted features
based methods could be more attractive; in the other case,
deep learning-based methods could be more attractive. In this
regard, our point of view is essentially consistent with that in
[25], [31], [43], [70].

TABLE III
EXTRA RESULTS

Method ELD RFCN DCL UCF Ours
F 0.771 0.832 0.810 0.818 0.622
MAE 0.121 0.118 0.115 0.116 0.179

XI. CONCLUSION

In this paper, we proposed a novel bottom-up salient detec-
tion mode that is based on multi-scale global cues. The central
idea is to use multi-scale segmentation while considering both
foreground and background priors. We analyzed and pointed
out the challenges to achieve our proposal, and presented a
three-phase solution. Our solution alleviated the challenges by
developing targeted strategies. Empirical results based on var-
ious datasets validated the feasibility and effectiveness of our
proposed solution. Also, we pointed out the main limitation
of our solution, revealing the future research direction.
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