
A Novel Model for Imbalanced Data Classification
Jian Yin1,4, Chunjing Gan1,4, Kaiqi Zhao2, Xuan Lin3, Zhe Quan3, Zhi-Jie Wang1,4,5,∗

1 School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
2 School of Computer Science, University of Auckland, Auckland, New Zealand

3 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
4 Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, China

5 National Engineering Laboratory for Big Data Analysis and Applications, Beijing, China
∗wangzhij5@mail.sysu.edu.cn

Abstract
Recently, imbalanced data classification has received much
attention due to its wide applications. In the literature, ex-
isting researches have attempted to improve the classifica-
tion performance by considering various factors such as the
imbalanced distribution, cost-sensitive learning, data space
improvement, and ensemble learning. Nevertheless, most of
the existing methods focus on only part of these main as-
pects/factors. In this work, we propose a novel imbalanced
data classification model that considers all these main as-
pects. To evaluate the performance of our proposed model,
we have conducted experiments based on 14 public datasets.
The results show that our model outperforms the state-of-the-
art methods in terms of recall, G-mean, F-measure and AUC.

Introduction
In recent years, binary classification for imbalanced data
has received much attention (Castro and Braga 2013; Lin
et al.) due to its wide applications in various domains
such as mortality prediction, and so on (Zhao et al. 2014;
Bhattacharya, Rajan, and Shrivastava 2017; Liu et al. 2018;
Nie et al. 2019; Liu et al. 2019; Lin et al. 2019; Xu et al.).
A main characteristic of this problem is that, most of data
samples belong to one class while the rest belong to the
other. Typically, the class with most of samples is known
as the majority class, while the other is known as the mi-
nority class, which is often of significant value (Weiss 2004;
Alam et al. 2018; Quan et al. 2019).

Previous studies (Seiffert et al. 2010; Alam et al. 2018)
have shown that conventional machine learning methods
may fail to address the imbalanced data classification prob-
lem. To alleviate this, a lot of methods have been proposed
(Barua et al. 2014; Castro and Braga 2013; Alam et al.
2018). Generally, the existing methods can be divided into
three categories: sampling methods (including undersam-
pling and oversampling methods) (Chawla et al. 2002; Liu,
Wu, and Zhou 2009; Barua et al. 2014), cost-sensitive learn-
ing methods (Thai-Nghe, Gantner, and Schmidt-Thieme
2010; Castro and Braga 2013), and ensemble learning meth-
ods (Seiffert et al. 2010; Alam et al. 2018; Fang et al. 2019).
Yet, there remains several issues for each of these categories.
For example: (i) Undersampling methods remove samples

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from the majority class at the risk of losing important sam-
ples. Oversampling methods replicate minority samples for
several times, and thus they often overfit the data (He and
Garcia 2008). (ii) For cost-sensitive learning methods, it is
hard to obtain misclassification cost parameter for minor-
ity and majority classes (Dumpala, Chakraborty, and Kop-
parapu 2018). (iii) For ensemble learning methods, the ma-
jority voting is commonly adopted, which may result in bi-
ased results due to the existence of “unstable samples” (Wu
et al. 2017). Unstable samples have even chance of being
assigned to each class label by different classifiers. Apart
from the three categories, recent studies (Wang et al. 2018)
indicate that, for imbalanced datasets, the limited training
samples and their surrounding data space can improve the
classification results.

In this paper, we propose a novel model to address the
above limitations for the imbalanced binary classification
problem. Our model integrates sampling, data space con-
struction, cost-sensitive learning, and ensemble learning in
a principle way. Specifically, it consists of four main compo-
nents: (i) Data block construction component, which aims to
divide the datasets into balanced data blocks using both un-
dersampling and oversampling. (ii) Data space improvement
component, which transforms the data space so that the data
samples can be close to its k nearest neighbors with the same
label, and separate the data samples from the other class
by a large margin. (iii) Adaptive weight adjustment compo-
nent, which obtains the class-wise weight for the ensemble
learning component, so as to alleviate the trouble incurred
by the “unstable samples”. (iv) Ensemble learning compo-
nents, which combines multiple base classifiers and obtains
the final results by weighted voting. To sum up, we make
two main contributions:

• We propose a novel model for imbalanced data classifica-
tion. To the best of our knowledge, this is the first attempt
to integrate the above four aspects together.

• We conduct extensive experiments to evaluate the perfor-
mance of our model. The results consistently show that
the proposed model achieves competitive performance
compared against several state-of-the-art models.

Next, we review previous works most related to ours.

Related Work
As mentioned before, previous works can be generally
classified into three categories: (i) sampling methods, (ii)
cost-sensitive learning methods, and (iii) ensemble learning
methods. In what follows, we review them briefly.

Sampling Methods
Sampling methods (Das, Krishnan, and Cook 2015) alle-
viate the class imbalance by adjusting the dataset, and so
they are essentially a kind of data preprocessing methods.
Particularly, they can be further categorized into two types:
undersampling and oversampling. Undersampling is to re-
move majority class samples from the data, so that the de-
gree of imbalance could be adjusted. The mainstream un-
dersampling methods are random undersampling (He and
Garcia 2008) and informed undersampling (Liu, Wu, and
Zhou 2009). Random undersampling removes a set of ma-
jority samples from the original data in a random manner
(He and Garcia 2008). This method is the simplest mecha-
nism for data distribution adjustment. However, it often in-
curs significant information loss (Liu, Wu, and Zhou 2009).
To alleviate the dilemma, informed undersampling meth-
ods (Liu, Wu, and Zhou 2009) combine other techniques
such as training multiple classifiers to adjust the imbal-
anced data distribution. Oversampling duplicates or gen-
erates minority samples to compensate the lack of minor-
ity samples. The mainstream oversampling methods include
random oversampling and synthetic oversampling. Random
oversampling randomly replicates a set of minority samples
from the original data. This sampling mechanism often over-
fits the data (Mease, Wyner, and Buja 2007). As for the syn-
thetic oversampling, it generates synthetic minority samples
using the existing samples. SMOTE (Chawla et al. 2002) and
MWMOTE (Barua et al. 2014) are representative synthetic
oversampling methods.

Compared to the works in this branch, our method uti-
lizes both random undersampling and random oversampling.
Specifically, we apply oversampling in the overall data block
construction phase to replicate the minority samples. How-
ever, in each block the minority samples appear for just once,
and so the overfitting phenomenon is alleviated to some ex-
tent. In addition, we use undersampling in the single data
block construction phase to include a part of majority sam-
ples in each data block. Overall, our method absorbs the ad-
vantages of undersampling and oversampling, alleviating in-
formation loss and overfitting.

Cost-Sensitive Methods
Cost-sensitive methods improve the classifier by applying
different costs for misclassifying different samples (Castro
and Braga 2013; Krawczyk 2016). For example, Thai et al.
(Thai-Nghe, Gantner, and Schmidt-Thieme 2010) propose
sampling techniques with cost-sensitive learning method in
support vector machine (SVM), and use cost-sensitive learn-
ing technique to optimize the cost ratio. Castro et al. (Cas-
tro and Braga 2013) incorporate prior knowledge into the
cost parameter, and apply such a parameter to a joint ob-
jective function to enhance imbalanced data classification.

Figure 1: The architecture of our model.

Nikolaou et al. (Nikolaou et al. 2016) incorporate the shifted
decision threshold and calibrated probability estimation for
cost-sensitive learning in imbalanced data classification. Wu
et al. (Wu et al. 2017) use cost-sensitive multi-set feature
learning to learn discriminant features. Compared to the
works in this branch, our method does not directly utilize
different costs in the classification process. Instead, we use
the cost for the “overall gain” calculation (detailed later in
the paper). This allows us to obtain a weighting mechanism
which maximizes the overall gain.

Ensemble Learning Methods
Ensemble learning methods utilize multiple weak classifiers,
and combine them to obtain a strong classifier for classifica-
tion (Hastie, Tibshirani, and Friedman 2009). There are also
many ensemble learning methods for imbalanced data clas-
sification. For example, Seiffert et al. (Seiffert et al. 2010)
propose a method that combines sampling techniques with
boosting algorithm for imbalanced data classification. Alam
et al. (Alam et al. 2018) use partitioning techniques to cre-
ate balanced data, and then apply an ensemble classifier for
classification and regression tasks. Compared to the works
in this branch, instead of assigning equal importance to each
classifier, our method incorporates class-wise weight into
the ensemble learning framework, which allows us to handle
incorrectly labelled data samples.

Besides conventional machine learning methods, there
emerges several imbalanced classification methods based on
deep learning (Khan et al. 2017; Huang et al. 2016). How-
ever, they focus on image data. Unlike image datasets, many
imbalanced datasets are limited in size and features, and thus
deep learning methods are not applicable in our setting.

Imbalance Data Classification Model
In this section, we first cover the architecture of our model,
and then elaborate and discuss each component.

Overview
Figure 1 depicts the architecture of our proposed model
named DDAE. As mentioned earlier, it contains four main
components: (i) Data Block Construction (DBC) compo-
nent, which is responsible for dividing the input data into
nearly balanced data blocks; (ii) Data Space Improvement

(DSI) component, which is used to make the k nearest neigh-
bors belong to the same class and separate the data sam-
ples from different classes by a large margin; (iii) Adaptive
Weight Adjusting (AWA) component, which is used to ad-
just the weights of samples from different classes; and (iv)
Ensemble Learning (EL) component, which is used to com-
bine multiple base classifiers by weighted voting.

The work flow of our method is as follows. Generally, we
partition a dataset into a training set and a test set. The first
step is to put the data from the training set into the DBC
component, obtaining a number of balanced data blocks.
Then, each data block is fed into the DSI component for
improving the data space. Meanwhile, the AWA component
computes the class-wise weights based on the data in each
block. After that, we apply a base classifier (kNN) to each
data block processed by DSI component, and the EL com-
ponent collaboratively use weights from AWA and the base
classifiers to generate the class labels. Finally, the trained
model is applied to the test set to perform the classification
tasks. Next, we present each component in detail.

Data Block Construction
We divide the data into multiple data blocks, so as to make
each data block balanced. In a nutshell, our method absorbs
the advantages of undersampling and oversamping methods,
alleviating information loss and overfitting to some extent.
Specifically, we partition the majority samples into several
subsets, each roughly of the same size as the set of minority
samples. Then, we use oversampling to replicate the minor-
ity samples and combine each copy with each subset of ma-
jority samples. As we only use part of the majority samples
in each data block, it can be considered as the undersampling
of the majority samples.

Formally, let Nmin (resp., Nmaj) be the number of mi-
nority (resp., majority) samples. Let Smin (resp., Smaj)
be the set of minority (resp., majority) samples. Let δ =
Nmaj/Nmin be the imbalanced ratio. Algorithm 1 shows
the pseudocodes of data block construction process. In this
algorithm, δ∗ can be computed by bδc or dδe.

Algorithm 1: Data blocks construction
Input: Dataset D
Output: A set B of δ∗ data blocks

1: Obtain Nmin, Nmaj , Smin, and Smaj based on D;
2: Divide Smaj into δ∗ chunks {C1, C2, ..., Cδ∗};
3: for i = 1 to δ∗ do
4: Put Ci and Smin into an empty data block Bi;
5: end for
6: return B = {B1, B2, ...}

Data Space Improvement
To improve the data space, our model incorporates the met-
ric learning technique. Specifically, we adopt the large mar-
gin nearest neighbor (LMNN) algorithm (Weinberger and
Saul 2009). This algorithm learns a transformation matrix L
and incorporates a loss function ϕ(L), so that it can push

data samples of different classes away from the target sam-
ple, and pull data samples that have the same class label
close to the target sample. Specifically, the loss function is
as follows. ϕ(L) = (1−λ)ϕpull(L)+λϕpush(L) where λ is
a positive real number used as the weight for these two items
(i.e., pull and push). The first item ϕpull(L) is computed as
ϕpull(L) =

∑
i,j∈N(i) ‖L(xi − xj)‖2, where N(i) is the k

nearest neighbor of data i with the same class label as i. It
penalizes large distances between the data sample and its k
nearest neighbors with the same class label. The second item
penalizes small distances between the data sample and oth-
ers with different class label. It is computed as ϕpush(L) =∑
i,j,l(1−δil)max{0, 1+‖L(si − sj)‖2−‖L(si − sl)‖2},

where δil is used to determine whether data samples si and
sl belong to the same class or not. More specifically, if they
are from the same class, then δil = 1; otherwise, δil = 0.

Adaptive Weight Adjustment
We first introduce some concepts and then present our adap-
tive weight adjustment (AWA) component in detail. For each
data sample s, its k nearest neighbors may be positive or
negative. When applying kNN classifiers, the label of s may
be ambiguous if the number of its positive and negative
neighbors are roughly the same. More formally, we refer
to the absolute difference between the number of negative
neighbors and that of positive neighbors as positive-negative
count difference (PNCD). If the PNCD is large than a thresh-
old τ (it is conservatively set to 1 when k is odd; otherwise,
it is set to 2 in our experiments), we refer to such a sam-
ple s as the stable sample. Otherwise, we refer to it as the
unstable sample.

Most of the ensemble learning methods assign the same
weight to all the classifiers, and obtain the final result by
majority voting (Zhang and Ma 2012). Such a method may
incur biased results, due to the existence of unstable sam-
ples. To address this issue, we suggest an adaptive weight
adjustment mechanism to obtain better classification results.
In particular, we first introduce the unstable confusion ma-
trix, as shown in Table 1. In the matrix, c1,0 (resp., c1,1)
denotes the number of unstable positive samples which are
predicted as negative (resp., positive). In contrast, c0,0 (resp.,
c0,1) denotes the number of unstable negative samples which
are predicted as negative (resp., positive). Let Spos (resp.,
Sneg) be the set of samples whose real labels are posi-
tive (resp., negative). Let Sgrt (resp., Ssml) be the number
of unstable samples whose positive predictions is greater
(resp., smaller) than negative predictions. One can obtain
the values in the matrix as follows: c1,0 = |Spos ∩ Ssml|;
c1,1 = |Spos ∩ Sgrt|; c0,0 = |Sneg ∩ Ssml|; and c0,1 =
|Sneg ∩ Sgrt|.

Table 1: Unstable confusion matrix

Sample Predict as negative Predict as positive
Positive c1,0 c1,1
Negative c0,0 c0,1

In imbalanced data classification, it is usual that the cost

(or importance) of the minority sample is larger than that of
the majority sample. Without loss of generality, we assume
the cost ratio between minority samples and majority sam-
ples is x. The basic idea of AWA is to adjust the weights
for the positive and negative outputs, and to maximize the
overall gain for the unstable confusion matrix.

In the initial stage, the default weight, denoted by Wd is
set to 1 in this paper. That is, we set the weight pair (1,1) as
the weights for negative and positive outputs, respectively.
Then, we attempt to adjust the weight of positive (resp.,
negative) outputs. Let gainmat be the overall gain when we
maintain the default weight. Let gainpos (resp., gainneg) be
the overall gain if we increase the weight of positive (resp.,
negative) output. We compute these gains as follows.

{
gainmat = x ∗ (c1,1 − c1,0) + (c0,0 − c0,1)
gainpos = x ∗ (c1,1 + c1,0) + (−c0,0 − c0,1)
gainneg = x ∗ (−c1,1 − c1,0) + (c0,0 + c0,1)

(1)

After that, we adjust the weight according to the maxi-
mum gain. If the maximum gain is gainmat, then we set
the new weight Wn = Wd for both negative and positive
outputs. Otherwise, we choose the maximum gain gainpos
(or gainneg), and update its corresponding weight weight to
Wn = Wt + ∆, where ∆ is a small positive real number,
and Wt is the weight threshold, which is computed as

Wt =

{
(δ

∗

2 + 1)/(δ
∗

2 − 1), if δ∗ mod 2 = 0

(b δ
∗

2 c+ 1)/(b δ
∗

2 c), otherwise
(2)

For example, if gainpos is the maximum one, the weight pair
is updated to (Wd,Wn), and vice versa.

Finally, given the weight pairs obtained from all the
data blocks, the overall weight pair, denoted by Wo =
(W 0

o ,W
1
o), is obtained based on the frequency of different

weight pairs. Particularly, if the ratio between the number of
non-default weight pairs and the number of all weight pairs
is smaller than a threshold γ (it is empirically set to 0.2 in
the experiments), then we set Wo = (Wd,Wd). Otherwise,
we further determine the number of “negative” non-default
weight pairs, which is in the form of (Wn,Wd), and the num-
ber of “positive” non-default weight pairs, which is in the
form of (Wd,Wn). If the former is larger than the latter, we
set Wo = (Wn,Wd); otherwise, we set Wo = (Wd,Wn).
Note that, we set Wo = (Wd,Wn) when those two numbers
are equal, since the cost of minority (i.e., positive) samples
is larger than that of the majority (i.e., negative) samples.

Ensemble Learning
In ensemble learning, multiple classifiers together with the
voting mechanism are usually used to obtain the final pre-
diction results. As for binary classification problem, assume
that there are m classifiers {f0, f2, ..., fm−1}, and 2 classes
{c0, c1}. If the ith classifier whose output is cj for sample s,
then fij(s) = 1, where i ∈ {0, 1, ...,m− 1} and j ∈ {0, 1};
otherwise, it is 0. The voting mechanism can be described as
follows.

F (s) =

{
c0,

∑m−1
i=0 fi

0(s) ≥
∑m−1
i=0 fi

1(s)
c1, otherwise

(3)

Unlike most of existing methods, which just count the
number of positive and negative labels, we use the weight
Wo obtained in the AWA component to enhance the final
results. Specifically, our voting mechanism is as follows.

F (s) =

{
c0, W 0

o ∗
∑m−1
i=0 fi

0(s) ≥W 1
o ∗
∑m−1
i=0 fi

1(s)
c1, otherwise

(4)

Experiments
Experimental Setup
I Datasets. In our experiments, we employ 14 widely used
datasets. Among them, six datasets (including cm1, kc3,
mw1, pc1, pc3, pc4) are from OpenML (Vanschoren et
al. 2013), and they are open datasets for software defect
detection. The other eight datasets (including yeast1vs7,
abalone9vs18, yeast6, abalone19, poker89vs6, wine3vs5,
abalone20, and poker8vs6) are from KEEL repository
(Fernández, del Jesus, and Herrera 2009). Among them,
Yeast datasets are often used for predicting cellular local-
ization sites of proteins. The abalone datasets are used for
predicting the age of abalone. The two poker datasets are
used for poker hands prediction while the wine dataset is
used for wine quality prediction.

All the 14 datasets have various characteristics in terms of
instances, features and IR (Imbalance Ratio). The detailed
descriptions of these datasets are summarized in Table 2. In
addition, similar to previous works, for all experiments we
randomly split datasets into two parts: training set (70%) and
test set (30%).

Table 2: Summary of the datasets. Note that, the names of
the last two datasets are somewhat long, we use superscripts
to mark them, where a is short for the ”winequalityred3vs5”
dataset, and b is short for the ”abalone20vs8910” dataset.

Datasets # instances # features IR

cm1 497 21 9.354
kc3 458 39 9.651

mw1 403 37 12
pc1 1109 21 13.4
pc3 1563 37 8.769
pc4 1458 37 7.191

yeast1vs7 459 7 14.3
abalone9vs18 731 8 16.405

yeast6 1484 8 41.4
abalone19 4174 8 129.438

poker89vs6 1485 10 58.4
poker8vs6 1477 10 85.882
wine3vs5a 691 11 68.1
abalone20b 1916 8 72.692

I Baselines. To evaluate the performance of our method, we
compare it with the following state-of-the-art methods.

Table 3: G-mean, F-measure and AUC for IML, RP, CAdaMEC, MWMOTE and Our method (DDAE) on the 14 public datasets.
Note that, NA denotes invalid result.

Dataset
Method IML RP CAdaMEC MWMOTE DDAE

G-mean F-ms AUC G-mean F-ms AUC G-mean F-ms AUC G-mean F-ms AUC G-mean F-ms AUC
cm1 0.52 0.287 0.589 0.758 0.567 0.762 0.591 0.38 0.654 0.623 0.407 0.663 0.775 0.58 0.776
kc3 0.805 0.652 0.814 0.81 0.604 0.811 0.772 0.625 0.792 0.749 0.563 0.764 0.823 0.625 0.823
mw1 0.635 0.345 0.653 0.701 0.39 0.702 0.721 0.446 0.728 0.721 0.446 0.728 0.815 0.588 0.817
pc1 0.657 0.408 0.679 0.803 0.556 0.807 0.7 0.504 0.731 0.767 0.586 0.782 0.819 0.573 0.83
pc3 0.578 0.342 0.582 0.726 0.513 0.726 0.721 0.519 0.731 0.646 0.426 0.671 0.743 0.536 0.744
pc4 0.725 0.574 0.73 0.873 0.767 0.873 0.826 0.699 0.828 0.772 0.621 0.778 0.804 0.676 0.813
yeast1vs7 0.716 0.471 0.718 0.701 0.449 0.702 0.755 0.603 0.78 0.745 0.574 0.768 0.841 0.649 0.841
abalone9vs18 0.709 0.375 0.719 0.695 0.345 0.702 0.697 0.49 0.736 0.7 0.51 0.74 0.814 0.603 0.824
yeast6 0.798 0.407 0.805 0.779 0.333 0.783 0.703 0.5 0.744 0.829 0.636 0.841 0.883 0.421 0.883
abalone19 0.626 0.037 0.628 0.771 0.065 0.773 0 NA 0.5 0.407 0.143 0.579 0.839 0.075 0.852
wine3vs5 0 NA 0.5 0.51 0.086 0.557 0 NA 0.5 0 NA 0.49 0.55 0.156 0.62
abalone20 0.802 0.252 0.802 0.898 0.314 0.904 0.628 0.385 0.693 0.446 0.227 0.598 0.964 0.556 0.965
poker89vs6 0.783 0.317 0.794 0.633 0.132 0.651 0.913 0.862 0.917 0.816 0.714 0.833 0.968 0.517 0.968
poker8vs6 0.615 0.08 0.628 0.764 0.128 0.764 0.707 0.556 0.75 0.707 0.556 0.75 0.95 0.317 0.951

• IML (Wang et al. 2018): It constructs a stable neigh-
borhood data space by using the iterative metric learning
technique, and it chooses the k-nearest neighbors (kNN)
algorithm as the classifier.

• RP (Alam et al. 2018): It is an recursive based ensem-
ble method for imbalanced data classification problem. It
converts the imbalanced data classification problem into
a variety of balanced data classification problems. In the
meanwhile, it uses the majority voting as the ensemble
rule to build an ensemble classifier.

• CAdaMEC (Nikolaou et al. 2016): It is based on a
cost-sensitive learning method (AdaMEC (Ting 2000;
Nikolaou and Brown 2015)) with proper calibration, and
it uses decision tree as the classifier.

• MWMOTE (Barua et al. 2014): It is a synthetic oversam-
pling method for imbalanced data classification problem.
Each sample from the minority class is assigned a weight
according to its Euclidean distance to the nearest majority
class sample. Then, it generates synthetic samples from
the weighted minority class.

I Evaluation metrics. For the imbalanced data classification
problem, two widely accepted common senses for a good
model are:

1. It should achieve high performance on comprehensive ac-
curacy metrics (e.g., G-mean, F-measure, AUC) that con-
sider samples from both the majority and the minority
classes.

2. Without harming the comprehensive metrics, it is essen-
tial for the model to correctly predict the labels for as
many samples from the minority class as possible. This
is because applications such as software defect detection,
the minority class (e.g., software defect) is considered to
be much more important than the majority class.
A common setting in imbalanced classification is that

the positive samples often refer to the minority class sam-
ples while the negative samples refer to the majority class
(He and Garcia 2008). Based on this setting and the above
common senses, we adopt the following metrics: Recall,

G-mean, Fβ-measure and AUC, as do the prior works
(He and Garcia 2008; Wang et al. 2018; Alam et al. 2018;
Nikolaou et al. 2016). Let TP, FN,FP, TN be the true
positives, false negatives, false positives and true negatives,
respectively. The above four metrics are defined as fol-
lows: (i) Recall = TP

TP+FN , is motivated by the second
common sense and measures how many positive (minor-
ity) samples are correctly classified. Another explanation
of recall is the probability of detection for positive (minor-
ity) samples (Wang et al. 2018). In this paper, we use (ii)
G-mean =

√
Recall ∗ TNR, which combines the recall

for both classes. Here, TNR = TN
TN+FP denotes the re-

call for the negative (majority) class. (iii) Fβ −measure =

(1+β2) Precision∗Recall
β2∗Precision+Recall , which considers both precision

(TP
TP+FP) and recall, and thus is a comprehensive metric of

classification accuracy. Here, β trades precision for recall.
The higher the β is, the more important the Recall is. Be-
cause it is often more desirable to correctly classified the
minority class in the imbalanced classification problem, we
set β = 2. For simplicity, we use F-ms in the following ex-
periments to denote Fβ −measure with β = 2. (iv) AUC
refers to the area under the ROC curve. In the ROC curve,
the x-axis corresponds to the false positive rate while the
y-axis corresponds to the true positive rate. One attractive
property of AUC is that it is not sensitive to class distri-
butions (Fawcett 2004), thus it is appropriate for the imbal-
anced classification setting.

I Parameter settings. Since both IML (Wang et al. 2018)
and MWMOTE (Barua et al. 2014) use kNN classifiers, we
vary k from 1 to 10, and we adopt the values of k that achieve
the best performance. Other parameters are the same as that
in the original papers (Wang et al. 2018; Barua et al. 2014).
For our model, we tune each parameter by fixing the others.
Specifically, we vary λ within the range of [0.1, 1] and select
the values that lead to the best performance. Similarly, the
number of blocks can be either bIRc or dIRe and we set the
value that achieves the best performance. Besides, we set γ

to 0.2 for all datasets and the cost ratio to dIRe.

Overall Comparison against State-Of-The-Arts
We first report the performance of all the methods in terms
of comprehensive accuracy metrics in Table 3. In general,
our proposed method DDAE outperforms the state-of-the-
art methods on most of the 14 datasets. Especially in half
of the datasets (cm1, mw1, pc3, yeast1vs7, abalone9vs18,
wine3vs5, abalone20), DDAE consistently performs better
than its competitors. It improves the G-mean, F2 and AUC
by up to 18.6%, 17.1%, 18.7%, respectively. The worst case
for our model is obtained on the pc4 dataset, in which the
imbalance ratio of pc4 is the smallest among all the datasets
as shown in Table 2. This phenomenon implies that our pro-
posed method tends to find out as many positive (minority)
samples as possible, and works better on highly skewed class
distributions. Nevertheless, the DDAE is still compatible – it
achieves close G-mean, F2 and AUC scores to the best base-
lines and outperforms two of the other baselines. It is also
worth noting that, on some of the datasets such as wine3vs5,
the number of positive samples are extremely small. IML,
CAdaMEC and MWMOTE classify all the samples as neg-
ative and fail to detect any of the positive samples. This re-
sults in a 0 G-mean and an invalid F-measure.

In order to showcase the capability of our model on de-
tecting positive samples, we report the recall for all the
methods on the 14 datasets in Table 4. DDAE performs the
best in all cases compared to the baselines. This essentially
demonstrates that our method is much more effective for
identifying positive samples. Especially, on several datasets
(e.g., abalone19, poker89vs6), DDAE achieves 100% recall,
which significantly outperforms the competitors. Although
some of the baselines (e.g., RP, CAdaMEC) perform well
in the comprehensive accuracy metrics, they are not able to
identify positive samples correctly.

Combining the observation from Table 3 and Table 4,
the proposed method improves the recall significantly while
maintaining competible performance in terms of compre-
hensive metrics such as G-mean, F2 and AUC. In many of
the cases, it achieves even higher G-mean and AUC than the
state-of-the-art methods.

Impact of parameters
Impact of λ In the loss function φ(L), the parameter λ is
used to determine the relative weight between the pull and
push terms. It is important to investigate the impact of λ. To
achieve this, we plot the results by varying λ from 0.1 to 1
on the cm1 and mw1 datasets in Figure 2(a) and 3(a). In gen-
eral, the curves of different metrics are in similar trends in
the same dataset, but the model acts differently on different
datasets, i.e., it achieves the best performance when λ = 0.1
and λ = 0.3 on cm1 and mw1, respectively. This is because
the data distribution of different datasets are quite different.
If the samples from the two classes are highly overlapped
in the original feature space, pushing the two classes away
from each other is of great importance, i.e., we should set λ
at a large value. In contrast, we should decrease λ to make
samples from the same class closer to each other when many

Table 4: Recall for IML, RP, CAdaMEC, MWMOTE and
Our method (DDAE) on the 14 public datasets.

Datasets IML RP CAdaMEC MWMOTE DDAE

cm1 0.313 0.688 0.375 0.438 0.813
kc3 0.692 0.846 0.615 0.615 0.846
mw1 0.5 0.75 0.625 0.625 0.75
pc1 0.852 0.889 0.519 0.63 0.963
pc3 0.51 0.735 0.612 0.49 0.735
pc4 0.814 0.881 0.78 0.678 0.932
yeast1vs7 0.667 0.667 0.583 0.583 0.833
abalone9vs18 0.6 0.6 0.5 0.5 0.7
yeast6 0.7 0.7 0.5 0.7 0.9
abalone19 0.667 0.833 0 0.167 1
wine3vs5 0 0.333 0 0 0.333
abalone20 0.8 1 0.4 0.2 1
poker89vs6 0.667 0.5 0.833 0.667 1
poker8vs6 0.5 0.75 0.5 0.5 1

of the minority samples do not fall in the area dominated by
the majority class.

Impact of γ The parameter γ is used as a threshold term
to show the unstable ratio in the data. This parameter can
be used to decide whether we adopt the AWA component or
not. In this experiment, we vary γ from 0.1 to 1 on the cm1
and mw1 datasets. As we can see in Figure 2(b) and 3(b), the
performance of the model becomes stable as γ is above 0.3,
and γ = 0.2 achieves the best performance in both datasets.
For the cm1 dataset, when γ is above 0.2, recall, G-mean,
F-measure and AUC drop by 0.25, 0.077, 0.085 and 0.062,
respectively. For mw1 dataset, although recall increases by
moving γ from 0.2 to 0.3, it sacrifices the F-measure by
around 0.058. If we take the overall performance into con-
sideration, the best choice is γ = 0.2.

Impact of cost ratio In cost-sensitive learning methods,
how to choose an appropriate cost ratio between the two
classes remains a problem without any additional informa-
tion. The cost ratio depicts the importance of the costs be-
tween the two classes. For example, when the cost ratio is
set to 1, we treat the cost of samples from both classes are
of the same importance. Therefore, assigning an arbitrary
cost ratio to the data samples is controversial. However, as
we can see in 2(c) and 3(c), due to our proposed weighting
scheme the final results are insensitive to the choice of cost
ratio when it is in a reasonable range, e.g., from 2 to the
dataset’s imbalance ratio. This experiment implies that our
weighting scheme enhances the flexibility in choosing the
weight without any prior information for the data.

Impact of # blocks In this part, we conduct experiments to
illustrate the impact of the number of blocks on the cm1 and
mw1 datasets. Blocks are used for adjusting the imbalanced
data distribution. As we can see from figures 2(d) and 3(d),
as the number of blocks grows, the four metrics share the
same trend. Notably, in both datasets, the model achieves
good performance when the number of blocks is close to
the imbalance ratio (10 for cm1, 12 for mw1). In general,
with a small number of blocks, samples in each block are

1 3 5 7 9 11
blocks

0.4

0.5

0.6

0.7

0.8

Va
lu

e@
m

w1

Recall G-mean F-ms AUC

0.1 0.3 0.5 0.7 0.90.4

0.5

0.6

0.7

0.8
Va

lu
e@

cm
1

Recall G-mean F-ms AUC

(a) Impact of λ

0.1 0.3 0.5 0.7 0.90.4

0.5

0.6

0.7

0.8

Va
lu

e@
cm

1

Recall G-mean F-ms AUC

(b) Impact of γ

1 3 5 7 9
cost ratio

0.4

0.5

0.6

0.7

0.8

Va
lu

e@
cm

1

Recall G-mean F-ms AUC

(c) Impact of cost ratio

1 3 5 7 9
blocks

0.1

0.3

0.5

0.7

Va
lu

e@
cm

1

Recall G-mean F-ms AUC

(d) Impact of # blocks

Figure 2: Impact of parameters on cm1.

0.1 0.3 0.5 0.7 0.90.4

0.5

0.6

0.7

0.8

Va
lu

e@
m

w1

Recall G-mean F-ms AUC

(a) Impact of λ

0.1 0.3 0.5 0.7 0.90.4

0.5

0.6

0.7

0.8
Va

lu
e@

m
w1

Recall G-mean F-ms AUC

(b) Impact of γ

1 3 5 7 9 11
cost ratio

0.4

0.5

0.6

0.7

0.8

Va
lu

e@
m

w1

Recall G-mean F-ms AUC

(c) Impact of cost ratio

1 3 5 7 9 11
blocks

0.4

0.5

0.6

0.7

0.8

Va
lu

e@
m

w1

Recall G-mean F-ms AUC

(d) Impact of # blocks

Figure 3: Impact of parameters on mw1.

still imbalanced, and thus result in significant performance
degradation. We can also notice that, the model achieves
promising results when the number of blocks is 4 and 5 on
the cm1 dataset, and 6, 7, 9, 10 and 11 on the mw1 dataset,
respectively. These observations imply the possibility to use
a smaller number of blocks rather than the imbalance ratio.
Although a smaller number of blocks brings imbalance to
some extent, the AWA component is effective to adjust the
weights of the slightly imbalanced samples.

Ablation Study
Our model contains four main components: Data Block
Construction (DBC), Data Space Improvement (DSI), Adap-
tive Weight Adjustment (AWA), and Ensemble Learning
(EL). To study the effectiveness of these components, we
implement several variants of our model: (i) DDAE-DBC,
which is obtained by removing the DBC component; in fact,
the variant DDAE-DBC also removes AWA and EL, since
AWA and EL depend on DBC; (ii) DDAE-DSI, which is ob-
tained by removing the DSI component; and (iii) DDAE-
AWA, which is obtained by removing the AWA component.
Note that, when the DBC component is used, it is neces-
sary to use the EL component. Therefore, there is no such
a variant “DDAE-EL”. Figure 4 plots the experimental re-
sults on the cm1 and mw1 datasets. We can observe that
all these variants perform significantly worse than the full
fledged version (i.e., DDAE) on both datasets, regardless of
G-mean, F-measure and AUC. The recall of DDAE is lower
than DDAE-AWA on the mw1 dataset. This is because recall
only focuses on the minority class while the AWA compo-
nent always considers the overall gain from both classes –
improving the recall brings in more false positives, which
may decrease overall metrics such as F-measure. Overall,
the ablation study essentially demonstrates that the proposed
method integrates these components in a principle way to

Recall G-mean F-ms AUC0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e@
cm

1

Recall G-mean F-ms AUC0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e@
m

w1

overall results without DBC without AWA without DSI

Recall G-mean F-ms AUC0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e@
cm

1

Recall G-mean F-ms AUC0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e@
m

w1

overall results without DBC without AWA without DSI

(a) cm1 dataset
Recall G-mean F-ms AUC0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e@
cm

1

Recall G-mean F-ms AUC0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e@
m

w1

overall results without DBC without AWA without DSI

(b) mw1 dataset

Figure 4: Ablation Study.

take the advantages of each part. In addition, we also observe
that DDAE-DBC performs the worst. This reflects that the
DBC component plays a much more important role in terms
of the overall performance, because it provides the flexibility
to support AWA and EL.

Conclusions
We present a novel model that consists of four components,
which collaboratively contribute to classifying imbalanced
data more effectively. We have conducted experiments on 14
public datasets, showing that our model is effective and com-
petitive, compared with state-of-the-art methods. This study
opens several future research directions include 1) extending
the proposed model to multi-class classification problems;
2) utilizing clustering methods for improving classification
results; 3) incorporating other classifiers (e.g., SVM, neural
networks) into our model; 4) extending the proposed model
to other kinds of data, for example, image data, time series
data.

Acknowledgment
This work was supported by the National Key R&D Pro-
gram of China (2018YFB1004400), NSFC (U1811264,
61972425, 61602166, U1611264, U1711261, U1711262).

References
Alam, T.; Ahmed, C. F.; Zahin, S. A.; Khan, M. A. H.; and
Islam, M. T. 2018. An effective ensemble method for multi-
class classification and regression for imbalanced data. In
ICDM, 59–74.
Barua, S.; Islam, M. M.; Yao, X.; and Murase, K. 2014.
Mwmote–majority weighted minority oversampling tech-
nique for imbalanced data set learning. TKDE 26(2):405–
425.
Bhattacharya, S.; Rajan, V.; and Shrivastava, H. 2017. Icu
mortality prediction: A classification algorithm for imbal-
anced datasets. In AAAI.
Castro, C. L., and Braga, A. P. 2013. Novel cost-sensitive
approach to improve the multilayer perceptron performance
on imbalanced data. TNNLS 24(6):888–899.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. Smote: synthetic minority over-sampling tech-
nique. JAIR 16:321–357.
Das, B.; Krishnan, N. C.; and Cook, D. J. 2015. RACOG and
wracog: Two probabilistic oversampling techniques. TKDE
27(1):222–234.
Dumpala, S. H.; Chakraborty, R.; and Kopparapu, S. K.
2018. A novel data representation for effective learning in
class imbalanced scenarios. In IJCAI, 2100–2106.
Fang, L.; Luo, Y.; Feng, K.; Zhao, K.; and Hu, A. 2019.
Knowledge-enhanced ensemble learning for word embed-
dings. In WWW.
Fawcett, T. 2004. Roc graphs: Notes and practical consider-
ations for researchers. Machine learning 31(1):1–38.
Fernández, A.; del Jesus, M. J.; and Herrera, F. 2009. Hier-
archical fuzzy rule based classification systems with genetic
rule selection for imbalanced data-sets. IJAR 50(3):561–
577.
Hastie, T.; Tibshirani, R.; and Friedman, J. 2009. The Ele-
ments of Statistical Learning: Data Mining, Inference, and
Prediction. Berlin, Germany: Springer, 2 edition.
He, H., and Garcia, E. A. 2008. Learning from imbalanced
data. TKDE (9):1263–1284.
Huang, C.; Li, Y.; Change Loy, C.; and Tang, X. 2016.
Learning deep representation for imbalanced classification.
In CVPR, 5375–5384.
Khan, S. H.; Hayat, M.; Bennamoun, M.; Sohel, F. A.; and
Togneri, R. 2017. Cost-sensitive learning of deep feature
representations from imbalanced data. TNNLS 29(8):3573–
3587.
Krawczyk, B. 2016. Cost-sensitive one-vs-one ensemble for
multi-class imbalanced data. In IJCNN, 2447–2452.
Lin, X.; Quan, Z.; Wang, Z.; Huang, H.; and Zeng, X. A
novel molecular representation with bigru neural networks
for learning atoms. Breifings in Bioinformaitics.
Lin, X.; Wang, Z.; Ma, L.; and Wu, X. 2019. Saliency de-
tection via multi-scale global cues. IEEE Trans. Multimedia
21(7):1646–1659.

Liu, W.; Wang, Z.; Yao, B.; Nie, M.; Wang, J.; Mao, R.; and
Yin, J. 2018. Geographical relevance model for long tail
point-of-interest recommendation. In DASFAA.
Liu, W.; Wang, Z.; Yao, B.; and Yin, J. 2019. Geo-alm: Poi
recommendation by fusing geographical information and
adversarial learning mechanism. In IJCAI.
Liu, X.-Y.; Wu, J.; and Zhou, Z.-H. 2009. Exploratory
undersampling for class-imbalance learning. TSMCB
39(2):539–550.
Mease, D.; Wyner, A. J.; and Buja, A. 2007. Boosted
classification trees and class probability/quantile estimation.
JMLR 8(Mar):409–439.
Nie, M.; Wang, Z.; Gan, C.; Quan, Z.; Yao, B.; and Yin,
J. 2019. An improved hierarchical datastructure for nearest
neighbor search. In AAAI.
Nikolaou, N., and Brown, G. 2015. Calibrating adaboost for
asymmetric learning. In International Workshop on Multiple
Classifier Systems, 112–124.
Nikolaou, N.; Edakunni, N.; Kull, M.; Flach, P.; and Brown,
G. 2016. Cost-sensitive boosting algorithms: Do we really
need them? Machine Learning 104(2-3):359–384.
Quan, Z.; Wang, Z.; Le, Y.; Yao, B.; Li, K.; and Yin, J.
2019. An efficient framework for sentence similarity mod-
eling. TASLP 27(4):853–865.
Seiffert, C.; Khoshgoftaar, T. M.; Hulse, J. V.; and Napoli-
tano, A. 2010. Rusboost: A hybrid approach to alleviating
class imbalance. TSMC-A 40(1):185–197.
Thai-Nghe, N.; Gantner, Z.; and Schmidt-Thieme, L. 2010.
Cost-sensitive learning methods for imbalanced data. In
IJCNN, 1–8.
Ting, K. M. 2000. A comparative study of cost-sensitive
boosting algorithms. In ICML.
Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo, L.
2013. Openml: Networked science in machine learning.
SIGKDD Explorations 15(2):49–60.
Wang, N.; Zhao, X.; Jiang, Y.; and Gao, Y. 2018. Iterative
metric learning for imbalance data classification. In IJCAI,
2805–2811.
Weinberger, K. Q., and Saul, L. K. 2009. Distance met-
ric learning for large margin nearest neighbor classification.
JMLR 10(Feb):207–244.
Weiss, G. M. 2004. Mining with rarity: a unifying frame-
work. ACM Sigkdd Explorations Newsletter 6(1):7–19.
Wu, F.; Jing, X.-Y.; Shan, S.; Zuo, W.; and Yang, J.-Y. 2017.
Multiset feature learning for highly imbalanced data classi-
fication. In AAAI.
Xu, Y.; andZ. Wang, B. Y.; Gao, X.; Xie, J.; and Guo.,
M. Skia: Scalable and efficient in-memory analytics for big
spatial-textual data. TKDE.
Zhang, C., and Ma, Y. 2012. Ensemble learning. In Ensem-
ble machine learning. 1–34.
Zhao, K.; Cai, Z.; Sui, Q.; Wei, E.; and Zhu, K. Q. 2014.
Clustering image search results by entity disambiguation. In
ECML-PKDD.

