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Abstract This paper studies the constrained-space probabilistic threshold range
query (CSPTRQ) for moving objects, where objects move in a constrained-space

(i.e., objects are forbidden to be located in some specific areas), and objects’ loca-
tions are uncertain. We differentiate two forms of CSPTRQs: explicit and implicit
ones. Specifically, for each moving object o, we model its location uncertainty as
a closed region, u, together with a probability density function. We also model
a query range, R, as an arbitrary polygon. An explicit query can be reduced to
a search (over all the u) that returns a set of tuples in form of (o, p) such that
p ≥ pt, where p is the probability of o being located in R, and 0 ≤ pt ≤ 1 is a given
probabilistic threshold. In contrast, an implicit query returns only a set of objects
(without attaching the specific probability information), whose probabilities being
located in R are higher than pt.

The CSPTRQ is a variant of the traditional probabilistic threshold range query
(PTRQ). As objects moving in a constrained-space are common, clearly, it can also
find many applications. At the first sight, our problem can be easily tackled by ex-
tending existing methods used to answer the PTRQ. Unfortunately, those classical
techniques are not well suitable for our problem, due to a set of new challenges.
Another method used to answer the constrained-space probabilistic range query
(CSPRQ) can be easily extended to tackle our problem, but a simple adaptation of
this method is inefficient, due to its weak pruning/validating capability. A casual
trifle, shopping in a supermarket, gives us the initial inspiration, and then we develop
targeted solutions, which are easy-to-understand and also easy-to-implement. We
demonstrate the efficiency and effectiveness of the proposed methods through ex-
tensive experiments. Meanwhile, from the experimental results, we further perceive
the difference between explicit and implicit queries; this finding is interesting and
also meaningful especially for the topics of other types of probabilistic threshold
queries.
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1 Introduction

The range query as one of fundamental operations in moving object search systems
has attracted a lot of attention in the past decades [43,12,40,36,31,20,24,19,18,
14,3,9,26]. A database server usually only stores the discrete location information
due to various reasons such as the limited network bandwidth and battery power
of the mobile devices [23,6]. This fact implies that the current specific position
of a moving object o is uncertain before obtaining the next (sampled) location
information, which can lead to the incorrect answer if we simply take the recorded
location (stored in the database) as the current position of o. In order to tackle
the aforementioned problem, the idea of incorporating uncertainty into the moving
object data has been proposed [38]. A widely-used uncertainty model is to use
a closed region (known as uncertainty region) together with a probability density
function (PDF), which is used to denote the object’s location distribution[38,6].
Figure 1(a) illustrates this model, in which the integration of PDF inside the
uncertainty region equals one.

From then on, probabilistic range query (PRQ) as a derivative version of the
traditional range query was naturally presented, and many outstanding works
addressed this problem (see e.g., [8,27,23,33,4,28,35,6,42]). In existing results, one
of important branches is to address the PRQ over objects moving freely (without
predefined routes) in two-dimensional (2D) space (see e.g., [4,42,6]). Our work
generally falls in the aforementioned branch.

Motivations. A common fact is that users usually are interested in the objects
being located in the query range R with higher probabilities. Several classical
papers (see e.g., [4,30,44]) already considered this fact and studied the probabilis-
tic threshold range query (PTRQ). Existing results are mainly developed for the
case of non-constrained 2D space (i.e., no obstacles exist). To our knowledge, the
constrained-space probabilistic threshold range query (CSPTRQ) has not been
studied yet. Moreover, we realize that more and more intelligent terminals have
been configured with touch screens by which one can input the query requirement
using the finger or interactive pen [1,10]. An obvious fact is that a more generic
shaped query range should be better for the user experience, and can also improve
the flexibility of a system itself. Existing works (see e.g., [27,28]) already adopted
the general polygon as the query range. Those results are mainly developed from
the theoretical perspective. Specifically, this work studies the CSPTRQ support-
ing a generic shaped query range, for moving objects. (Figure 1(b) illustrates an
example of objects moving in a constrained 2D space, where objects’ locations are
uncertain.)

The CSPTRQ can be used in a lot of applications, as objects moving in a con-
strained 2D space are common in the real world. For example, mobile robots are
already used to rescue survivors after a disaster such as an earthquake [21]. The
location information of robots is collected and stored on the database server. A
typical application for dispatching scattered robots to a specific location is retriev-
ing the identities of the robots that are currently located in a given region with no
less than a predefined (e.g., 75%) probability; here robots usually move freely but
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Fig. 1 (a) Illustration of the uncertainty model. (b) Illustration of the objects moving in a
constrained 2D space, where lr denotes the recorded location (see the black dot), τ denotes
the distance threshold, u denotes the uncertainty region, the grey rectangles denote the ob-
stacles. For other objects, we only plot their recorded locations (without plotting their distant
thresholds and uncertainty regions) for clearness.

can be blocked by various obstacles (e.g., rocks, buildings). As another example,
in the information warfare the location information of combat machineries is col-
lected and usually stored on the military database [39,13]. A typical application
for the coordination combat is retrieving the identities of the friendly machineries
(e.g., tanks and panzers) that are currently located in a given region with no less
than a specific (e.g., 85%) probability; here objects such as tanks and panzers usu-
ally move freely without predefined routes but can be blocked by various obstacles
(e.g., lakes, hills).
Challenges. At the first glance, the CSPTRQ can be easily tackled by directly
extending existing methods used to answer the PTRQ. As a matter of fact, there
are several new challenges. (i) The CSPTRQ needs to handle a set of obstacles,
and so the workload is larger, implying that to achieve a quick response time
is more challenging. (ii) With the presence of obstacles, the uncertainty region
u is usually a complicated geometry (see Section 3.3 for more details), render-
ing that the subsequent computation is more difficult. (iii) In a non-constrained
space, u can be easily obtained (almost) without taking the precomputation cost,
and thus existing methods usually pre-compute a set of bounds based on the un-
certainty region u and the probability density function (PDF). These bounds are
used to prune/validate unqualified/qualified objects, and can significantly improve
the performance, especially when they are correctly indexed using the R-tree like
data structure. In the context of our concern, the precomputation time is rather
long (up to the hour level) even if we only pre-compute the uncertainty regions.
(See Section 3.3 for more detailed discussion about bounds and the precomputation.)
Imagine if we further pre-compute lots of bounds, the overall precomputation time
should be larger. With these challenges (particularly, the third one) in mind, we
have to resort to other proposals.

Another method used to answer the constrained-space probabilistic range query
(CSPRQ) [37] can be easily extended to tackle our problem. Unfortunately, a sim-
ple adaptation of this method is inefficient, due to its weak pruning/validating
capability. (See Section 3.3 for more details about the baseline method.)

Overall, we are confronted with the following troubles: (i) those classical tech-
niques (used to answer the PTRQ) have powerful pruning/validating capabilities,
but are not well suitable for the context of our concern, and (ii) the method used
to answer the CSPRQ is easily incorporated, but to find a feasible and powerful
pruning/validating mechanism is not easy.
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Contributions. A casual trifle, shopping in a supermarket, gives us the initial
inspiration. The shopper freely chooses his/her wanted commodities and finally
obtains them by paying the bill. Clearly, it is a swap: money ←→ commodi-
ties. This trifle reminds us that swapping can usually obtain the wanted things.
With this (concept) in mind, we revisit our problem and develop our first idea
— swapping the order of geometric operations, which simplifies the computation
and can prune/validate some objects without the need of computing their uncer-
tainty regions. After this, by carefully considering the details, we realize that the
result obtained in the previous step possibly is a fake result, which stems from the
location unreachability. The natural method to eliminate the fault is inefficient. In-
stead, our strategy is to take advantage of the location unreachability. This method
not only eliminates the possible fault, but also prunes some objects in the early
stages. All strategies developed above actually belong to spatial pruning/validating
mechanisms.

When we strive to seek the threshold pruning/validating mechanisms, suddenly,
we realize an interesting fact — the CSPTRQ can be classified into two forms: ex-
plicit and implicit ones (they can have different solutions, performance results, and
purposes/applications). The former returns a set of tuples in form of (o, p) such
that p ≥ pt, where p is the probability of the moving object o being located in the
query range R, and 0 ≤ pt ≤ 1 is a given probabilistic threshold. A potential pur-
pose/application is like: listing the objects (e.g., tanks) that are currently located
in the region R with no less than the 80% probability in the descending order ac-
cording to their appearance probabilities; it is similar to the following: listing the
universities that are with no less than 80 points in the descending order according
to their points, where the points usually be evaluated using a variety of indicators
such as the publications in Nature/Science. (Remark: the traditional probabilistic

range query (PRQ) usually refers to the explicit form but pt = 0. Thus, the imme-
diate purposes/applications of the explicit CSPTRQ are the similar as the ones of
the traditional PRQ.) In contrast, the latter returns a set of objects, which have
probabilities higher than pt to be located in R. A potential purpose/application
is like: returning the number of objects (e.g., mobile robots) that are currently
located in the region R with no less than the 75% probability. (Remark: the tra-
ditional probabilistic threshold range query (PTRQ) usually refers to the implicit
form. Thus, the immediate purposes/applications of the implicit CSPTRQ are the
similar as the ones of the traditional PTRQ.) See Figure 2 for example. We as-
sume there is no obstacles, R is a rectangle, and the location of o follows uniform
distribution in u for simplicity. Suppose pt = 0.2, the answer of explicit query is
{(o2, 50%), (o3, 50%), (o4, 25%)}, while the answer of implicit query is {o2, o3, o4}.

The second main idea is inspired by the evolutionary algorithms [16]. A typical
characteristic of evolutionary algorithms is the repeated application of a set of
predefined operators; and each iteration can be generally looked as a refinement
of the previous result. This reminds us to compute the appearance probability
p in a multi-step manner, and thus objects that are obviously unqualified can
be pruned in the early steps. This idea is especially effective when the locations
of objects do not follow uniform distribution in their uncertainty regions. The
multi-step strategy yields a set of threshold pruning/validating rules, which are
employed by the explicit query. As the implicit query does not need to return
the appearance probabilities of qualified objects, an enhanced multi-step strategy
is naturally developed, which includes an adaptive pruning/validating mechanism
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Fig. 2 Example of explicit and implicit queries, where lr denotes the recorded location,
τ denotes the distance threshold, and ui denotes the uncertainty region of object oi (i ∈
[1, 2, · · · , 5])

and a two-way test mechanism. Furthermore, we further optimize our solutions
based on a new insight — different candidate moving objects may share the same
candidate restricted areas. In summary, our contributions are as follows:

– We propose the CSPTRQ, and show that (i) it can be used in many applica-
tions; (ii) the classical methods used to answer the traditional PTRQ are not
well suitable for the context of our concern; and (iii) a simple adaptation of
the method used to answer the CSPRQ is inefficient.

– We realize the CSPTRQ can be classified into two forms: explicit and implicit
ones. We formally formulate them, and offer insights into their properties.

– We develop techniques to answer the explicit query, and then extend them
to answer the implicit query. Our solutions are simple but without loss of
efficiency.

– We give the detailed theoretical analysis for our algorithms. While we focus
on the CSPTRQ in this paper, (part of) our techniques can be immediately
extended to other types of probabilistic threshold queries.

– We experimentally evaluate our algorithms using both real and synthetic data
sets. The experimental results demonstrate the efficiency and effectiveness of
the proposed algorithms. From the experimental results, we can further per-
ceive the difference between explicit and implicit queries. This interesting find-
ing is valuable especially for the topics of other types of probabilistic threshold
queries.

Paper organization. We review the related work in Section 2. We formally for-
mulate our problem and present a baseline method in Section 3. The proposed
methods for answering the explicit and implicit CSPTRQs are addressed in Sec-
tion 4 and 5, respectively. We further optimize our solution based on a new insight
in Section 6. We evaluate the performance of our proposed methods through ex-
tensive experiments in Section 7. Finally, we conclude this paper with several
interesting research topics in Section 8.

2 Related work

Range query over moving objects. Most of the representative works on range

query over moving objects have been mentioned in Section 1. A common aspect of
those works is not to capture the location uncertainty. In other words, they assume
the current location of any object o is equal to the recorded location (stored on
the database server). In contrast, we assume the current location of o is uncertain.
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Uncertainty models. We also mentioned many outstanding works on PRQ over

uncertain moving objects in Section 1. One of important branches assumed that
objects move freely (without predefined routes) in 2D space. In this branch, there
are several typical uncertainty models like, the free moving uncertainty (FMU)
model [6,38], the moving object spatial temporal (MOST) model [27], the un-
certain moving object (UMO) model [42], the 3D cylindrical (3DC) model [35,
23], and the necklace uncertainty (NU) model [34,17]. Another important branch
assumed that objects move on predefined routes [6] or road networks [45]. They
usually adopt the line segment uncertainty (LSU) model [8,6] to capture the lo-
cation uncertainty. These models have different assumptions and purposes (e.g.,
3DC and NU models are suitable for querying the trajectories of moving objects),
but have their own advantages (note: it is a difficult task to say which one is the
best. Please refer to [37] as a summary on the differences of these models and their
assumptions). The model used in [37] roughly follows the FMU model, but it is
different from the FUM model, as it introduces the concept of restricted areas (i.e.,
obstacles). Here we dub it the extensive free moving uncertainty (EFMU) model
for clearness.

Though our work also uses the EFMU model, there are at least two differences:
(i) our work investigates CSPTRQs (including explicit and implicit ones) rather
than the CSPRQ, and (ii) our work employs a more generic shaped query range.
Probabilistic threshold range query. According to the theme of this paper, we
classify PTRQs into two subcategories: PTRQs for moving objects and the ones for
other uncertain data (note: the terms “PRQ” and “PTRQ” are somewhat abused
in the literature, we take those papers, which explicitly discussed the probabilistic
threshold, as the related work of the PTRQ).

Many excellent works addressed the PTRQ for moving objects. For example,
Chung et al. [8] addressed the PTRQ for objects moving in one-dimensional (1D)
space. In contrast, we focus on the objects moving in 2D space. Zhang et al. [42]
studied the PTRQ over objects moving in 2D space. They proposed the UMO
model, in which they assumed both the distribution of velocity and the one of
location are available at the update time. In contrast, we do not need to know the
velocity (as well as its distribution), instead we assume the specific location of any
object o is available at the update time. Moreover, the used model in this paper is
the EFMU model, which considers the existence of restricted areas. Zheng et al.
[45] studied the PTRQ for objects moving on the road networks. They proposed
the UTH model that is developed for querying the trajectories of moving objects.
In contrast, this paper is not interested in querying the trajectories, and it focuses
on the objects moving in the constrained 2D space where no predefined route is
given.

There are many classical papers that studied the PTRQ for other uncertain
data. For example, Cheng et al. [7] addressed the PTRQ over 1D uncertain data
(e.g. sensor data), they presented a clever idea, using a tighter bound (compared
to the MBR of the uncertainty interval), called x-bound, to reduce the search cost.
Later, Tao et al. [32] extended this idea to multi-dimensional uncertain data.
They proposed a classical technique, probabilistic constrained region (PCR), which
consists of a set of precomputed bounds, called p-bounds. This classical technique
is not well suitable for the context of our concern, Section 1 has shown the reasons
(more detailed discussion will be given in Section 3.3). Chen et al. [4] studied
the PTRQ for such a scenario where the location of query issuer is uncertain



SMe: Explicit & Implicit CSPRRQs for Moving Objects 7

(a.k.a, location based PTRQ); several smart ideas such as the query expansion

were developed. They assumed the query range R and uncertainty region u are
rectangles, and focused on the non-constrained space, and thus employed the p-

bounds technique. In contrast, both R and u used in our work are more complex,
and we focus on the constrained space, where the p-bounds technique has some
limitations (again, Section 1 has shown the reasons). Moreover, our work does not
belong to the location based PTRQ.
Other probabilistic threshold queries. There are also many representative works
that addressed other probabilistic threshold queries (PTQs); those works are clearly
different from ours. For instance, Zhang et al. studied the location based probabilis-
tic threshold range aggregated query [44]. Hua et al. [15] addressed the probabilistic
threshold ranking query on uncertain data. The probabilistic threshold KNN query
over uncertain data was investigated by Cheng et al. [5]. Yuan et al. [41] discussed
the probabilistic threshold shortest path query over uncertain graphs. The general

PTQ for arbitrary SQL queries that involve selections, projections, and joins was
studied by Qi et al. [25].

3 Problem definition

3.1 Problem settings and notations

Let R be the query range. Let r denote the restricted area, and R be a set of
disjoint restricted areas. Let T be a territory such that

⋃
r∈R r ⊂ T. Let o denote

the moving object, and O be a set of moving objects. Let lr be the latest recorded
location (stored on the database server) of o, and lt be the location of o at an
arbitrary instant of time t. We assume that lt /∈

⋃
r∈R r and lt ∈ T −

⋃
r∈R r. Let

τ be the distance threshold of o. We assume any object o reports its new location

to the server once dist(ltn , lr) ≥ τ , where ltn denotes its current specific location,
dist(·) denotes the Euclidean distance. Finally, for any two different objects o and
o′, we assume they cannot be located in the same location at the same instant of
time t, i.e., lt 6= l′t.

We model both the query range and restricted areas as the arbitrary shaped
polygons1. We capture the location uncertainty using two components [6,38].

Definition 1 (Uncertainty region) The uncertainty region of a moving object o
at a given time t, denoted by ut, is a closed region where o can always be found.

Definition 2 (Uncertainty probability density function) The uncertainty proba-
bility density function of o at time t, denoted by f t(x, y), is a probability density
function (PDF) of o’s location at a given time t; its value is 0 if lt /∈ ut.

The PDF has the property that
∫
ut
f t(x, y)dxdy = 1. In addition, under the

distance based update policy (a.k.a., dead-reckoning policy [38,6]), for any two
different time t1 and t2 (t1, t2 ∈ (tr,tn]), the following conditions always hold:
ut1 = ut2 and f t1(x, y) = f t2(x, y), where tr refers to the latest reporting time, tn
refers to the current time. Hence, unless stated otherwise, we use u and f(x, y)

1 Any curve can be approximated into a polyline (e.g., by an interpolation method). Hence
in theory any shaped restricted area or query range can be approximated into a polygon.
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to denote the uncertainty region and PDF of o, respectively. (Remark: if the time
based update policy is assumed to be adopted, such a topic is more interesting
and also more challenging, since the uncertainty region u is to be a continuously
changing geometry over time. See, e.g., [37] for a clue about the relation between
the location update policy and the uncertainty region u.) With the presence of
restricted areas (i.e., obstacles), the uncertainty region u under the distance based
update policy can be formalized as follows.

u = o.�−
⋃
r∈R

r (1)

where o.� denotes a circle with the centre lr and radius τ . We remark that, in the
rest of this paper, we abuse the notation ‘| · |’, but its meaning should be clear from
the context. In addition, unless stated otherwise, a notation or symbol with a sub-
script ‘b’ usually refers to its corresponding minimum bounding rectangle (MBR).
For instance, Rb refers to the MBR of R. For convenience, Table 1 summarizes the
notations used frequently in the rest of this paper.

Notations Meanings
R∗ the set of candidate restricted areas
O∗ the set of candidate moving objects
Rb the minimum bounding rectangle of the query range R
τ distance threshold
lr recorded location of a moving object o
o.� circle with the centre lr and radius τ
Ir index of restricted areas
Io index of moving objects
pt probabilistic threshold
uo outer ring of uncertainty region u
uih the ith hole in uncertainty region u
H the set of holes in uncertainty region u
s intersection result between R and u
|s| the number of subdivisions of s
s[i] the ith subdivision of s
s[i]o outer ring of s[i]
H∗ the set of all holes in s

sjh the jth hole among all the |H∗| holes of s
γ reference value

Table 1 Notations and their descriptions

3.2 Problem statement

Let pt be the probabilistic threshold, we have

Definition 3 Given a set R of restricted areas, a set O of moving objects in a terri-
tory T, and a query range R, an explicit constrained-space probabilistic threshold
range query (ECSPTRQ) returns a set of tuples in form of (o, p) such that p ≥ pt,
where p is the probability of o being located in R, and is computed as

p =

∫
u∩R

f(x, y)dxdy (2)
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We note that f(x, y)= 1
α(u) when the location of o follows uniform distribution

in its uncertainty region u, where α(·) denotes the area of this geometric entity. In
this case, we have

p =
α(u ∩R)

α(u)
(3)

Definition 4 Given a set R of restricted areas, a set O of moving objects in a terri-
tory T, and a query range R, an implicit constrained-space probabilistic threshold
range query (ICSPTRQ) returns all the objects o such that p ≥ pt, where p is the
probability of o being located in R, and is computed according to Equation (2).

We remark that though the differences of two queries above are minor at the
first glance, we will present different solutions respectively in Section 4 and 5, and
show their different performance results in Section 7. Sometimes, we also use terms
the explicit query and the implicit query to denote the above two queries in the rest
of this paper. For ease of understanding the proposed methods, we next introduce
a baseline method.

3.3 Baseline method

The baseline method is a simple adaptation of the method in [37]. To save space,
we only present an overall framework of the baseline method.
Preprocessing stage. Here a twin-index is adopted (e.g., a pair of R-trees or its
variant): one is used to manage the set R of restricted areas; another is used to
manage the set O of moving objects. To index restricted areas is simple, since
we model them as arbitrary polygons. Naturally, we can easily find the MBR of
any restricted area r (∈ R). In order to manage the set O of moving objects, we
here index them based on their recorded locations lr and distance thresholds τ .
Specifically, for each object o, its MBR is a square centering at lr with 2τ × 2τ
size. For clearness, let Io and Ir be the index of moving objects and the one of
restricted areas, respectively.
Query processing stage. We first give two definitions before discussing the details.

Definition 5 (Candidate moving object) Given a moving object o and the query
range R, o is a candidate moving object such that Rb ∩ o.�b 6=∅.

Definition 6 (Candidate restricted area) Given a moving object o and a restricted
area r, r is a candidate restricted area such that rb ∩ o.�b 6=∅.

Let R∗ denote the set of candidate restricted areas, and O∗ denote the set of
candidate moving objects. There are several main steps for answering the implicit
(or explicit) query. First, we search O∗ on Io using Rb as the input (here most of
unrelated objects are to be pruned). Second, for each object o ∈ O∗, we search R∗

on Ir using o.�b as the input (here most of unrelated restricted areas are to be
pruned). We compute o’s uncertainty region u, and then compute “u ∩R”2. After

2 Note that, the algorithm in [37] cannot support the generic shaped query range, and thus
some modifications are necessary and inevitable when we compute u∩R; moreover, the details
of managing complicated geometric regions (e.g., u) can be found in that paper.
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Fig. 3 Illustration of of p-bounds and the precomutaion. (a) The case of no restricted areas.
(b) The case of existing restricted areas. (c) The uncertainty region. (d) The precomputaion
time when |R| = |O| = 50k. ζ denotes the number of edges in each restricted area r (note:
it may be somewhat difficult to understand this figure, and the readers can revisit it after
reading Section 7).

this, we compute p using Equation (2). We put o (or (o, p)) into the result if p ≥ pt.
Otherwise, we discard it and process the next object. After all candidate moving
objects are handled, we finally return the result, in which all qualified objects are
included.

Update stage. When an object o reports its new location to the server, we update
the database record, i.e., lr. At the same time, we update the index of moving
objects, i.e., Io.

Discussion. The readers may be curious why the baseline method does not employ
existing threshold pruning/validating mechanisms such as p-bounds in [32,4,30,
44]. Briefly speaking, a p-bound of the uncertainty region u (of the object o) is a
function of p, where p ∈ [0, 0.5]. A probabilistically constrained region (PCR) with
the parameter p, denoted by o.pcr(p), consists of four p-bounds, namely l(p), r(p),
t(p) and b(p), see the four dashed lines in Figure 3(a). The line l(p) divides the
uncertainty region u (i.e., the circle) into two parts (on the left and right of l(p)
respectively), and the appearance probability of o on the left part equals p. (Other
three lines have similar meanings.) The grey region illustrates o.pcr(p). Assume
the parameter p in Figure 3(a) is 0.2; moreover, assume the probabilistic threshold
pt = 0.8, and if q1 is the query range, then o is an unqualified object, and thus to be
pruned. In contrast, if q2 is the query range, then o is a qualified object, and thus to
be validated. The example above illustrates the rationale of the classical p-bounds

technique. In a non-constrained space (i.e., no obstacles exist), all the uncertainty
regions can be easily obtained (almost) without taking the precomputation cost,
and thus pre-computing a set of p-bounds is feasible. However, in the context of
our concern, the precomputation time is rather long (up to the hour level) even if

we only pre-compute the uncertainty regions. Figure 3(d) reports the time of pre-

computing a set of uncertainty regions. Imagine if we further pre-compute lots of
p-bounds, then the overall precomputation time should be larger. This is the main
reason why the p-bounds technique is not well suitable for our problem. Other
minor (non-fatal) reasons have already been mentioned in Section 1. For example,
the closed region with many holes shown in Figure 3(c) illustrates the uncertainty
region u, which is derived from Figure 3(b) based on Equation (1). Clearly, to
obtain o.pcr(p) in Figure 3(c) is more difficult than the case of no restricted areas
(e.g., see Figure 3(a)).

To this step, it seems no better solution except the baseline method. A casual
trifle, shopping in a supermarket, gives us the initial inspiration (recall Section
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1). In the next section, we show the details of our ideas, and then present the
algorithm to answer the explicit query.

4 Explicit CSPTRQ

4.1 Spatial pruning/validating rules

For each object o ∈ O∗, once we obtain the set R∗ of candidate restricted areas,
the baseline method is to directly compute its uncertainty region u, and then to
compute the intersection result between R and u. Let s be the intersection result
between R and u, it can be formalized as follows.

s = u ∩R = (o.�−
⋃
r∈R∗

r) ∩R (4)

Our method is to swap the order of geometric operations. The rationale behind
it is surprisingly simple. Specifically, we first compute “o.�∩R”, and then use the
result of “o.� ∩R” to subtract

⋃
r∈R∗ r. It is formalized as follows.

s = (o.� ∩R)−
⋃
r∈R∗

r (5)

There are two significant benefits by swapping the order of geometric opera-
tions.

(1) We can prune some objects, without the need of computing their uncer-
tainty regions. Assume “q1” shown in Figure 4(a) is the query range R. Clearly,
o is a candidate moving object since o.�b intersects with Rb. Here o can be safely
pruned without the need of computing its uncertainty region u, since “R∩o.� = ∅”.
Similarly, assume that “q2” is R. Here “R ∩ o.� 6= ∅” (see Figure 4(a)), but
(o. � ∩R) −

⋃
r∈R∗ r = ∅ (see Figure 4(b)). Hence o can also be pruned safely

without the need of computing u.
(2) We no longer need to consider each r ∈ R∗, which simplifies the computation

of s. For example, regarding to “q2”, only the right most candidate restricted area
is relevant with the computation of s. Similarly, regarding to “q3” shown in Figure
4(b), only two candidate restricted areas are relevant with the computation of s.

Hence, by swapping the order of geometric operations, we can easily develop
the following pruning/validating rules.

Lemma 1 Given the query range R and an object o ∈ O∗, we have
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– If R ∩ o.� = ∅, then o can be pruned safely.

– If R ∩ o.� = o.�, then o can be validated safely.

Proof. The proof is immediate by analytic geometry. �
Let R′ be a set of restricted areas such that the MBR of each r ∈ R′ has non-

empty intersection set with the MBR of o.� ∩R, we have an immediate corollary
below.

Corollary 1 Given the query range R and an object o ∈ O∗, o can be pruned safely if

(o.� ∩R)−
⋃
r∈R′ r = ∅. �

Discussion. We remark that the swapping operation itself is very easy, as it does
not rely on any complicated technique. Furthermore, after we swap the order of
geometric operations, to develop the pruning/validating rules is also not difficult.
We highlight it because it is surprisingly simple but clearly efficient.

Now, for any object o ∈ O∗, if it has not been pruned (or validated) by Lemma 1
or Corollary 1, whether or not we can directly compute its appearance probability
p using Equation (2)? At the first sight, it seems to be sure. However, we should
note that the intersection result s obtained by Equation (5) is possibly a fake
result. We next share our insights and explain the details.

4.1.1 Why is it possibly a fake result?

The fake result stems from the location unreachability. To explain it, we need some
basic concepts.

Given o.� and a set R∗ of candidate restricted areas, we say a restricted area
r ∈ R∗ can subdivide o.�, if and only if the result of “o.�−r” consists of multiple
disjoint closed regions. We term each of those closed regions as a subdivision. Let D
denote the set of subdivisions, we say a subdivision d ∈ D is an effective subdivision

such that lr ∈ d, where lr is the (latest) recorded location of o (recall Section 3.1).

Theorem 1 Assume that a restricted area r ∈ R∗ subdivides o.�, and D is the set

of subdivisions, if a subdivision d ∈ D is not the effective subdivision, then any point

p′ ∈ d is unreachable.

Proof. It is easy to know that the object o is located in o.�, as we adopt the
distance based update policy, recall Section 3.1. We prove p′ ∈ d is unreachable by
contraction. Assume that o can reach the point p′, implying that there exists at
least a path from lr to p′ such that it does not directly pass through any restricted
area and also the boundary of o.�. However, by the condition “d is not the effective
subdivision”, implying that lr and p′ are located respectively in two disjoint closed
regions. Based on analytic geometry, it is clear that no such a path exists. This
completes the proof. �

Theorem 1 gives us the insight into the location unreachability. See Figure 5(a)
for example, here the subdivision above r1 and the one below r2 are unreachable.
Hence, o’s real uncertainty region, u, is the subdivision below r1 and above r2.
With this (concept) in mind, we next use a more targeted example to show why
s obtained by Equation (5) possibly is a fake result. The shadow region shown in
Figure 6(a) or 6(b) illustrates s obtained by Equation (5), which is not equal to
∅. Here o cannot be pruned/validated based on Lemma 1 and Corollary 1. The
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Fig. 5 Illustration of the location unreachability

closed region with many holes shown in Figure 6(b) illustrates u. For simplicity,
assume that the location of o follows uniform distribution in u. In this example,
if we simply use the area of the shadow region to divide the area of u, we will get
that p is a positive number rather than 0. Clearly, it is a false answer, since u and
s are disjoint, see Figure 6(b).

4.1.2 Natural solution

To eliminate the fault produced by the above problem, the natural solution is to
compute u, and then to check if u intersects with s. If they are disjoint, then p = 0
and o should be pruned. This approach can indeed be used to eliminate the fault
but it is inefficient. We next review two approaches [37] that are used to compute
u, and then show the underlying reason.

Given a closed region c, we let v−, v+, h−, h+ denote the four (left, right,
bottom, top) bounding lines of c, respectively. The span of c is argmax{dist(v−, v+),
dist(h−, h+)}, where dist(·) denotes the Euclidean distance.

Heuristic 1. Given o.�, and two different candidate restricted areas, the candidate

restricted area with the larger span is more likely to subdivide o.� into multiple subdi-

visions.

To compute u, there are two approaches. The first one is using o.� to subtract
each restricted area r ∈ R∗ one by one, and finally it chooses the subdivision
containing the point lr as the uncertainty region u (see, e.g., Figure 5(a)). For ease
of describing the second approach, we let de denote the effective subdivision (recall
Section 4.1.1), and slightly abuse the notation de.

The second one incorporates Heuristic 1, and can be generally described as
follows. First, it sorts the set R∗ of candidate restricted areas according to their
spans in the descending order (implying that the restricted area r ∈ R∗ with the
larger span is to be handled firstly); and then it uses o.� to subtract each r ∈ R∗ one
by one; particularly, when multiple subdivisions appear, it immediately chooses
the effective subdivision de, and then uses de to subtract the next r ∈ R∗, and so
on; it finally gets u after all the restricted areas r ∈ R∗ are handled. See Figure
5(b), r1 is to be handled at first. The subdivision below r1 is taken as de. Then,
it uses de to subtract r2. Here, the subdivision below r1 and above r2 is taken
as de. After this, the rest of restricted areas can be quickly pruned and thus do
not need to execute (costly) geometric subtraction operations, improving the first
approach.
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Why is it inefficient? Consider the example in Figure 6(a) again, we can easily see
that, if we want to get the uncertainty region u, both of the approaches mentioned
above need to execute subtraction operations many times. This justifies the natural
solution mentioned in the beginning of Section 4.1.2 is inefficient. Our strategy
is to fight poison with poison. In other words, we take advantage of the location
uncertainty. This method is pretty simple, but clearly efficient. The challenge is
to find the point of penetration, namely, when, where, and how to take advantage
of the location unreachability.

4.1.3 Take advantage of the location unreachability

Based on the definition of subdivision, the nature of location unreachability, and
Equation (5), we can build the following theorem.

Theorem 2 Given o.� and R∗, s (obtained by Equation (5)) is always a correct result

such that for any r ∈ R∗, |o.�−r| = 1, where | · | denotes the number of subdivisions.

Theorem 1 implies that the presence of multiple subdivisions (i.e., |o.�−r| > 1)
is an important sign of the fault to be happened. Hence, if we correctly and timely

handle this special case, the possible fault could be eliminated efficiently. With
this (concept) in mind, a more efficient solution comes into being. Specifically, we
manage to compute its uncertainty region u; in the process of computing u, once
multiple subdivisions appear, we also choose the effective subdivision de, but we
do not directly use de to subtract the next candidate restricted area. Instead, we
here check the geometric relation between de and s (obtained by Equation (5)).

Lemma 2 If s ∩ de = ∅, then o can be pruned safely.

Proof. We just need to show u ⊆ de. (1) If r is the only candidate restricted area
that can subdivide o.�, it is obvious that u = de −

⋃
r′∈R∗ r

′ ⊆ de, where r′ ∈ R∗

and r′ 6= r. (2) If r′ (∈ R∗) can subdivide o.�, it must belong to one of the following
cases. (For ease of discussion, assume r1 shown in Figure 7(a) refers to the so-called
r).
• r′ is not located in the same side of de (e.g., r2 in Figure 7(a)). Since we

adopt the distance based update policy (cf. Section 3.1), any point p′ (/∈ de) is
unreachable (e.g., any point in the right of r1). Clearly, r′ makes no impact on the
final result of u.
• r′ is located in the same side of de. See Figure 7(a), r3 illustrates this case.

Here r3 can subdivide de into two subdivisions, say de′ and de′′. Clearly, we have

de
′ ∪ de′′ ⊂ de (6)
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Without loss of generality, assume de′′ is the unreachable subdivision (i.e., any
point in de′′ is unreachable). For clarity, let r′′ denote other candidate restricted
areas such that r′′ ∈ R∗, r′′ 6= r and r′′ 6= r′. Then, we have

u = de
′ −

⋃
r′′∈R∗

r′′ ⊆ de′ ⊂ de
′ ∪ de′′ (7)

By Formula (6) and (7), we have u ⊂ de (note: when multiple candidate restricted
areas are located in the same side of de, it is immediate by induction). This com-
pletes the proof.

We note that s obtained by Equation (5) possibly consists of multiple subdi-
visions. From Lemma 2, we have an immediate corollary below.

Corollary 2 Given o.� and R, we assume s (obtained by Equation (5)) consists of

multiple subdivisions, say s[1], s[2], · · · , s[|s|], where |s| is the total number of sub-

divisions in s. Without loss of generality, assume that r ∈ R∗ can subdivide o.� into

multiple subdivisions, and de is the effective subdivision. We have that, any subdivision

s[i] (i ∈ [1, · · · , |s|]) can be pruned safely if s[i] ∩ de = ∅. �

See Figure 7(b) as an example. r1 subdivides o.�, s[1] and s[2] are two subdi-
visions of s (obtained by Equation (5)). Here s[2] ∩ de = ∅. Thus, s[2] should be
pruned.

While this method is pretty simple, we can easily see that it gains two benefits:
it not only eliminates the possible fault produced by Equation (5), but also prunes
some objects in the early stages, without the need of obtaining the final results
of their uncertainty regions. See, e.g., Figure 6(a) or 7(a), o can be pruned after
executing (only) one subtraction operation.

Discussion. All mechanisms discussed before belong to spatial pruning/validating
mechanisms. For any object o that has not been pruned/validated by the above
mechanisms, the natural method is to compute its appearance probability p using
Equation (2) or (3), and then to see if p ≥ pt, where pt is the so-called probabilistic
threshold. In the next subsection, we present a more efficient method, which is
initially inspired by evolutionary algorithms (recall Section 1). We remark that s
(discussed in the rest of this paper) refers to the correct result since we already
eliminated the possible fault.
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4.2 Threshold pruning/validating rules

Our method computes p in a multi-step rather than one-time way. We call it
the multi-step mechanism. Briefly speaking, we first obtain a coarse-version result
(CVR), which is possibly far away from the accurate value of p. We then make a
comparison between the CVR and pt, and check if o can be pruned based on the
current information. If otherwise, we refine the CVR by the further computation.

4.2.1 Uniform distribution PDF

To apply the multi-step mechanism to the case of uniform distribution PDF, we
need to find appropriate carriers (or things) to which we can apply the multi-step
mechanism.

Suppose that there is a closed region with many holes. Its exact area clearly
equals that the area of the closed region subtracts the areas of all holes. In contrast,
if we compute the area of the closed region, but do not subtract the areas of holes,
we shall get the most coarse result. Furthermore, we can easily see that this coarse
result can be gradually refined by subtracting the rest of holes one by one. Hence,
the holes here are taken as the carriers. Based on this intuition, it is not difficult
to develop the followings.

For ease of understanding the details, we first should note that the uncertainty
region u is a single subdivision (possibly) with holes; and s may be multiple sub-
divisions (i.e., |s| > 1) and each subdivision (possibly) has holes. Given a closed
region c with a hole h, we say the boundary of c is the outer ring of c, and say
the boundary of h is the inner ring of c. We also use α(·) to denote the area of a
geometry.

Let uo be the outer ring of uncertainty region u, uih be the ith hole in u, and
H be the set of holes in u, where |H| ≥ 0. We have

α(u) = α(uo)−
|H|∑
i=0

α(uih) (8)

Similarly, let s[i] be the ith subdivision of s, s[i]o be the outer ring of s[i], s[i]jh be
the jth hole in s[i], and |s[i]h| be the number of holes in s[i]. We have

α(s) =

|s|∑
i=1

α(s[i]) =

|s|∑
i=1

α(s[i]o)−
|s[i]h|∑
j=0

α(s[i]jh)

 (9)

For ease of presentation, we let H∗ denote the set of (all) holes in s (note: |H∗| =∑|s|
i=0 |s[i]h|), and renumber these holes. Specifically, we let sjh denote the jth hole

among all the |H∗| holes. Therefore, Equation (9) can be rewritten as follows.

α(s) =

|s|∑
i=1

α(s[i]o)−
|H∗|∑
j=0

α(sjh) (10)

The natural solution (one-time way) is to compute α(u) and α(s) based on

Equation (8) and (10), respectively, and then to check if α(s)
α(u) ≥ pt.
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In the proposed method, we also compute α(u). We however, do not directly

compute α(s). Specifically, we initially compute
∑|s|
i=1 α(s[i]o). Then, we compute

the first CVR, denoted by p0, as follows.

p0 =

∑|s|
i=1 α(s[i]o)

α(u)
(11)

Lemma 3 Given p0 and the probability threshold pt, o can be pruned safely if p0< pt.

Proof. We only need to show that the appearance probability p is less than pt.
Let ε denote an arbitrary non-negative number. We have

p0 =

∑|s|
i=1 α(s[i]o)

α(u)
≥

(
∑|s|
i=1 α(s[i]o)− ε

α(u)
(12)

In addition, since p = α(s)
α(u) , by Equation (10), we have

p =

∑|s|
i=1 α(s[i]o)−

∑|H∗|
j=0 α(sjh)

α(u)
(13)

Clearly, “
∑|H∗|
j=0 α(sjh)” in Equation (13) is a non-negative number. By Formula

(12) and Equation (13), we have p ≤ p0. Combining the condition “p0 < pt”, hence
p < pt. �

If the object o cannot be pruned based on Lemma 3, and there exist holes in s,
we further compute the second CVR, and so on. Let pk−1 be the kth CVR, where
1 < k ≤ |H∗|+ 1. We have

pk−1 =

∑|s|
i=1 α(s[i]o)−

∑k−1
j=0 α(sjh)

α(u)
(14)

We should note that pk−1 = p when k = |H∗|+1. In other words, the final CVR is

equal to the appearance probability p. Furthermore,
∑k−1
j=0 α(sjh) ≤

∑|H∗|
j=0 α(sjh),

since 1 < k ≤ |H∗| + 1. Hence, from Lemma 3, we have an immediate corollary
below.

Corollary 3 Given the kth CVR pk−1 and the probability threshold pt, o can be pruned

safely if pk−1 < pt. �

Discussion. We have shown how to apply the multi-step mechanism to the case of
uniform distribution PDF, and developed new pruning rules. The small challenge
is to find appropriate carriers to which we can apply the multi-step mechanism.
To apply this mechanism to the case of non-uniform distribution PDF, there is
also a small challenge, which however, is different from the previous, as we can
easily find appropriate carriers by the similar observation. To explain this small
challenge, we need some preliminaries. In the next subsection, we first introduce
the preliminaries, then clarify this small challenge, and finally give the details of
our method .
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4.2.2 Non-uniform distribution PDF

Regarding to the non-uniform distribution PDF, a classical numerical integration
method is the Monte Carlo method [4,30,6]. Let N1 denote a pre-set value, where
N1 is an integer. The natural solution is to randomly generate N1 points in the
uncertainty region u. For each generated point p′, it computes the value f(xi, yi)
based on its PDF, where (xi, yi) are the coordinates of the point p′, and then
to check if p′ ∈ s. Without loss of generality, assume that N2 points (among N1

points) are to be located in s. Then

p =

∑N2

i=1 f(xi, yi)∑N1

i=1 f(xi, yi)
(15)

Finally, it checks if p≥ pt. If so, it puts the tuple (o, p) into the result. Otherwise,
o is to be pruned.

We should note that the Monte Carlo method is a non-deterministic algorithm.
Thus we usually use a large sample as the input, in order to assure the accuracy
of computation. Here the number of generated points is the size of sample. In
general, the larger N1 is, the workload error is more close to 0. Without loss of
generality, assume that the allowable workload error is δ, we can get the specific
value of N1 by the off-line test.

To this step, we can easily realize that the generated points can be taken as
carriers to which we can apply the multi-step mechanism. In other words, the
following steps are easily brought to mind: we initially generate a small number
of points, and thus get a coarse result; then, we refine the previous coarse result
by gradually adding points. A small challenge is to construct the pruning rules. In
other words, assume that we get a coarse result, how to decide whether or not o
can be pruned based on the current coarse result and the probabilistic threshold
pt.

To alleviate the small challenge above, we take advantage of the workload error.
Henceforth, we can easily determine whether or not o can be pruned based on three
parameters: the current coarse result, its corresponding workload error, and the
probabilistic threshold pt. We remark that the workload error can also be estimated
by the off-line test, when we use a small number of points. (In our experiments, we
use the maximum workload error. For example, assume there are 100 approximate
values, say xia, where i ∈ [1, 100], and assume the exact value is xe. Then, the
maximum workload error for this single value is argmax{|xe−xia|}. By the extensive
off-line test, an overall maximum workload error thus can be estimated. Again, the
Monte Carlo method is a non-deterministic algorithm, thus the extensive off-line
test is needed, in order to assure the accuracy of computation.) Once we get rid
of this small challenge, it is not difficult to develop the followings.

Specifically, in the proposed method, we do not directly generate N1 points;
instead we initially generate bN1

θ c points in u, where θ is an integer (e.g., 10). Let

N0
2 be the number of points being located in s, where N0

2 ≤ bN1

θ c. Then, we get
the first CVR p0 as follows.

p0 =

∑N0
2

i=1 f(xi, yi)∑bN1
θ c

i=1 f(xi, yi)
(16)
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Let δ0 be the workload error when we use bN1

θ c points as the input. We have

Lemma 4 If p0 +δ0 <pt, then o can be pruned safely.

Proof. Let V∞ be the value obtained by Equation (15) when we set N1 → +∞
(note: in this case the workload error can be taken as 0). It is clearly that p0−δ0 ≤
V∞ ≤ p0 + δ0. Incorporating the condition “p0 +δ0 <pt”, hence V∞ < pt. This
completes the proof. �

If o cannot be pruned based on Lemma 4, we refine the first CVR by adding
points. For the kth coarse-version, we denote by bk·N1

θ c, δ
k−1, and Nk−1

2 the num-
ber of generated points, the workload error and the number of points being located
in s, respectively. Then, the kth CVR pk−1 (1 < k ≤ θ) can be derived as follows.

pk−1 =

∑Nk−1
2

i=1 f(xi, yi)∑b k·N1
θ c

i=1 f(xi, yi)
(17)

Furthermore, since each coarse-version corresponds to a workload error, from
Lemma 4, we have an immediate corollary below.

Corollary 4 Given the probability threshold pt, the kth CVR pk−1 and its correspond-

ing workload error δk−1. If pk−1 +δk−1 <pt, then o can be pruned safely. �

Up to now, we have shown all our pruning/validating rules (including spatial
and threshold ones), we next pull them together to answer the explicit query.

4.3 Query processing for explicit CSPTRQ

4.3.1 Algorithm

Let < be the query result. Recall that R′ be a set of restricted areas such that
the MBR of each r ∈ R′ has non-empty intersection set with the MBR of o.� ∩R
(cf. Section 4.1). Furthermore, we use u[temp] to denote the intermediate result
of the uncertainty region u (since we manage to compute the uncertainty region
u, and hope some objects can be pruned in the early stages, recall Section 4.1.3);
similarly, we use p[temp] to denote the intermediate result of p (since we adopt
multi-step way to compute the appearance probability p, recall Section 4.2).

We first search the set O∗ of candidate moving objects on the index Io using
Rb as the input. We then process each object o ∈ O∗ based on Algorithm 1 below.
Note that in the following algorithm, the clause “Discard o” denotes that the
object o is to be pruned, and we shift to process the next object, without the need
of executing the remaining lines.

Lines 1-20 of Algorithm 1 incorporate spatial pruning/validating mechanisms
discussed in Section 4.1. More specifically, Lines 1-8 employ the strategy discussed
before Section 4.1.1, and Lines 10-19 employ the strategy discussed in Section
4.1.3. Moreover, Lines 21-28 incorporate threshold pruning/validating mechanisms
discussed in Section 4.2. Note that, to save space, we write the pseudo codes
for uniform and non-uniform distribution PDFs together, the pseudo codes in
brackets are used for the latter (cf. Lines 21-28). Moreover, the detailed algorithm
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for handling the generic shaped query range is built by modifying the baseline
method, which is not difficult but somewhat tedious, the details are omitted.

Naturally, after all objects o ∈ O∗ are handled, we get the answer <, in which
all qualified objects together with their appearance probabilities are included.

Algorithm 1 Explicit CSPTRQ

(1) if o.� ⊆ R
(2) Set p← 1, and let < ← <∪(o, p) // o be validated, Lemma 1
(3) else if o.� ∩R = ∅
(4) Discard o // o be pruned, Lemma 1
(5) else // o.� ∩ R 6= ∅
(6) Obtain R′ by searching on Ir, and set s← (o.� ∩R)− ∪r∈R′ r
(7) if s = ∅
(8) Discard o // o be pruned, Corollary 1
(9) else // s 6= ∅
(10) Obtain R∗ by searching on Ir, set u[temp]← o.�, and

sort all the restricted area r∈ R∗ according to their spans
(11) for each r ∈ R∗

(12) Let u[temp]← u[temp]− r
(13) if |u[temp]| > 1 // multiple subdivisions appear
(14) u[temp]←Choose the effective subdivision
(15) if u[temp] and s are disjoint
(16) Discard o // o be pruned, Lemma 2
(17) for each s[i] // s[i] is a subdivision of s
(18) if u[temp] ∩ s[i] = ∅
(19) Remove s[i] from s // Corollary 2
(20) Set u← u[temp]
(21) p[temp]← Compute the first CVR // Eq. 11 (or 16)
(22) if p[temp] <pt (or p[temp] + δ0 < pt)
(23) Discard o // o be pruned, Lemma 3 (or 4)
(24) else
(25) while p[temp] is not the final CVR
(26) p[temp]←Compute the next CVR //Eq. 14 (or 17)
(27) if p[temp] < pt (or p[temp] + δk−1 < pt)
(28) Discard o // o be pruned, Corollary 3 (or 4)
(29) Set p← p[temp], and let < ← < ∪ (o, p) // o cannot be pruned by all the rules

4.3.2 Theoretical analysis

I/O cost. Let Co be the cost of searching the set O∗ of candidate moving objects,
C′r be the cost of searching the set R′ of restricted areas, and Cr be the cost of
searching the set R∗ of candidate restricted areas (note: R∗ is different from R′).
Let k1 be the (average) number of objects pruned/validated by Lemma 1, and k2
be the (average) number of objects pruned by Corollary 1, where k1 + k2 ≤ |O∗|.
Note that, each cost mentioned earlier refers to the average cost. Let Cio be the
total I/O cost, which can be estimated as follows.

Cio = Co + (|O∗| − k1)C′r + (|O∗| − k1 − k2)Cr (18)

Query cost. Let Cs be the cost of computing s (cf. Line 6 in Algorithm 1). Let Cu
be the cost of computing u, and let k3 be the (average) number of objects pruned
by Lemma 2. The cost, computing the uncertainty regions of |O∗|−k1−k2 objects,
is about (|O∗|−(k1 +k2 +k3)) ·Cu, since k3 objects are to be pruned and usually in
the early stages (recall Section 4.1.3). Let θ denote the number of multiple versions
(since we use multi-step computation, recall Section 4.2). Let Cm be the cost of
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computing all the θ steps. For the rest of |O∗| − (k1 + k2 + k3) objects, without
loss of generality, assume that they are to be pruned (by multi-step mechanism)
at the (average) ith step, where 1 ≤ i ≤ θ. Then, the cost of handling all the
|O∗| − (k1 + k2 + k3) objects is (|O∗| − (k1 + k2 + k3)) · i·Cmθ . Let Cq denote the
total query cost (including I/O cost). Combing all the above results, Cq can be
estimated as follows.

Cq =Cio + (|O∗| − k1) · Cs

+ (|O∗| − (k1 + k2 + k3)) · (Cu +
i · Cm
θ

)
(19)

We remark that we overlook the cost such as adding a tuple (o, p) into <, com-
paring the geometric relation between two entities, etc., as these costs are trivial.
Moreover, the span is a real number, hence the overhead to sort |R∗| candidate
restricted areas is pretty small and can (almost) be overlooked compared to the
overhead to execute O(|R∗|) times geometric subtraction operations. In the sequel,
we show how to extend techniques proposed in this section to answer the implicit
query.

5 Implicit CSPTRQ

We first introduce the enhanced multi-step computation, and then integrate the
techniques proposed in Section 4.1 to answer the implicit query. The enhance multi-
step computation is easily brought to mind, as we have discussed the multi-step
computation in the previous section, and we can easily see that the implicit query
does not need to return the appearance probabilities of qualified objects, implying
that some threshold validating rules can be developed. Note that the performance
differences between the explicit and implicit queries stem mainly from this step.

5.1 Enhanced multi-step computation

The enhance multi-step strategy includes (i) an adaptive pruning/validating mech-
anism, which is used for the uniform distribution case, and (ii) a two-way test

mechanism, which is used for the non-uniform distribution case. Regarding to the
two-way test mechanism, there is no much surprise. Regarding to the first mecha-
nism, its central idea is to cleverly choose appropriate rule (or method) according
to the specific case. A small challenge can be generally described as follows: given
two methods and a specific case, how to determine which method is more suitable
for this specific case? In the sequel, we discuss more details. (Remark: most of
notations discussed later actually have already been defined in previous sections,
if any question, please refer to Table 1 and/or Section 4.2.)

5.1.1 Adaptive pruning/validating mechanism

Recall the tactic discussed in Section 4.2.1. For the first coarse-version result
(CVR), it is to compute α(u) and

∑|s|
i=1 α(s[i]o) at first, and then to compute

the first CVR p0 based on Equation (11). Since the implicit query does not need
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to explicitly return the probabilities of the qualified objects, clearly, it is also fea-
sible that we first compute α(s) and α(uo), and then compute the first CVR p0 as
follows.

p0 =
α(s)

α(uo)
(20)

Lemma 5 Given the probability threshold pt and the first CVR p0 (obtained by Equa-

tion (20)), we have that if the first CVR p0> pt, then o can be validated safely.

Proof. We only need to show p> pt. The proof is the similar as the one of Lemma
3. �

If o cannot be validated based on Lemma 5, and the number of holes in u is
not equal to 0 (i.e., |H| 6= 0), we further compute the second CVR, and so on.
Then, the kth CVR pk−1 (1 < k ≤ |H|+ 1) can be derived as follows.

pk−1 =
α(s)

α(uo)−
∑k−1
i=0 α(uih)

(21)

Note that pk−1 equals the appearance probability p when k = |H|+1. Furthermore,∑k−1
i=0 α(uih) ≤

∑|H|
i=0 α(uih), since 1 < k ≤ |H|+ 1. Hence, from Lemma 5, we have

an immediate corollary below.

Corollary 5 Given the probability threshold pt and the kth CVR pk−1 (obtained by

Equation (21)), o can be validated safely, if pk−1 > pt. �

Hence, we can easily see that, if an object o cannot be pruned/validated based
on the spatial information, then there are two methods to handle it.

– Method 1: We compute the CVRs according to Equation (11) or (14), and then
check if o can be pruned based on Lemma 3 or Corollary 3.

– Method 2: We compute the CVRs according to Equation (20) or (21), and then
check if o can be validated based on Lemma 5 or Corollary 5.

The naive solution is always to use one of the two methods to handle those
candidate moving objects that cannot be pruned/validated by the spatial infor-
mation. Instead, we adopt an adaptive pruning/validating mechanism. In brief, if o
is more likely to be pruned, we use the “Method 1”; in contrast, if o is more likely
to be validated, we use the “Method 2”. Note that, there is a question “given an
object o, how to know it is more likely to be pruned (or validated)?”

Specifically, we compute a reference value, which is used to estimate the trend

of o (being more likely to be pruned/validated). Let γ denote the reference value,
which is computed as follows.

γ =

∑|s|
i=1 α(s[i]o)

α(uo)
(22)

Heuristic 2. Given γ and pt, if γ < pt, then o is more likely to be pruned. Otherwise,

o is more likely to be validated.

Algorithm 2 below shows the pseudo codes of the adaptive pruning/validating
mechanism. Lines 2-10 focus on pruning objects, and Lines 12-20 focus on validat-
ing objects. (Note that the meanings of the notations used in this algorithm are
the same as the ones in Algorithm 1.)
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Algorithm 2 Adaptive pruning/validating mechanism

(1) γ ←Compute the reference value // Equation (22)
(2) if γ < pt
(3) p[temp]←Compute the first CVR // Equation (11)
(4) if p[temp] <pt
(5) Discard o // o be pruned, Lemma 3
(6) else
(7) while p[temp] is not the final CVR
(8) p[temp]←Compute the next CVR // Equation (14)
(9) if p[temp] < pt
(10) Discard o // o be pruned, Corollary 3
(11) Let < ← < ∪ o // o is a qualified object
(12) else // γ ≥ pt
(13) p[temp]←Compute the first CVR // Equation (20)
(14) if p[temp] ≥ pt
(15) Let < ← < ∪ o // o be validated, Lemma 5
(16) else
(17) while p[temp] is not the final CVR
(18) p[temp]←Compute the next CVR // Equation (21)
(19) if p[temp] ≥ pt
(20) Let < ← < ∪ o // o be validated, Corollary 5
(21) Discard o // o is an unqualified object

5.1.2 Two-way test mechanism

The two-way test mechanism is a simple extension of the method in Section 4.2.
For the sake of completeness, we present it below.

Regarding to the first CVR, we can also compute it according to Equation
(16). Then, we have

Lemma 6 Given the probability threshold pt, the first CVR p0 and its corresponding

workload error δ0, we have

– If “p0 +δ0 < pt”, then o can be pruned safely.

– If “p0 −δ0 ≥ pt”, then o can be validated safely.

Proof. It is immediate by extending the proof of Lemma 4. �
If o can be neither pruned nor validated based on Lemma 6, we further compute

the second CVR, and so on. For the kth CVR, we can also compute it according
to Equation (17). From Lemma 6, we have an immediate corollary below.

Corollary 6 Given the probability threshold pt, the kth CVR pk−1 and its correspond-

ing workload error δk−1, we have

– If “pk−1 +δk−1 < pt”, then o can be pruned safely.

– If “pk−1−δk−1 ≥ pt”, then o can be validated safely. �

The pseudo codes of the two-way test mechanism are shown in Algorithm 3. We
remark that in the two-way test mechanism, if o cannot (still) be pruned/validated
by the final CVR, we take the object o as a qualified object, since the final CVR
equals p, and p ∈ [p− δ, p+ δ], where δ is the allowable workload error.
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5.2 Query processing for implicit CSPTRQ

Algorithm. The spatial pruning/validating mechanisms proposed in Section 4.1
can be seamlessly incorporated for answering the implicit query, implying that the
algorithm for the implicit query is the similar as the one for the explicit query.
Specifically, we need to replace Line 2 and Lines 21-29 in Algorithm 1 with new
pseudo codes. Clearly, Line 2 should be replaced by “< ← < ∪ o”, and Lines 21-29
should be replaced by the pseudo codes of the enhanced multi-step computation, i.e.,
Algorithms 2 and 3.

I/O and query cost. The I/O cost is the same as the one of Algorithm 1. The
query cost can be estimated using the similar method presented in Section 4.3.
Specifically, the i in Equation (19) should be replaced with a more small value, since
the enhanced multi-step mechanism not only prunes but also validates objects.

Algorithm 3 Two-way test mechanism

(1) p[temp]← compute the first CVR // Equation (16)

(2) if p[temp] + δ0 < pt ‖ p[temp]− δ0 ≥ pt
(3) if p[temp] + δ0 < pt
(4) Discard o // o be pruned, Lemma 6

(5) else // p[temp]− δ0 ≥ pt
(6) < ← < ∪ o // o be validated, Lemma 6

(7) else

(8) while p[temp] is not the final CVR

(9) p[temp]←Compute the next CVR // Equation (17)

(10) if p[temp] + δk−1 < pt ‖ p[temp]− δk−1 ≥ pt
(11) if p[temp] + δk−1 < pt
(12) Discard o // o be pruned, Corollary 6

(13) else // p[temp]− δk−1 ≥ pt
(14) < ← < ∪ o // o be validated, Corollary 6

(15) < ← < ∪ o

Discussion. Up to now, we have presented the algorithms used to answer the
explicit and implicit queries, respectively. Recall Section 1, we mentioned poten-
tial purposes/applications of the explicit and implicit queries. One is to sort the
qualified objects according to their appearance probabilities, which is (somewhat)
similar to the ranking query [22,2,15]; another is to return the number of qualified
objects, which is (somewhat) similar to the aggregate query [29,44]. Both of tasks
can be easily achieved by the minor modifications of our proposed algorithms.
Specifically, an additional O(|<| log |<|) time can sort the qualified objects accord-
ing to their probabilities, where |<| is the cardinality of the qualified objects (note:
compared to Cq in Equation (19), this additional time can almost be overlooked,
as the appearance probabilities are real numbers). Similarly, an additional O(|<|)
time can obtain the number of qualified objects (again, this additional time can
almost be overlooked). We remark that the focuses of this paper are not the so-
called ranking and/or aggregate queries. Hence, we are not ready to discuss more
details about them (even though there may be more efficient solutions). The real
reason (we mention them) is to show that the explicit and implicit queries can
have different potential purposes/applications (note: it actually also reminds us
that we should choose the appropriate query scheme instead of using the explicit
or implicit query scheme for all tasks). In the next section, we attempt to further
optimize our solutions based on a new insight.
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Fig. 8 Illustrations of the “overlapped” restricted areas and the data structure used to manage
the <key,value> pairs. (a) In this example the three candidate moving objects have the same
candidate restricted areas. (b) All these data are stored in memory in order to avoid to retrieve
redundant data from the database.

6 Further optimization

In previous sections, for each candidate moving object o ∈ O∗ we retrieve the
set R′ of restricted areas from the database and then compute s, if o cannot
be pruned/validated by Lemma 1. Particularly, we further retrieve the set R∗

of restricted areas from the database and then compute u, if o cannot still be
pruned by Corollary 1 (c.f., Algorithm 1). Note that there is an overlap between
R′ and R∗ (as R′ ⊆ R∗). This implies that in this case we retrieve two times
for the |R′| restricted areas, which incurs the extra I/O cost. With the similar
observation we can also realize that for different candidate moving objects, their
candidate restricted areas may have an overlap (see Figure 8(a) for an illustration).
This implies that previous methods retrieve multiple times for those “overlapped”
restricted areas, which also incurs the extra I/O cost.

To overcome the above limitations, we develop a novel strategy. The rationale
behind this strategy is to track restricted areas that have been retrieved, avoid-
ing to retrieve redundant data from the database. Generally speaking, for each
restricted area that has been retrieved from the database, we use the <key,value>
pair to store the ID and geometric data of restricted area in memory. (See Figure
8(b) for example.) For brevity, we denote by Dm the data structure used to man-
age the set of <key,value> pairs3. Furthermore, we build another R-tree, which is
used to index restricted areas that have been retrieved. Here the leaf node does
not store the detailed geometric data of restricted area, instead it only stores the
ID and MBR of restricted area. We denote by I′r this R-tree for clearness. With
the help of Dm and I′r, we can easily track the restricted areas that have been
retrieved. Specifically, we do as follows:

– If we need to obtain R′ (or R∗), we do not directly search on Ir and fetch
restricted area data from the database. Instead, we first search on I′r, getting
a set, say S1, of IDs of restricted areas (note: these restricted area data can be
obtained by accessing Dm which is stored in memory); we then search on Ir,
getting another set, say S2, of IDs of restricted areas. Let S3 be the set of IDs
of restricted areas such that S3 = S2−S1. We here only need to fetch restricted

3 Note that in our implementation, we employ the map container of C++ STL (standard
template library).
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area data (from the database) whose IDs are in S3. The |S3| restricted areas
fetched from the database and the |S1| ones obtained from Dm constitute R′

(or R∗).
– If restricted areas are fetched from the database, we immediately index these

restricted areas using I′r, and add corresponding <key,value> pairs into Dm.
That is to say, we update I′r and Dm immediately once we fetched restricted
area data from the database.

With the above concepts in mind, we can easily develop the improved algorithm
for the explicit query. First, we search the set O∗ of candidate moving objects on
the index Io using Rb as the input. We then initialize Dm and I′r. Next, we process
each object o ∈ O∗. The steps of processing each object o are the similar as the
ones in Algorithm 1, except that we need to make minor modifications on Lines 6
and 10 (here we use the strategy proposed in this section). Note that, the improved
algorithm for implicit query is available by similar modifications. The pseudo codes
of these two improved algorithms are immediate, and thus are omitted for saving
space. In the next section, we test the effectiveness and efficiency of the proposed
algorithms, using extensive experiments under various experimental settings.

7 Experimental evaluation

7.1 Experimental setup

Our experiments are based on both real and synthetic data sets, and the size of
2D space is fixed to 10000×10000. Two real data sets called CA and LB4, are
deployed. The data sets are the similar as the ones in [6,11,30]. The CA contains
104770 2D points, the LB contains 53145 2D rectangles. We let the CA denote
the (latest) recorded locations of moving objects, and the LB denote the restricted
areas. (Remark: this paper is not interested in querying the trajectories, and thus
does not use the trajectory data sets.) All data sets are normalized in order to
fit the 10000×10000 2D space. Synthetic data sets also consist of two types of
data. We generate a set of polygons to denote the restricted areas, and place
them in this space uniformly. We generate a set of points to denote the (latest)
recorded locations of moving objects, and let them randomly distributed in this
space (note: there is a constraint that these points cannot be located in the interior
of any restricted area). Moreover, we randomly generate different distant thresholds

(between 20 and 50) for different moving objects. For brevity, we use the CL and
RU to denote the real (California points together with Long Beach rectangles) and
synthetic (Random distributed points together with Uniform distributed polygons)
data sets, respectively. The distributions of points (used to denote the recorded
locations of moving objects) are plotted in Figure 9 for reference, in which all
points being located in restricted areas are already removed.

The performance metrics include the preprocessing time, update time, I/O
time and query time. Specifically, the query time is the sum of I/O and CPU time.
The update time is the sum of the time for updating the database record (i.e., lr)
and the one for updating the index Io, when an object reports its new location to

4 The CA is available in site: http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm, and the
LB is available in site: http://www.rtreeportal.org/
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(a) (b)

Fig. 9 Distributions of points. (a) Random distributed points. (b) Clustered California points.

Parameter Description Value

N number of moving objects [10k, 20k, 30k, 40k, 50k]

M number of restricted areas [10k, 20k, 30k, 40k, 50k]

ζ number of edges of each r [4, 8, 16, 32, 64]

ψ number of edges of R [4, 8, 16, 32, 64]

ε size of R [100, 200, 300, 400, 500]

pt probabilistic threshold [0.1, 0.3, 0.5, 0.7, 0.9]

η shape of R [ Sq,Ta,Dm,Tz,Cc ]

N1 number of pre-set points [ 700 ]

θ number of versions [ 7 ]

Table 2 Parameters Used in Our Experiments

the database server (note: we here do not consider the network transfer time). In
order to investigate the update time, we randomly update 100 location records,
and run 10 times for each test, and then compute the average value for estimating
a single location update. To estimate the average I/O and query time of a single
query, we randomly generate 50 query ranges, and run 10 times for each query
range, and then compute the average value. Also, we run 10 times and compute
the average value for estimating the preprocessing time.

Shape Value

Ta [(x, y), (x+ L, y), (x+ L/2, y + L)]

Tz [(x, y), (x+ L, y), (x+ 2L/3, y + L), (x+ L/3, y + L)]

Dm [(x+ L/2, y), (x+ 2L/3, y + L/3), (x+ L, y + L/2), (x+ 2L/3, y + 2L/3), (x+

L/2, y + L), (x+ L/3, y + 2L/3), (x, y + L/2), (x+ L/3, y + L/3)]

Cc [(x + L/3, y), (x + 2L/3, y), (x + 2L/3, y + L/3), (x + L, y + L/3), (x + L, y +

2L/3), (x+ 2L/3, y + 2L/3), (x+ 2L/3, y + L), (x+ L/3, y + L), (x+ L/3, y +

2L/3), (x, y + 2L/3), (x, y + L/3), (x+ L/3, y + L/3)]

Table 3 Use Cases of η

Our experiments are conducted on a computer with 2.16GHz dual core CPU
and 1.86GB of memory. The page size is fixed to 4K. The maximum number of
children nodes in the R-tree Io (Ir) is fixed to 50. The (latest) recorded locations
of moving objects and the restricted areas are stored using the MYSQL Spatial
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Extensions5. (Henceforth, we call them location records and restricted area records,
respectively.) Other parameters are listed in Table 2, in which the numbers in bold

denote the default settings. N , M and ζ are the settings of synthetic data sets.
The default setting of each restricted area r is a rectangle with 40 × 10 size. Sq,
Ta, Dm, Tz and Cc denote square, triangle, diamond, trapezoid and crosscriss,
respectively. The specific settings of these geometries are listed in Table 3. These
geometries are all bounded by the 500×500 rectangular box (i.e., MBR). L in Table
3 is 500, and (x, y) are the coordinates of left-bottom point of its MBR, which are
generated randomly. We use two types of PDFs: uniform distribution and distorted
Gaussian. We use the UD and DG to denote them, respectively. In our experiments,
the standard deviation is set to τ

5 (note: τ is the distance threshold), and the
mean ux and uy are set to the coordinates of the recorded location lr. Following
the guidance of [37], we choose 700 as the number of pre-set points. In addition,
we use 7 coarse versions for the multi-step computation, corresponding workload
errors (WEs) are listed in Table 4, these data are obtained by the off-line test.
All workload errors refer to the absolute workload errors. More specifically, CV7 is
the average (absolute) workload error, other versions are the maximum (absolute)

workload errors. We remark that although θ = 7 is not mandatory, a too small value
weakens the efficiency of the multi-step mechanism, and a too large value incurs
not only over-tedious tests, but also negligible pruning/validating power between
two consecutive versions.

Property CV1 CV2 CV3 CV4 CV5 CV6 CV7

b k·N1
θ c 100 200 300 400 500 600 700

WE 0.3607 0.2499 0.2131 0.1921 0.1504 0.1067 0.0095

Table 4 Multiple Version Workload Errors

7.2 Performance study

As this paper is the first attempt to the CSPTRQ, the competitors are unavailable.
We implemented the baseline method6 (Section 3.3), the proposed methods for the
explicit (Section 4) and implicit (Section 5) queries, respectively. For brevity, we
use the B, PE and PI to denote the baseline method, the proposed method for the
explicit query, and the proposed method for the implicit query, respectively. Note
that we present the results for the explicit and implicit queries in a mixed manner,
in order to save space. We first investigate the impact of parameters ψ, pt and η on
the performance based on both real and synthetic data sets, and then study the
impact of parameters N , M , ε, ζ on the performance based on synthetic data sets.
Finally, we investigate the effectiveness of the optimization strategy proposed in
Section 6.

5 More information can be obtained in site: http://dev.mysql.com/doc/refman/5.1/en/
spatial-extensions.html

6 Note that, the efficiency of the baseline method for the explicit and implicit queries are
identical; for ease of presentation, we here do not differentiate them.



SMe: Explicit & Implicit CSPRRQs for Moving Objects 29

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16 32 64
ψ

I/
O

 t
im

e 
(s

)

0.6

0.8

1

1.2

1.4

1.6

qu
er

y 
tim

e 
(s

)

B(I/O) PE(I/O) PI(I/O)
B( ) PE( ) PI( )

(a) RU (UD)

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16 32 64
ψ

I/
O

 t
im

e 
(s

)

1.6

2.1

2.6

3.1

3.6

4.1

4.6

qu
er

y 
tim

e 
(s

)

B(I/O) PE(I/O) PI(I/O)
B(query) PE(query) PI(query)

(b) RU (DG)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

4 8 16 32 64
ψ

I/
O

 t
im

e
 (

s
)

0.6
0.9
1.2
1.5
1.8
2.1
2.4

q
u
e
ry

 t
im

e
 (

s
)

B(I/O) PE(I/O) PI(I/O)
B(query) PE(query) PI(query)

(c) CL (UD)

0

0.2

0.4

0.6

0.8

4 8 16 32 64
ψ

I/
O

 t
im

e
 (

s
)

1.4

2.4

3.4

4.4

5.4

6.4

q
u
e
ry

 t
im

e
 (

s
)

B(I/O) PE(I/O) PI(I/O)
B(query) PE(query) PI(query)

(d) CL (DG)

Fig. 10 Query and I/O Efficiency vs. ψ

Effect of ψ. Figure 10 illustrates the results by varying ψ (the number of edges of
R) from 4 to 64. Specifically, Figure 10(a) and 10(b) are the results when synthetic
data sets are used. In contrast, Figure 10(c) and 10(d) are the results when real
data sets are used. Furthermore, Figure 10(a) and 10(c) are the results by setting
the PDF as the uniform distribution; Figure 10(b) and 10(d) are the results by
setting the PDF as the distorted Gaussian. The columns in figures indicate the I/O
time, whereas the curves represent the query time. Each query range in this group
of experiments is an equilateral polygon. It has the property that the distance from
its center to vertex is 250. From these figures, we can see that, regardless of the I/O
or query performance, the PE always outperforms the B, which demonstrates the
efficiency of the tactics proposed in Section 4. The query time of the PI is obviously
less than the one of the PE, which proves the efficiency of the tactics proposed
in Section 5. Furthermore, we can see that the query time is slightly increasing
when ψ increases. This is mainly because the time computing s increases. The I/O
time of the B is almost constant. There are two reasons: (i) the size of MBR is
a fixed value, so the number of candidate moving objects (i.e., |O∗|) are almost
same for two queries with different ψ; and (ii) for each object o ∈ O∗, it always
fetches restricted area records from the database only if the object o has candidate
restricted areas (i.e., |R∗| 6= 0). Whereas the I/O time of the proposed methods
are slightly increasing. This is because both the PE and PI fetch restricted area
records according to the result of o.�∩R, this intersection set is more likely equal
to ∅ when ψ is small; in this case, the proposed methods need not fetch restricted
area records. On the whole, this set of experiments demonstrate that the number
of edges of R makes small impact on the performance, and the proposed methods
always outperform the B.

Effect of pt. Figure 11 illustrates the results by varying the probability thresh-
old pt from 0.1 to 0.9. We can see that the size of pt makes no impact on the
performance of the B, whereas it makes big impact on the performance of the
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Fig. 11 Query and I/O Efficiency vs. pt

proposed methods. Specifically, the query time of the PE decreases when pt in-
creases. This demonstrates the efficiency of multi-step computation discussed in
Section 4.2 (note: the strategies proposed in Section 4.1 are unrelated with the
value of pt. Figures 12(a) and 12(b) reflect this fact. In the figures |O∗| denotes
the number of candidate moving objects, and k1 + k2 + k3 denotes the objects
pruned/validated using techniques presented in Section 4.1, recall Algorithm 1
and Section 4.3.2). Interestingly, as pt increases, the query time of the PI first de-
creases (when pt < 0.5), and then increases (when pt > 0.5). This phenomenon is
due to the enhanced multi-step computation. In particular, this interesting results
are more obvious when the PDF is the distorted Gaussian (see Figure 11(b) and
11(d)). This set of experiments also show the proposed methods always outperform
the B regardless of the query or I/O performance.

Effect of η. In this set of experiments, we adopt several typical geometries (cf.
Table 3) as the query ranges. Figure 13 illustrates the results. From these figures,
we can see that the I/O time of the B is almost constant. This is because these
geometries have the same size of MBRs. Interestingly, we observe that the query
time goes up when we vary η (the shape of R) from the Dm to the Tz. It is easy
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Fig. 13 Query and I/O Efficiency vs. η

to know that, the areas of the Dm, Ta, Cc and Tz are L2

3 , L2

2 , 5L2

9 and 2L2

3 ,
respectively. This implies that, for two different query ranges with the same size of
MBRs, the one with the larger area usually is more likely to spend more time. This
set of experiments also demonstrate the robustness and flexibility of our methods.

Thus far, all the experiments are based on both real and synthetic data sets.
For the two data sets, the preprocessing time and update time are illustrated in
Figure 14(a) and 14(b), respectively. The preprocessing process is very fast, it only
takes several seconds. (Note: recall Figure 3(d), the time is the hour level if we
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0

0.1

0.2

0.3

0.4

0.5

10K 20K 30K 40K 50KN

I/
O

 t
im

e 
(s

)

0.15

0.35

0.55

0.75

0.95

1.15

1.35

qu
er

y 
tim

e 
(s

)

B(I/O) PE(I/O) PI(I/O)

(a) RU (UD)

0

0.1

0.2

0.3

0.4

0.5

10K 20K 30K 40K 50K
N

I/
O

 t
im

e 
(s

)

0.3

1
1.7

2.4
3.1

3.8
4.5

qu
er

y 
tim

e 
(s

)

B(I/O) PE(I/O) PI(I/O)
B(query) PE(query) PI(query)

(b) RU (DG)

Fig. 16 Query and I/O Efficiency vs. N

pre-compute a set of uncertainty regions). Also, the update time is very short, it
only takes about tens of milliseconds. In the sequel, we study the impact of N , M ,
ε and ζ on the performance, based on synthetic data sets.

Effect of ε. Figure 15 illustrates the results by varying ε (the size of R) from
100 × 100 to 500 × 500. From these figures, we can see that, the superiorities of
the proposed methods are more obvious when ε is large and/or when the PDF is
the distorted Gaussian. When ε increases, both the I/O and query time increase
for all the methods. This is because there are more candidate moving objects to
be located in R (with the increase of ε). Naturally, more location records and
corresponding restricted area records need to be fetched from the database, which
incurs more I/O time. For those increased objects, we also have to compute their
probabilities, which incurs more CPU time.

Effect of N . Figure 14(c) and Figure 16 illustrate the experimental results by
varying N (the number of moving objects) from 1e+4 to 5e+4. From these figures,
we can see that the preprocessing time, update time, query time and I/O time
increase as N increases. In terms of the query and I/O time, the proposed methods
always outperform the B, and the (time) growth rate of the B is significantly faster
than the ones of the proposed methods as N increases (especially when N > 3e+4).
This demonstrates that the proposed methods have better scalability.

Effect of M . Figure 14(d) and Figure 17 illustrate the results by varying M

(the number of restricted areas) from 1e + 4 to 5e + 4. We can see from Figure
14(d) that the preprocessing time increases as M increases, whereas the update
time is constant as M increases. This is because the preprocessing process needs
to construct Ir (the index of restricted areas); the update process however, is
irrelevant with Ir. In addition, Figure 17 shows that both the query and I/O time
slightly increase as M increases, and the proposed methods always outperform the
B. Similar to the last set of experiments, in terms of the query and I/O time,
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Fig. 18 Query and I/O Efficiency vs. ζ

the growth rate of the B is significantly faster than the proposed methods as
M increases. This further demonstrates that the proposed methods have better
scalability.

Effect of ζ. Figure 14(e) and Figure 18 illustrate the results by varying ζ (the
number of edges of the restricted area) from 4 to 64. In this group of experiments,
each restricted area r is set to an equilateral polygon. It has the property that the
distance from its center to vertex is 20. As we expected, the update time is constant
as ζ increases, which is shown in Figure 14(e). Interestingly, the preprocessing time
increases as ζ increases. Note that, we stored the edges of each r together with
its MBR in the database beforehand. In theory, constructing Ir is relevant with
the MBRs rather than the number of edges of each r. The experimental results
however, show the preprocessing time is positively proportional to ζ. This is mainly
because the time fetching the MBRs form the database goes up as ζ increases7.
Even so, the preprocessing time is still short. It only takes about one minute
even if ζ is set to 64. As we expected, when ζ increases, both the query and I/O
time increase, which is shown in Figure 18. Also, the proposed methods always
outperform the B, and the superiorities are more obvious when ζ is large.

Up to now, we have reported the main experimental results related to the
baseline method and proposed methods. We are now ready to investigate the
effectiveness of the optimization strategy proposed in Section 6. With regard to
explicit and implicit queries, we use respectively the PE+O and PI+O to denote
the algorithms integrated the optimization strategy presented in Section 6, for ease
of discussion.

7 The reason is that, for two groups of restricted area records with different ζ, the group of
restricted area records with more edges usually occupy more disk space, which renders more
time on skipping between different disk pages, when we fetch a series of MBRs from database.
Further demonstration is beyond the theme of this paper.
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Fig. 19 The effectiveness of optimization

Effectiveness of optimization strategy. Figure 19(a) reports the results when
explicit queries are executed. From this figure we can easily see that the I/O
time of PE+O is obviously less than the one of PE, i.e., the improvement factor8

is relatively large. This demonstrates that the strategy proposed in Section 6 is
effective. Note that the query time of PE+O is also less than the one of PE
(although the improvement factor is not as much as the one for I/O time). Figure
19(b) reports the results when implicit queries are executed, from which we can
derive similar findings. We remark that when we vary other parameters (e.g., ξ,
N , M) instead of ζ, the experimental results also support our findings, i.e., the
PE+O (PI+O) outperforms the PE (PI), and the improvement factor for I/O time
is relatively large. To save space, we here do not plot those results.

In addition to testing the total I/O time, we also investigate the I/O time for
retrieving restricted areas and moving objects, respectively. Figure 20 reports the
results when the default settings are used. We can easily see that in terms of PE,
most of I/O time are spent on retrieving restricted area data from the database. In
contrast, the PE+O takes less time to retrieve restricted areas, as the optimization
strategy discussed in Section 6 avoids to retrieve redundant restricted area data
from the database. Another interesting finding is that when the CL data sets are
used, the effectiveness of optimization strategy is more obvious. This is because
the points (i.e., recorded locations of moving objects) are clustered in the CL
data sets, rendering that different candidate moving objects easily share the same
restricted areas. We remark that the I/O time of implicit query is the same as the
one of explicit query, omitted for saving space.

Summary. On the whole, these experimental results show us that (i) the pro-
posed algorithms obviously outperform the baseline method regardless of the I/O
or query performance; (ii) the proposed algorithms have better scalability, com-
pared to the baseline method; (iii) while the I/O performance of two proposed
algorithms is identical, they have different query performance (it is consistent
with our theoretical analysis); (iv) the preprocessing process is fast and the up-
date efficiency is high; (v) the optimization strategy (discussed in Section 6) can
significantly improve the I/O efficiency, and also reduce the query time although
the improvement factor is not very large. Furthermore, these experimental results
also demonstrate the robustness and flexibility of our methods.

8 Here the improvement factor refers to the ratio of time. Assume that the I/O time of PE
is 0.8736 seconds and the one of PI+O is 0.274 seconds for example, the improvement factor
is 0.8736

0.0.274
= 3.189.
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Fig. 20 Total I/O time and patial I/O time. In these figures, the term “part 1” denotes
the I/O cost for retrieving moving objects, and the term “part 2” denotes the I/O cost for
retrieving restricted areas.

8 Concluding remarks

In this paper, we discussed the CSPTRQ for moving objects. We differentiated
two forms of CSPTRQs: explicit and implicit ones (as they can have different
solutions, performance results, and purposes/applications). We showed the chal-
lenges, and proposed efficient solutions that are easy-to-understand and also easy-
to-implement. Interestingly, the initial idea of our solutions is inspired by a casual
trifle — shopping in a supermarket. In brief, to answer the explicit query, we
incorporated two main ideas: swapping the order of geometric operations; and
computing the probability using a multi-step mechanism. We then extended these
ideas to answer the implicit query, in which an enhanced multi-step mechanism is
naturally developed. Furthermore, we developed a novel strategy used to retriev-
ing restricted areas in a more efficient manner. While the rationales behind our
solutions are simple, extensive experimental results demonstrated the effective-
ness and efficiency of the proposed algorithms. Meanwhile, from the experiential
results, we further perceived the difference between explicit and implicit queries;
this interesting finding is meaningful for the future research. In the future, we
prepare to study other types of probabilistic threshold queries (e.g., concurrent

queries, kNN queries) while considering the existence of restricted areas (i.e., ob-
stacles). Another interesting research topic is to extend the concept of restricted
areas to other uncertainty models.
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