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Abstract In the real word, temporal data can be found in many applications,
and it is rapidly increasing nowadays. It is urgently important and challenging to
manage and operate big temporal data efficiently and effectively, due to the large
volume of big temporal data and the real-time response requirement. Processing
big temporal data using a distributed system is a desired choice, since a single-
machine based system usually has the limited computing ability. Nevertheless,
existing distributed systems or methods either are disk-based solutions, or cannot
support native queries, which may not well meet the demands of low latency and
high throughput. To attack these issues, this article suggests a new approach to
handle big temporal data. Our approach is an In-memory based Two-level Index
Solution in Spark, dubbed as ITISS. The proposed framework of our solution is
easily understood and implemented, but without loss of effectiveness and efficiency.
Based on the proposed framework, this article develops targeted algorithms for
handling time travel, temporal aggregation, and temporal join queries, respectively.
We have implemented our framework in Apache Spark, extended the Apache Spark
SQL to support declarative SQL interface that enables users to perform temporal
queries with a few lines of SQL statements, and conducted extensive experiments
to verify the performance of our solution. The experimental results, based on both
real and synthetic datasets, consistently demonstrate that our proposed solution
is efficient and competitive for processing big temporal data.

Keywords temporal join query · time travel query · temporal aggregation query ·
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1 Introduction

Temporal data management is a hot topic in the filed of databases, and it has
been extensively studied in the past decades. Recently, it is attracting more and
more attention [23,33,15,25], owing to its wide applications.

– For instance, users may want to investigate the demographic information of
an administrative region (e.g., Texas) at a specific time (e.g., three years ago).
Querying a historical version of the database (like mentioned above) is usually
known as time travel [7,16,36,39,26].

– Consider another example, in the quality assurance (QA) department users
may want to examine and analyze how many orders are delayed as a function
of time, thereby querying all historical versions of the database over a certain
time period (e.g., from March 1, 2017 to December 31, 2017). Queries like
mentioned above are usually referred to as temporal aggregation [25,15,26].

– As for temporal join, it is also usually required to obtain results by combining
two or more temporal datasets [17,68,40]. For example, given two datasets
which recording foraging behaviors of two kinds of wild animals in a region
respectively, zoologists may be interested in how many pairs of these two kinds
of animals forage in overlapping periods.

In the past many years, there are already a large number of works addressing
the problems of time travel, temporal aggregation and temporal join queries (see
e.g., [40,7,26,16,27,32,68,36,18]). There are also some similar heuristic researches
in similarity search and matching [48,47,64,65,63,49], trajectories search [45,51,
50] and path planning in spatial networks [46,52,53] with proposed approaches.
Nevertheless, in the literature most of existing works focused on studying single-
machine based solutions, and only few effort has been made on developing dis-
tributed solutions for processing big temporal data.

Nowadays, various types of applications, e.g., web apps, mobile apps, and Inter-
net of things (IoT) apps, generate more and more temporal data, and the volume
of generated temporal data is increasingly large. It is very important and urgently
needed to effectively and efficiently handle big temporal data and keep the useful
information as much as possible. In the meanwhile, it is also challenging to process
such a large volume of temporal data in traditional database systems, since the
limited computing and storage ability of a single-machine based system. For ex-
ample, DiDi 1, a leading mobile transportation platform, collects more than 70TB
trajectories with timestamp information, which can hardly be handled in a single
commodity machine.

It is clear that dealing with such a large volume of temporal data using a
distributed system should be a good choice. In recent several years, distributed
analytics for big temporal data have been also studied (see e.g., [69,12]). Overall,
these works share two common features at least:

– (i) They are distributed disk-based analytics for big temporal data.
– (ii) Time travel, temporal aggregation and temporal join queries are not cov-

ered in their papers.

With the surging data volume, these methods/solutions could not well satisfy the
requirements of low latency and high throughput. On the other hand, Spark SQL

1 https://www.didiglobal.com/
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[66] is such an engine that extends Spark (a fast distributed in-memory computing
engine) to enable users to query the data with the SQL interface inside Spark
programs. Nevertheless, currently, it cannot provide native support for temporal
operations such as time travel, temporal aggregation and temporal join.

To support distributed in-memory analytics for big temporal data with low
latency and high throughput, this article presents an In-memory based Two-level
Index Solution in Spark, dubbed as ITISS. To the best of our knowledge, none of
existing big data systems (such as Apache Hadoop, Apache Spark) provide native
support for querying big temporal data, and none of previous works develop dis-
tributed in-memory based solution for handling time travel, temporal aggregation
and temporal join over big temporal data. In summary, the main contributions of
this article are as follows:

– It presents a distributed in-memory analytics framework for querying big tem-
poral data. The proposed framework is easily understood and implemented,
but without loss of efficiency.

– It develops targeted algorithms for addressing time travel, temporal aggrega-
tion and temporal join queries, by fully utilizing the suggested framework that
utilizes a two-level index structure.

– It implements the proposed framework in Apache Spark, and extends the
Apache Spark SQL to support declarative SQL interface that enables us to
perform temporal queries with a few lines of SQL statements.

– It conducts a comprehensive empirical study for the proposed solution, based
on both real and synthetic temporal data. Extensive experimental results con-
sistently demonstrate that the proposed solution is efficient and also com-
petitive compared against the competitors adapted from state-of-the-art tech-
niques.

Roadmap. The rest of this paper is structured as follows. We review prior works
that are most related to ours in Section 2. Particularly, we point out that this work
is a valued-added version of our previous study. We present some preliminaries and
define our problems formally in Section 3. In Section 4, we present the proposed
framework for processing big temporal data, including a distributed indexing struc-
ture, the detailed query algorithms. The implementation details based on Apache
Spark are discussed in Section 5. In Section 6, we present a comprehensive empir-
ical experimental evaluation. Finally, we conclude this article in Section 7.

2 Related Work

In the domain of temporal databases, previous works [23,24,42] addressed variety
of issues related to temporal data. In what follows, we review prior works by
classifying them into three categories. Firstly, we discuss previous works related to
temporal data processing, and then we review prior works related to time travel,
temporal aggregation, and temporal join queries. Finally, we review prior works
related to the distributed disk-based temporal analystics.
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2.1 Temporal Data Processing

In the past decades, most of early works focused on logical modelling [56], seman-
tics of time [8], and query languages [4] for temporal data. For example, Ahn and
Snodgrass [4] proposed a prototype of a temporal database management system
that was built by extending Ingres. Their system supports the temporal query lan-
guage TQuel, a superset of Quel, handling four types of database static, rollback,
historical and temporal. Bettini et al. [8] studied two types of semantic assump-
tions: point-based and interval-based. Wang et al. [56] introduced a concept, called
a temporal module, to resolve differences or mismatches among the constituents.

Recently, some researchers addressed the problem of discovering/mining inter-
esting information from temporal data. For example, Gollapudi and Sivakumar
[20] proposed a framework based on relational records and metric spaces to study
trend analysis for massive temporal data. Yang and Chen [61] studied temporal
data clustering via weighted clustering ensemble with different representations.
Loglisci et al. [35] developed a temporal data mining framework for analyzing lon-
gitudinal data. There are also some other works that addressed query or search
issues for temporal data. For example, Li et al. [33] proposed a data structure
named seb-tree to support top-k queries for temporal data. Kollios and Tso-
tras [28] studied membership queries and presented a more general problem of
temporal hashing. Temporal data can also be combined with other types of data
(e.g, spatial data) [14,59,70] and thus it can extend the classical queries [13,11,34,
71]. Besides, some optimal problems related to temporal data are also investigated,
such as finding optimal splitters for large temporal data [30,55,22].

The works mentioned above are related to ours, because these works also pro-
cess temporal data. Nevertheless, it is not hard to understand that they are obvi-
ously different from ours, because our work focuses on time travel, temporal join,
and temporal aggregation queries, instead of the above mentioned problems such
as trend analysis, finding optimal splitters, and logical modeling.

2.2 Time Travel, Temporal Aggregation and Temporal Join

We also realize that there are already a lot of existing works discussing the prob-
lems of time travel [3,7,26,16,36,43,1] , temporal aggregation [15,67,26,16,27,32]
and temporal join [68,26,69,18] queries.

For example, Elmasri et al. [16] studied the general-purpose temporal index
structures. Their methods can be used to retrieve versions of objects that are
valid during a specific time period, and support the processing of the temporal
WHEN operator and temporal aggregate functions efficiently. Becker et al. [7] de-
veloped a multi-version B-tree that supports insertions and deletions of data items
at the current version. In addition, their methods can achieve range queries and
exact match queries for any version, current or past. Kaufmann et al. [26] proposed
a unified data structure called timeline index for processing queries on temporal
data, in which they use column storage to mange temporal data. In addition, SAP
HANA [17] gives a basic form of time travel queries, based on the idea of restoring
a snapshot of a past transaction. Compared to SAP HANA, ImmortalDB [36] is
another system that supports time travel queries, and particularly it builds trans-
action time database support into a database engine, not in middleware. From the
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perspective of industry, database vendors, such as Postgres [1], Oracle [3], IBM [43],
and SQL Server [2], also integrated time travel queries into theirs systems.

On the other hand, Kline et al. [27] introduced the first algorithm for evaluating
temporal aggregation queries on constant intervals. After that, Böhlen et al. [10]
presented the algorithm for computing temporal aggregation queries based on AVL
Trees. Furthermore, temporal aggregation queries with range predicates [67], or
over extreme cases such as null time intervals [15], were also studied. Some efforts
for temporal aggregation queries with a multiprocessor machine were made in [32,
26]. Besides, efficient indexing structures supporting temporal aggregation queries
were developed in [60,16,41].

There also exists an abundance of studies for temporal join, and various vari-
ants related to temporal join operations and corresponding algorithms can be
found in a comprehensive survey [18]. More specifically, temporal join processing
with different indexes such as Timeline Index [26], Time Index [54], R*-Tree [68],
MVBTree, and B+-Tree was also well studied. In addition, Gunadhi and Segev
[21] investigated the variant operation of temporal join, called the temporal in-
tersection join. Spatio-Temporal join operation was also addressed (see e.g., [38]).
Furthermore, Lu et al. [37] discussed spatially partitioned temporal join. Segev and
Gunadhi [44] addressed event-join optimization in temporal relational databases.

A common feature of the aforementioned proposals or systems is that, they
focused more of their attention on single-machine-based solutions, while less at-
tention has been made on investigating distributed solutions for processing big
temporal data.

2.3 Distributed Temporal Analytics

Essentially, there are some papers that are related to distributed analytics for big
temporal data. In other words, distributed temporal analytics for big data have
been also investigated in recent years [69,12], and they are different from the early
work (e.g., [19]), in which the temporal data being processed is relatively small.

For example, Chandramouli et al. [12] studied temporal analytics on big data
for Web Advertising, and proposed a framework called TiMR, that combines a
time-oriented data processing system with a M-R framework. Zhang et al. [69]
developed a cloud-based infrastructure over large-scale temporal data such as call
logs from a telecommunication company.

Nevertheless, these works share two common features at least: (i) time travel,
temporal aggregation and temporal join operations are not mentioned in their
papers; and (ii) their works are distributed disk-based temporal analytics, instead
of distributed in-memory based temporal analytics. In addition, some systems [29,
5,6,57] focus on big spatio-temporal data. [29,5,6] is based on Hadoop rather than
Spark, and therefore it cannot leverage the in-memory advantages. Although [57]
is built on Spark, it does not consider time travel or aggregation operations. More
importantly, it uses a spatial-first partition strategy and does not support neither
index and SQL.

Finally, there are another lines of on-self general big data systems (e.g., Apache
Kafka, Apache Storm, Apache Samza and Apache Kinesis). However, they cannot
meet our requirements for big temporal data for many reasons. For example, these
systems are designed for streaming (or messaging) data but this property is not
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our focus, and in-memory advantages are not well exploited. Of course, it is also
possible to build stream-oriented big data analytics to meet other requirements
based on these these systems.

This paper is a major-value added version of our previous study [62]. In the
preliminary word [62], we address distributed in-memory processing for time travel
and temporal aggregation queries, and report part of experimental results. The
new contributions include (1) We report more experimental results which are not
shown in [62]; (2) We further introduce the temporal join operations under ITISS
framework; (3) We add the mathematical formulation for the minimal overlap
problem for load balance; (4) We give a more comprehensive review on prior works,
and strengthen the presentation.

3 Problem Formulation

In this paper, we attempt to achieve three most representative temporal oper-
ations (i.e., the time travel queries, temporal aggregation queries, and temporal
join queries) over big temporal data in distributed environments. Nevertheless,
the proposed framework and algorithms discussed later can be easily extended
to support other operations and other data such as bitemporal data [9]). Next, we
present the formal definitions for the problems to be studied. For ease of reference,
we summarize the frequently used symbols/notations in Table 1.

Table 1 Frequently Used Symbols

Notation Description
D a temporal dataset
ti the i-th temporal record of D
Ip a partition interval
Qe time travel exact-match query
Qr time travel range query
Qa temporal aggregation query
Qj temporal equal range join query
g a temporal aggregation operator, e.g. SUM, MAX

We use D to denote a temporal dataset that contains |D| temporal records
{t1, t2, ..., t|D|}. Each record ti is a quadruple in the form of (key, value, start, end),
where i ∈ [1, |D|], key refers to the id of the record, start and end correspond
to the starting timestamp and the ending timestamp of a time interval, during
which the record is currently alive. Further, given a record ti and a version (or
timestamp) v, we say that the record ti exists in the version v (i.e., the record ti
is alive in the version v), if and only if v ∈ [ti.start, ti.end). Besides, the end can
be omitted when the record is alive now and its terminating time (in the future)
is unknown. Now, consider the third example in Section 1, and let us see how a
temporal record is represented in such format. If there is a wild wolf whose id
is 006 (assigned by zoologists), and it usually hunts from 10:00am to 12:00pm in
grassland A (assigned by zoologists). Therefore, this activity can be recorded as
(006, A, 10:00, 12:00). It is worth noting that since timestamps here are discrete
and monotonically increasing, they can be abstracted as version ids, and similar
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Fig. 1 Illustration of temporal queries.

abstractions are also adopted in [26]. Hence, in the following, “timestamp” and
“version” are interchangeably used if the context is clear.

Typically, Time travel is one of the most significant temporal operations in
temporal databases, as it builds a consistent view for the history of a database.
In this article, we discuss two extensively used time travel operations. That is,
time travel exact-match query and time travel range query. Both of two operations
can support querying the past version of a database. Their main difference is that,
as for key the input of an exact-match query adopts a specific value, whereas the
input of a range query adopts a given range [7,39]. Note that sometimes key is not
a simple identifier, and specifying ranges for keys is meaningful. For example, the
product codes within the range may come from the same assembly line. Formally,
their definitions are formulated as follows.

Definition 1 (Time travel exact-match query) Given a time travel exact-match
query Qe = (key, v), it retrieves the record (denoted by R) from the temporal
dataset D such that,

R = {ti ∈ D | ti.key = key ∧ ti.start ≤ v < ti.end}.

To understand, consider a simple temporal database containing 8 temporal
records as an example in Figure 1. In this case, if one issues a query Qe = (17, v1),
then the query shall return t4. Correspondingly, if one issues a query Qe = (17, v2),
then the query shall return nothing.

Definition 2 (Time travel range query) Given a time travel range query Qr =
(start key, end key, v), it shall retrieve a set of records (donated by R) from the
temporal dataset D such that,

R = {ti ∈ D | start key ≤ ti.key ≤ end key ∧ ti.start ≤ v < ti.end}.

Also consider the example shown in Figure 1. Assume that one issues a query
Qr = (5, 20, v1), then the query shall return {t4, t7} as the answer. In contrast,
if one issues a query Qr = (5, 20, v2), then the query shall return {t2, t3} as the
result.

Similar to the time travel operations, Temporal aggregation is also a common
operation in temporal database, and it usually is much more challenging and ex-
pensive. Temporal aggregation has been heavily investigated, since it was first
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introduced in [27]. In this article, we focus more of attention on aggregation (e.g.,
SUM, MIN, MAX) conducted at a specific timestamp. Here, the result is an aggre-
gate value on values of temporal records. Specifically, the temporal aggregation
operation is formally defined as follows.

Definition 3 (Temporal aggregation query) Given a temporal dataset D and a
temporal aggregation query Qa = (g, v), where g is an aggregation operator such
as SUM, MAX, the query shall return an aggregate value (denoted by R) from the
temporal dataset D such that,

R = g{ti ∈ D | ti.start ≤ v < ti.end}.

Again, consider the example shown in Figure 1. Assume that one issues an ag-
gregation queryQa = (MAX, v1), then the query shall return 37 (sincemax{8, 8, 37} =
37). In contrast, if one issues an aggregation query Qa = (SUM, v2), then the query
shall return 48 (since 9 + 4 + 19 + 16 = 48).

Temporal join is another constantly used yet costly temporal operation. Just
like queries mentioned above, this query involves both temporal and key domains.
As for temporal domain, two tuples are considered to be joined candidates when
their time intervals are overlapped; as for key domain, any meaningful predicate
is possible. [40] provides several common predicates of temporal join. In this
paper, we focus on the temporal domain and users may issue a join to specify the
predicate (donated by θ) with respect to the key domain. Formally, it is formulated
as follows.

Definition 4 (Temporal join query) Given two temporal datasets D1, D2 and
a predicate θ in terms of key, a temporal join query is to return pairs of records
(donated by R) such that

R = {(ti ∈ D1, tj ∈ D2) | θ(ti.key, tj .key) ∧ [ti.start, ti.end) ∪ [tj .start, tj .end) 6= ∅},

where [ti.start, ti.end)∪[tj .start, tj .end) 6= ∅means that there is an overlap between
the time interval of ti and that of tj .

As an example, consider two temporal datasets D1 = {t1 = (3, 8, 1, 8), t2 =
(4, 9, 4, 7), t3 = (5, 7, 2, 5)} and D2 = {t4 = (3, 10, 3, 9), t5 = (4, 10, 8, 12), t6 =
(5, 9, 4, 6)}. If the specified θ is equality on keys, then the query returns {(t1, t4), (t3, t6)}.

Remark 1. Notice that, it is possible to design plenty of queries in terms of
time interval and key/value in temporal databases, but we cannot cover them
thoroughly in one single paper. To this end, we only select some interesting and
well-studied operations. Also, our focus is how to handle big temporal data in
distributed environments, and design algorithms based on a general and flexible
framework. In the meanwhile, it is worth noting that our framework has its limi-
tations in the patterns of queries, and we will elaborate it after the introduction
of its general query processing (i.e., Section 4.2).

As introduced in Section 1, a straightforward implementation based on existing
distributed systems/algorithms is inefficient and ineffective. In the next section,
we introduce our method in detail.
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Fig. 2 An illustration of our system framework.

4 The Proposed Method

In this section, we first present the distributed system framework. Then, we cover
the detailed algorithms for achieving time travel, temporal aggregation and tem-
poral join queries based on the suggested system framework, respectively.

4.1 The Architecture of Our System

At a high level, the framework of our proposed method is comprised of three main
parts:

1. The partition unit. It is responsible for partitioning all the temporal data
into distributed (slave) nodes. Normally, in order to keep the load balance, the
partition method should guarantee that — each node has roughly the same
size of data.

2. The local index unit. For each partition, the local indexes are maintained, in
order to avoid a “full” scanning. This shall help us boost the query efficiency.
Furthermore, in each partition we also maintain a partition interval (explained
later), which shall be used for the construction of the global index.

3. The global index unit. A global index located in the master node is designed
to prune “unpromising” partitions in advance. This design can avoid checking
each (individual) partition, and so it shall help us reduce the network transmis-
sion and/or cost CPU cost. In our implementation, the master node shall collect
all partition intervals from each (individual) partition in the slave nodes, and
then build the global index, based on the partition intervals collected before.

The overall architecture of our framework is illustrated in Figure 2. One can
easily understand that the proposed framework adopts a two-level indexing struc-
ture, which can avoid visiting irrelevant candidates, such as partitions and local
records, as much as possible. Though the rationale behind our framework seems
to be simple, it is definitely efficient as demonstrated later. In the remainder of
this section, we discuss important issues in each of these units.
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Fig. 3 An illustration of different partition methods.

4.1.1 Partition Method

It is well known that load balance is a desired goal when one partitions the gen-
eral data, and the main concern is usually to achieve roughly same size for each
partition. One standard strategy is to use hash-based method in big data settings,
but it is unable to maintain the “balance” when querying big temporal data. As
for the temporal data, another important and also desired goal is to minimize the
overlap of the partition intervals since this property can maintain the locality of
temporal data. To understand, let us compare the two partitioning strategies for
8 temporal records as shown in Figure 3(a). Assume that we want to partition 8
temporal records into 2 partitions. It is clear that the interval overlap between P1

(containing t1, t3, t5 and t7) and P2 (containing t2, t4, t6 and t8) is much smaller
than the one between P ′1 (containing t1, t5, t6 and t8) and P ′2 (containing t2, t3, t4,
and t7). Consider there is a query whose start and end are v1 and v2 respectively,
we can safely discard P2, but we have to keep both P ′1 and P ′2. In other words,
the smaller interval overlap, the better the pruning ability. In summary, in order
to gain load balance for distributed temporal data when partitioning, we need to
achieve both roughly equal size of each partition and the smallest interval overlap

between partitions.
Next, we formulate the smallest interval overlap as an optimization problem.

Definition 5 (Minimum interval overlap problem) A set D = {t1, t2, · · · , tn}
is divided into m partitions (i.e., subsets) and the partition is denoted as Pi (1 ≤
i ≤ m) such that the intersection of any different two partitions is empty. Our goal
is to find these partitions such that

minimize
m−1∑
i=1

m∑
j=i+1

f(Pi, Pj)

subject to Pi ∩ Pj = ∅, i 6= j,

P1 ∪ P2 ∪ · · · ∪ Pm = D,

|Pi| ≈
|D|
m
, i = 1, 2, · · · ,m,

where f(Pi, Pj) is the degree of interval overlap between Pi and Pj . Let Pi.start

and Pi.end be the leftmost and rightmost endpoints in Pi respectively; and Pj .start

and Pj .end have the similar definitions in terms of Pj . We have

f(Pi, Pj) = max{0,min{Pi.end, Pj .end} −max{Pi.start, Pj .start}}
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To achieve the above two goals, in our design we partition the temporal data by
intervals. For clarity, we dub it as range partition. A greedy partitioning algorithm
is summarized in Algorithm 1. Without loss of generality and for simplicity, we
assume that |D| can be divided evenly by m, and for any given record, it is not
completely overlapped by a different record. Firstly, we sort the records in D by
their interval tuples (i.e., (start, end)) in ascending order. Then, in order to balance
the size of each partition, every m records are grouped into one partition. Note
that in Algorithm 1, D[i, j] denotes the partition where records are indexed from
i to j (both are inclusive) in D.

Algorithm 1: RangePartition (D,m)

1 Let P = ∅
2 sort the records in D by intervals in ascending order

3 k ← |D|
m

4 for i← 1 to m do
5 Pi ← D[(i− 1)k + 1, ik]
6 end for
7 return P

As an example, we can sort these temporal records in Figure 3(a) by their
intervals, and we obtain the sorted records {t5, t1, t7, t3, t6, t8, t4, t2}. After that, we
can split evenly these sorted records into two parts. As a result, P1 shall contain
first four records {t5, t1, t7, t3}; correspondingly, P2 shall contain the other four
records {t6, t8, t4, t2}. In this way, the partition interval of P1 is [v1, v3), and that
of P2 is [v2, v4). In this case, the interval overlap of P1 and P2 is v3 − v2, which is
the minimum overlap.

Next, we prove that if the number of partitions is 2, the greedy is optimal by
contradiction.

Theorem 1 If m = 2, then Algorithm 1 provides an optimal solution to minimum

interval overlap problem when there are no any two records completely overlapping

each other.

Proof Let P1, P2, · · · , Pm be the results returned by Algorithm 1. Assume that
there is a better solution which is obtained by moving (or exchanging) records
between adjacent partitions.

Since there are no any two records completely overlapping each other, when
i < j, f(Pi, Pj) can be simplified as

f(Pi, Pj) = max{0, Pi.end− Pj .start}

If Pi.end ≤ Pj .start, then it is obvious that there is no any other methods that
can do better. Hence, the assumption is wrong.

Otherwise, the overlap degree is Pi.end−Pj .start. In this case, any moving (or
exchanging) would cause the increase of overlap degree. In other words, the new
solution is not better than previous partitions. Hence, assumption is also wrong.

Since we have a contradiction in both cases, Algorithm 1 provides an optimal
solution to minimum interval overlap problem. �
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Fig. 4 An illustration of MVB-Tree used in our system.

Further, when we try to increase m, it is reasonable to verify the feasibility of
this algorithm, since we can recursively split the partitions (suppose that m is a
power of 2).

Remark 2. Algorithm 1 is based on the assumption that there are no any two
records completely overlapping each other, so this greedy algorithm fails to work
in a general setting. As for the records which completely overlap others, we provide
a heuristic method: (1) At first, we filter these records which completely overlap
others; (2) Then, the greedy algorithm is conducted on the remaining records; (3)
Finally, given a filtered record, we assign it to a partition such that there is a
smallest overlap between the filtered one and the partition interval. At the same
time, we also shall make a trade-off to keep the number of each partition roughly
equal.

4.1.2 Local Index Method

As discussed earlier, the local index serves as managing the temporal data in
each partition. In the existing literature, there are already some on-shelf index
structures that can support time travel and temporal join queries, e.g., multi-

version B-tree [7], and time-index [16]. In this article, we adopt multiversion B-
tree (shorted as MVB-Tree) as an example. For ease of understanding, Fig 4
illustrates this index structure. For non-leaf node, the entry is in the format of
〈router, start, end, reference〉, where the router is a separator key of its children,
reference is the pointer to its child, start and end are the minimum and maximum
version id of records in its child respectively; router, together with start and end,
guides the search for a record. In the leaf nodes, each entry essentially denotes a
record, and its format (i.e., 〈key, value, start, end〉) is the same with the one intro-
duced in Section 3. Note that, in this figure, the symbol ∗ means that this record
is still alive currently. In brief, the 1st entry in the root node points to its leaf child
A, which includes all the records that are alive from version 1 to 8 (excluded).

Meanwhile, there are already existing index structures (e.g., [60,41]) that can
support temporal aggregation queries. Here we adopt the index (named the SB-
Tree, which incorporates segment-tree and B-tree) presented in [60] as an example.
In brief, the SB-Tree node consists of two arrays, as shown in Fig 5. More specifi-
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Fig. 5 An illustration of SB-Tree used in our system.

cally, one of the arrays stores and manages the intervals, which is used for pointing
to its children nodes, and another stores the values to aggregate. For example, the
second time interval of B is [62, 80) and its corresponding value is 9 (note that
key is omitted in this case). When one wants to calculate an aggregation using the
SB-Tree, he/she can search the tree from root to leaf, and aggregate the values in
this path.

Note that, although this paper adopts the SB-Tree and MVB-Tree, it is by
no mean compulsory to use these indexes. In other words, other on-shelf indexes
and/or more excellent indexes developed in the future can also be used in our
proposed framework.

4.1.3 Global Index Method

As mentioned previously, the global index serves as managing the partition inter-
vals. Since the partition interval is essentially a pair of version numbers, and is
comparable through the starting value and length of the interval; naturally, one
can use the well-known binary search tree to manage/maintain these partitions’
interval information. Notice that, for each partition in slave nodes, there exist
many time intervals (of records). Nevertheless, we only need to use one partition in-

terval for a partition. To understand the partition interval, let’s consider a simple
example. Assume that there are three time intervals {[t1, t2), [t3, t4), [t5, t6)} in a
partition. Then, the partition interval shall be [min{t1, t3, t5},max{t2, t4, t6}). This
way, each partition interval in the global index essentially corresponds to a specific
partition in slave nodes. This means that, in the query processing, if a partition
interval can be pruned, the corresponding partition can be safely pruned. Based
on this observation, in our design each node in the global index shall maintain a
key-value pair < id, Ip >, where id and Ip are the partition id and its corresponding
temporal interval, respectively.

4.2 Query Processing

The query evaluation in our framework is comprised of two stages: (i) the global
pruning, and (ii) the local look-up.

– Phase 1: global pruning. Essentially, the first phase is to fully exploit the version
v (in the query input) and the global index to prune “unrelated” partitions.
To understand, let us consider an example shown in Figure 6. Assume that
one wants to prune the partitions that do not belong to version 53, she/he can
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Fig. 6 An illustration of global pruning.

examine the partition interval by traversing the global index. As a result, only
one partition whose (id = 3) can be acted as the candidate.

– Phase 2: local look-up. Based on the local indexes and part of query inputs, the
second phase mainly retrieves, in each of candidate partitions, the “qualified”
records. To understand, consider the example in Figure 4 again. Now, assume
that there is a time travel exact-match query Qe = (5, 7), then the local look-
up would be guided to A, and B is filtered. Finally, this procedure will return
〈5, 1, 2, ∗〉 as result after checking the entries in A.

As we can see, the conciseness of query processing in ITISS is simultaneously
reassuring and disappointing. It is reassuring because its conciseness makes it
easy to implement and understand. However, it is also disappointing because its
conciseness would cause some limitations in patterns of queries. To be specific,
ITISS works only when the queries can be easily divided into the two stages as
mentioned above. On the other hand, although our framework is able to achieve
relatively low latency (as shown in experimental results), it is mainly designed
for batch-processing generally and it fails to handle streaming data due to the
different data patterns and computing techniques, and we will leave it as an open
problem in our future work.

In the remainder of this section, we present the detailed query algorithms for
time travel, temporal aggregation and temporal join queries, respectively.

4.2.1 Time Travel Queries

In this part, we first present algorithms for the time travel exact-match query, and
then explain how to achieve the time travel range query.

The pseudo-codes of the time travel exact-match query are detailed in Algorithm
2. Note that, Line 2 is used to perform the global pruning; the details of this
function are illustrated in Algorithm 3. In Algorithm 2, after finishing the global
pruning at the master node, we can obtain the ids of candidate partitions, which
are stored in P . Then, the local look-up (Lines 3-11) searches the results in each
of candidate partitions. Notice that, here the local look-ups for all these candidate
partitions are distributed to the cluster and executed in parallel.

A running example. It is given in the overall stages mentioned at the beginning of
Section 4.2.

As for the time travel range query, the detailed procedure is similar to that of
Algorithm 2. The major difference is that, we do not need to search the child

for the given key. Instead, we maintain an array of children that can direct to
[start key, end key], and then we check each node in children.
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Algorithm 2: ExactMatchQuery (key, v)

1 Let R = ∅
2 P ← GlobalPruning(v, rg) // rg is the root of the global index
3 foreach p in P do
4 node← rl // rl is the root of the local index
5 while node is not a leaf do
6 node← child of node whose route directs to key and v
7 end while
8 foreach record in node do
9 if record.key = key then

10 put record into R
11 end if

12 end foreach

13 end foreach
14 return R

Algorithm 3: GlobalPruning (v, root)

1 Let P = ∅
2 if root 6= null then
3 if v ∈ root.Ip then
4 add root.id into P
5 end if
6 GlobalPruning(v, root.left)
7 GlobalPruning(v, root.right)

8 end if
9 return P

4.2.2 Temporal Aggregation Queries

When we process the temporal aggregation queries, we also employ the global
pruning at first. The pruning process is the same with that for dealing with the
time travel queries. Yet, the local look-up process works in a different manner.

Algorithm 4: LocalAggregation (g, v, root)

1 child ← root.child which satisfies v ∈ [child.start, child.end)
2 if child is leaf then
3 record ← child.entry which satisfies v ∈ [record.start, record.end)
4 return child.value

5 else
6 return g(child.value, LocalAggregatation(g, v, child))
7 end if

Briefly speaking, in each of candidate partitions, we design a recursive algo-
rithm to conduct the local aggregation. This search process starts from the root
node of the candidate partition, until the node matching this condition is found. If
the found one is a leaf node, then we just need to return the aggregate value in it.
Otherwise, we shall recursively find the aggregate value of its child whose interval
contains v. The pseudo-codes for local temporal aggregation queries are illustrated
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in Algorithm 4. It is worth noting that: (1) At most one child of a node can satisfy
the condition that contains v (Lines 1 and 3); (2) For some function (e.g., AVER-

AGE), we may store a pair of (SUM,COUNT ) for incremental updates. In this
case, we shall make a slight changes to Algorithm 4 correspondingly. Again, the
local aggregations are conducted in parallel and their results would be collected
to master node.

A running example. After the global pruning we can get some candidate partitions.
Consider the example in Figure 5, and suppose it is the index structure of one of
the candidates. Given an aggregation query where v = 64 and g = SUM . At first,
we find that the second interval of root meets the condition (i.e., 15 < 64 < 80),
and we further explore the tree into B recursively. Then, we find that the second
interval of B also meets the condition (i.e., 62 < 64 < 80). Thus, we aggregate
values (i.e., 1 + 9 = 10) in the path from root to B.

4.2.3 Temporal Join Queries

Unlike time travel and temporal aggregation queries, temporal join query is in-
volved with two datasets. Without index support (e.g., Spark SQL), it is necessary
to compute a Cartesian product from the two datasets, and then filters based on
join predicates are followed. Now, we are able to avoid the time-consuming Carte-
sian product generating process by leveraging the two-level index in ITISS. Our
join algorithm consists of global and local join.

Global join. To boost the performance, it is important to set a proper partition
size to determine the number of join partitions (see Section 6.2). We firstly use
the global index to generate pairs of partitions candidates to join. To be specific,
given two partitions Pi and Pj from D1, D2 respectively, (Pi, Pj) can be candidate
pair only if their time intervals are overlapped. Thus, candidate partitions pairs are
generated following this rule and then they are sent to slaves for parallel processing.

Local join. Given a candidate pair (Pi, Pj), we perform a local join. Given the
index of Pi, for each record in Pj , we perform a procedure like Algorithm 2 to
return pairs of records. In fact, if the join predicate θ is the equality with respect
to keys, then we can reuse the procedure of time travel exact-match query. Since for
different θ, the resulting local join algorithms differ each other, we do not provide
the pseudo codes here. It is worth noting that the local join here only takes the
index of one partition, and it is possible for us to design an algorithm to use dual
indexes, but in fact, one-index will not lose the efficiency in practice and it is
easier to implement in the framework. We also conducted experiments to verify
this design choice in Figure 21.

A running example. Given a candidate pair (Pi, Pj) after the global filtering, as-
sume that the index structure of Pj is the one in Figure 4. Suppose one of records
in Pj is t = (6, 2, 3, 7). If the join predicate θ is the gap between keys of two records
is less than 2. By leveraging the index, the searching process would be guided to
A, and the set of pairs {(〈5, 1, 2, ∗〉, t), (〈7, 3, 5, 8〉, t)} will be returned.

Remark 3. We can find that the global pruning in algorithms mentioned above
only takes the information of partitions’ intervals and it is not aware of the local
index. In other words, the global pruning in ITISS still works even if the local
indexes are not built in advance as long as the information of partitions’ intervals is
given. In general, generating the interval information is lightweight task compared
with creating index. In this case, we shall build the local index on the fly. Therefore,
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Fig. 7 Structure of system implementation.

we can make a trade-off between heavy indexing process over whole data and
relatively long query time in practice. For example, when the data is changing
sometimes, we may prefer to build the local index on the fly if the underlying local
index does not support incremental updates.

5 Implementation on Apache Spark

In this section, we discuss how to implement our proposed framework in Apache
Spark.

As illustrated in Figure 7, for the big temporal data, we read it as RDD. After
that, we create index over RDD, and the key technique is to design a load-balanced
partitioner. Our execution is based on the two-level index, and we shall rewrite the
physical plan and temporal-aware optimizer. At last, we provide both DataFrame
and SQL interface API to end users.

5.1 Core Implementation

To support the partition method mentioned in Section 4.1, we extend Spark’s
RangePartitioner. Notice that, Spark’s RangePartitioner is developed for the general
purpose data partition; it cannot support partition by interval effectively. To achieve
this, we implement the comparison procedure for the interval data format, and
integrate it to Spark RangePartitioner.

Regarding the implementation of global index in Spark, we first collect all the
partition intervals distributed in the slave nodes, and then we construct a binary
search tree (BST) as the global index in the master node.

Yet, the implementation of the local indexes in Spark is basically different
from the strategy mentioned above. To understand, it is helpful to mention the
RDD (Resilient Distributed Dataset) in Apache Spark. As we know, RDD is fault-
tolerant and can be stored in memory to support fast data reusing, without the
need of accessing disk. Moreover, it is the basic abstraction in Spark, and it repre-
sents a partitioned collection of elements, which can be handled in parallel. In the
meantime, a partition wraps the dataset records, according to its partitioner. In
particular, we realize that RDD is designed for sequential access. This incurs that
we cannot directly build indexes over RDDs. In order to deploy the local indexes
over RRDs, we adopt a method suggested in [58]. Briefly speaking, we first load
all the temporal records (in a partition) into the memory, and then we build the
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local index structures. When it comes to implementation, we also need to decou-
ple the index and raw data in order to make our system more flexible. Finally, we
persist the local index structures in memory, so as to support subsequent queries.
As mentioned in Remark 3, the design trade-off also needs to be considered. In
practice, we may resort to building on the fly strategy if the data changes relatively
frequently.

5.2 Extension to Spark SQL

Furthermore, it would be nice to enable users to input concise SQL statements
to conduct analytics for big temporal data. But there is no corresponding SQL
commands in Apache Spark. To address this issue, we design new Spark SQL com-
mands/operations to support analytics for big temporal data. The main changes
are listed as follows.

– To efficiently manage and operate indexes for temporal data, we design the in-
dex management SQL statement. This way, users can specify the index struc-
ture by using USE index type, where index type refers to the keyword for a
specific index name (e.g., SBTREE, MVBTREE). To understand, consider an
example: assume that we want to create an SB-tree index called “sbt” for table
D, then we can use the following SQL statement:

CREATE INDEX sbt ON D USE SBTREE.

– Furthermore, to support temporal operations with SQL statements, we also
design a novel keyword “VERSION”. This new keyword can help us reinter-
pret the AS OF sub-clause inherited from SQL Server. This way, we can endow
it with the new meaning by revising the SQL plan in the Spark SQL engine.
More specifically, FOR VERSION AS OF version number means specifying
a version number, where VERSION is just the newly introduced keyword. For
example, assume that one wants to execute the time travel exact-match query,
temporal aggregation query, and temporal join query mentioned in Section 3,
he/she can use the following SQL statements, respectively.

SELECT * FROM D WHERE key = 9
FOR VERSION AS OF v2.

SELECT SUM(value) FROM D WHERE key = 12
FOR VERSION AS OF v2.

SELECT * FROM D1 JOIN D2 ON D1.key = D2.key.
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6 Performance Evaluation

In this section, we first describe the experimental settings including datasets, com-
pared methodologies, evaluation metrics, parameter settings and the experimental
platform (Section 6.1). Then, we report and analyze our experimental results (Sec-
tions 6.2 ∼ 6.6).

6.1 Experimental Settings

In our experimental evaluation, we use both real and synthetic datasets detailed
as follows. Since the size of synthetic dataset is larger, it can show the potential
when processing big temporal data. Thereby, we will use it by default.

– The real dataset called SX-ST, which is extracted from a temporal network on
the website “Stack Overflow” [31]. The temporal network has 2.6×106 nodes
that represent users, and 63×106 edges in form of (u, v, t), where v and u denote
the ids of target and source users respectively, while t is the interaction time
between these two users. More specifically, we extract from the network the
users who interacted with other users more than once. Particularly, we view
each of these users as a record, in which two consecutive interaction timestamps
of a user are looked as the interval of the corresponding record, and the value
of the record is represented by the total number of interactions related to the
users. In summary, this gives us about 0.44×106 records.

– We also generate the synthetic dataset, dubbed as SYN, by following the schema
of SX-ST. Specifically speaking, in SYN dataset the starting timestamp of a
record is randomly generated, while the length of the interval of the correspond
record is distributed uniformly between the minimum and maximum length of
that in the SX-ST dataset. The size of the SYN dataset ranges from 1×106

records to 4×109 records for time travel and temporal aggregation operations.
These records take disk space from 32MB to 166GB. In our experiments, the
default setting for the number of records is 5×108 records. As for the temporal
join operation, the left dataset and right dataset are of the same size, which
ranges from 1 million to 10 million (i.e., [106, 107] records in the SYN dataset.
In our experiments, the default value for the number of records for temporal
join operation is 2× 106, unless stated otherwise.

Following most of prior works that addressed distributed query processing,
in our experiments we also use two widely-used evaluation metrics, in order to
measure the performance and efficiency of our proposed system:

– The running time (i.e., the query latency). To obtain the running time, we
perform repeatedly 10 queries for each test case, and then report the average
value of the time spent on these queries to avoid randomness.

– The throughput. It refers to the number of queries performed per minute.
Usually, the throughput is inversely proportional to the running time.

In addition, we also test the performance of indexes used in our system. Note
that, although we directly use existing indexing techniques, it is still meaningful
to discuss its construction time and storage cost. This is because the experimental
results would show the feasibility of these techniques in a distributed setting.
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For ease of examining the efficiency and competitiveness of our proposed so-
lution, we compare our solution/system with two baselines adapted from state-of-
the-art techniques:

– A distributed disk-based solution called OcRT. This solution is extended from
OceanRT in [69]. Notice that, OceanRT runs multiple computing units on one
physical node, and it connects these units by using the Remote Direct Memory
Access (RDMA); roughly, this behaviour is the same as the executors in Apache
Spark. Furthermore, OceanRT adopts a hashing of temporal data blocks based
on the temporal attributes of the corresponding records; this behaviour serves
essentially as a global index. As for this baseline, we implement this hashing
process by grouping the starting value of intervals to form a partition. More
importantly, the adapted solution, OcRT, stores the temporal data on disks,
which is the same with that in OceanRT.

– A Naive In-memory based Solution on Spark (NISS). It randomly partitions all
temporal records by using the default approach in Spark, and stores the tem-
poral data in memory of the distributed system. These partitions are collected
and managed through Resilient Distributed Dataset (RDD), which allows users
to manipulate the managed data in parallel. To perform temporal queries, the
baseline, NISS, utilizes the predicates (e.g., WHERE predicate) provided by
Spark SQL, to launch a scanning on the data. NISS can finally obtain the
query result, by checking each record according to the condition contained in
the query input. For instance, when a temporal aggregation query with the MAX

operator is detected, the baseline NISS shall check each partition in parallel.
As for each partition, NISS shall scan the whole partition and find out the
“max” value of all the records that are alive in version v. At last, it shall col-
lect all “local” max values from these partitions and find out the “global” max
value. Consider another example, the temporal join query is implemented by
the nested loop method in each partition. To be specific, for each record of the
first operand in a partition, we examine all the records of the second operand
to see whether it is a “join” candidate. Then, the “local” join results shall be
collected and form the final answer.

All of our experiments are performed on a cluster that contains 5 nodes with
dual 10-core Intel Xeon E5-2630 v4 processors @ 2.20 GHz and 256 GB DDR4
RAM. All these five nodes are connected to a Gigabit Ethernet switch, running
Linux operating system (Kernel 4.4.0-97) with Spark 1.6.3 and Hadoop 2.6.5. One
of these five nodes is chosen as the master , and the remaining four machines are as
slaves. Overall, the configuration is of 144 virtual cores and 960 GB main memory
in the cluster, which is deployed in the standalone mode. Furthermore, in the
experiments the default partition size (i.e., the size of each partition) contains
1.0 × 105 records. The size of Hadoop Distributed File System (HDFS) block is
128 MB, and the fanout (i.e., the branch number) of the local index(es) is set to
100, unless stated otherwise. At last, the default values in our experiments are
summarized in Table 2.

6.2 The Impact of Partition Size

It is important and also interesting to study the impact of the partition size. Here
we vary the partition size SP and to check how the performance changes. We first
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Table 2 Default values in experiments

Item Value
data size for time travel and temporal aggregation 5× 108

data size for temporal join 2× 106

partition size 1× 105

branch factor 100

discuss the results of time travel and temporal aggregation queries, and then report
the results of temporal join. This is because the former two queries have similar
complexity while the join is much slower in general. More importantly, the partition
size would have more impact on join queries than others as it would generate
O(N ×N) candidate partitions (blocks), where N is the number of partitions.

(a) running time (b) throughput

Fig. 8 The performance of time travel and temporal aggregation queries vs. SP.

I Time travel and temporal aggregation. Figure 8 shows the experimental results of
time travel (including the exact-match query and the range query) and temporal
aggregation operations. It can be seen from Figure 8(a) that, the good partition size
for both the time travel queries and the temporal aggregation queries is between
20K and 100K records. This essentially tells us that it could be better to set the
partition size to a value in the range of [10× 103, 100× 103], which can assure the
best performance for the proposed method ITISS.

I Temporal join. Given the size of dataset, the number of partitions (NP ) and
the partition size (SP ) actually provide the same semantics. To see the impact
of partition size, we take ITISS as an example and vary the NP in the range of
1, 2, 4, 8, 16, 32.

The optimal number of partitions for the temporal join operation is around 4,
and its corresponding size of partition is 500K, as shown in Figure 9. This is mainly
because, for the ITISS method, the temporal join query generally requires smaller
number of partitions to eliminate the cost incurred by the data copying process.
This further shows us that it is important to choose the number of partitions in
distributed systems.

In summary, this experiment can guide us to choose a “good” partition size
for our system, and it also implies the underlying reason to choose the default
partition size in our experimental setting.
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Fig. 9 The performance when varying NP .

6.3 The Results of Index Cost

In this subsection, we first investigate the construction and storage cost of local
indexes, and then the ones of the global index.

I Local indexes. As for the local indexes, it can be seen from Figure 10(a) that,
the construction time of MVB-Tree (MVBT) is much longer than that of SB-Tree
(SBT). The main reason is that, the MVB-Tree needs to perform the node copy,
and the operations such as insertion and deletion are about two times than that
of the SB-Tree, which naturally consumes much more time in the construction
process. Nevertheless, the overall indexing construction time is still acceptable.
For instance, it takes only 1.54 hours for indexing 4 billion records by using the
MVB-Tree. In addition, Figure 10(b) shows the indexing storage overhead for both
the MVB-Tree and SB-Tree. As we expected, the storage overhead grows when the
dataset size increases.

I Varying the size of partition. Besides, Figure 11(a) shows the results by varying
the size of partition. One can easily see that there is a non-linear relationship
between the index construction time and the size of partition (i.e., SP ). The main
reason is that, the index construction time is decided by not only the total number

(a) construct (local) (b) storage (local)

Fig. 10 Index construction time and storage overhead vs. |D|.
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(a) construct (local) (b) storage (local)

Fig. 11 Index construction time and storage overhead vs. SP .

of partitions but also the size of each partition. From this figure, it can be seen that
the “good” partition size falls in the range from 20×103 to 200×103 records. This
essentially explains why we choose 10×103 as the default setting of the partition
size (recall Section 6.1). It is worth noting that an appropriate choice on the
size of each partition and the number of partitions can both improve the system
performance (i.e., obtaining a higher throughput and a lower query latency). In
addition, Figure 11(b) shows the storage cost when we vary the size of partition.
It is easily see that the partition size makes less impact on the storage cost of the
index (a.k.a., the index size). This set of results further validate that the index
size is mainly relevant to the size of dataset (i.e., |D|).

(a) construct (global) (b) storage (global)

Fig. 12 Index constrution time and storage overhead vs. NP .

I Global index. Figure 12(a) shows the construction cost of the global index. It
can be seen that the construction process is very fast. It takes about only 330
milliseconds even when the number of partitions is set to the largest value (i.e.,
40×103). The main reason is that, the global index size is very small. For example,
when the number of partitions is equal to 40×103, the index size is only about
3 MB, as shown in Figure 12(b). On the other hand, as we expected, it can be
seen from Figure 12(b) that, the size of global index is strictly proportional to the
number of partitions.
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Fig. 13 The performance when varying branch factor.

I Varying index parameters. Now we take the time travel exact-match query as an
example to investigate the branch factor’s impact on performance. Figure shows
the results when we vary it from 16 to 256.

We can find that it performs best when the branch factor is around 64, and this
is mainly caused by tradeoff between depth of a tree and branch factor for a better
pruning ability. Hence, we choose 100 as the default branch factor in experimental
setting.

6.4 Compared Results on The Synthetic Dataset

In this subsection, we investigate temporal operations on the synthetic dataset.
Similar to the previous subsection, we first investigate the time travel queries
(including exact-match query and range query), and then temporal aggregation
and temporal join queries.

(a) exact-match (time) (b) exact-match (throughput)

Fig. 14 Results of time travel exact-match queies on the synthetic dataset.

I Time travel exact-match queries on SYN. Figure 14 covers the comparison results
of time travel exact-match queries on the synthetic (SYN) data, which is much
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(a) exact-match (time) (b) exact-match (throughput)

Fig. 15 The more detailed results for time travel exact-match queries on the synthetic dataset.
Here |D| ranges from 1× 106 to 100× 106.

larger than the SX-ST dataset. For the time travel exact-match queries, we can
easily see from Figure 14(a) that our proposed method ITISS is 3∼7 times faster
than the OcRT method. In addition, our proposed method outperforms the NISS
method about one order of magnitude on both runtime and throughput when the
dataset size |D| ranges from 1×106 to 4×109 records (cf., Figure 14(a) and 14(b));
especially, it outperforms the NISS method near to two orders of magnitude when
|D| is equal to 4× 109. This essentially validates the superiorities of our proposed
solution. Moreover, we can see also that the performance of our proposed solu-
tion drops much slower than that of others, which essentially demonstrates that
our proposed solution has much better scalability. The main reason is that, the
partition pruning in our framework is much more powerful on larger datasets.

Another interesting observation is that, the OcRT method here seems to be
better than the NISS method (cf., Figures 14(a) and 14(b)), while it is inferior to
the NISS method in the previous test (cf., Figure 22). This is mainly because the
SX-ST dataset is relatively small, compared to the SYN dataset. Figure 15 well
explains this interesting phenomenon; see the crossing point between the red and
blue lines in the corresponding sub-figures such as Figure 15(a).

(a) range (time) (b) range (throughput)

Fig. 16 Results of time travel range queies on the synthetic dataset.
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I Time travel range queries on SYN. As we expected, compared with the time travel
exact-match queries, our proposed solution exhibits the similar performance for
the time travel range queries (see Figures 16(a) and 16(b)). For instance, the
running time for both time travel exact-match query and time travel range query
is close, and has the similar change tendency. Moreover, we can also see from
Figure 16 that, here the OcRT method seems to better than the NISS method
while it is inferior to the NISS method in Figure 22. The reason is the same as our
previous explanations. That is because, the real dataset SX-TX (cf., Figure 22)
is small, compared against the synthetic dataset. Figure 17 further explains the
phenomenon.

(a) range (time) (b) range (throughput)

Fig. 17 The more detailed results for time travel range queries. Here the dataset size |D|
ranges from 1× 106 to 100× 106.

I Temporal aggregation queries on SYN. Figure 18(a) reports the results of temporal
aggregation queries. On one hand, by comparing 18(a) with Figures 14 and 16, we
can see that the runtime for the aggregation query is a little longer than that of
time travel operations (e.g., exact-match query, and range query). The main reason
is that the temporal aggregation query needs to examine many more records.

As for the throughput (cf., Figure 18(b)), it has the similar behaviours. That is,
the throughput for the temporal aggregation operations is a little smaller than that
of time travel operations. Also, we observe from Figure 18 that the OcRT method

(a) aggregation (time) (b) aggregation (throughput)

Fig. 18 Results of temporal aggregation queies on the synthetic dataset.
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(a) aggregation (time) (b) aggregation (throughput)

Fig. 19 A more detailed results. Here |D| ranges from 1× 106 to 100× 106.
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Fig. 20 TER-Join query on the SYN dataset.

seemingly exhibits the better performance, compared to the NISS method. The
more details shown in Figure 19 clarify the underlying reason.

I Temporal join queries on SYN. In what follows, we report the experimental results
of temporal join operation on the SYN dataset.

Figure 20 reports the experimental results of the proposed method ITISS for
the temporal join queries. As we expected, the runtime increases when the data
size increases. On the other hand, we can see that, compared with the time travel
and temporal aggregation queries, the runtime here is larger and the throughput
is smaller. This is mainly because the temporal join query needs to operate on two
datasets (i.e., the left dataset and the right dataset, recall Section 4.2.3), and checks
the matching relation. Nevertheless, as shown later, our proposed method ITISS
has larger throughput and shorter runtime, compared against the competitors. As
similar as our proposed method ITISS, the runtime curve of OcRT increases and
the throughput curve drops when the dataset size increases. In addition, although
we use this much larger dataset, it can be seen from the results that, our proposed
method ITISS is more than ten times faster than the OcRT method when the
dataset size is 10 × 106. This essentially demonstrates the superiorities of our
method. As for NISS method, when the size of dataset is more than 2 × 106

records, NISS costs more than 10 hours computation time, so we terminate the
program manually. On the other hand, it is easily see that, when the size of dataset
is below 6× 106 records, ITISS is about 2 orders of magnitude faster than NISS,
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Fig. 21 The comparison resluts of two indexing techniques of local join.

and the runtime increases much slower as the size of dataset grows. This further
illustrates the effectiveness and scalability of our proposed method.

Next, we evaluate the performance differences of two different indexing strate-
gies for local join. The first one (donated by OneIndex) is to build an index for
one candidate partition and traverse the records in another one (as described in
Section 4.2.3). The second choice (donated by DualIndexes) is to build two in-
dexes for the candidate pairs of partitions respectively, and execute a local join
on these two indexes. Figure 21 reports the results. The interesting finding is that
the running time of two different indexing techniques is similar. In other words,
dual indexes cannot lead to a direct performance improvement when designing
the temporal join algorithm, and this is mainly because the pruning ability is not
better when applying Dual Indexes. Thus, in practice, we would prefer the One

Index, since it is easier to implement and we are able to save index building time
if we have to build it in the fly.

6.5 Compared Results on The Real Dataset

In this part of experiments, all the results are obtained based on the SX-ST
datasets, and we only report the running time. We first discuss the results of time
travel (here we use two typical time travel query versions: exact-match query, and
range query), and then discuss the results of temporal aggregation (here, we use
four aggregation query versions: agg sum, agg count, agg max, and agg min), and
finally we discuss the results of temporal join.

I Time travel queries on the SX-ST dataset. It can be seen from Figure 22 that the
execution of NISS is slow on the time travel operations including both exact-match
query and range query, although this method also stores the data in-memory.
The main reason is that, it needs to perform the full scan over the dataset in
partitions, which is time-consuming. As for the method OcRT, the hashing process
can achieve partition pruning, which is benefit to the efficiency. Yet, this method
lacks the local index, it requires to perform in-partition full scanning, which makes
this method slow. The reader could be curious why the OcRT method is slower
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Fig. 22 The comparison resluts of time travel queries on the SX-ST dataset.

than the NISS method. The reasons are twofold. Firstly, the OcRT is disk-based
solution. Secondly, the partition pruning force of the OcRT method is poor when
the dataset needing to be processed is relatively small (e.g., the SX-ST dataset). On
the other hand, we can observe that, compared against the baselines, our method
takes less than 0.2 seconds for time travel operations including exact-match query
and range query. Roughly, it is 9× faster than the OcRT method, and 5× faster
than the NISS method. This essentially demonstrates the competitiveness of our
proposed method.
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Fig. 23 The comparison resluts of temporal aggregation queries on the SX-ST dataset.

I Temporal aggregation queries on the SX-ST dataset. Figure 23 reports the compar-
ison results of temporal aggregation operations. Similar to time travel operations
discussed before, here the ITISS still exhibits the strongest performance among
these tree methods. Specifically, our method takes only about 0.3 seconds for tem-
poral aggregation queries. It is about 2× faster than NISS, and 2× ∼ 4× faster
than OcRT. This further demonstrates the competitiveness of our method. On the
other hand, one can see that different aggregation queries (e.g, SUM, MAX) have
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the similar query cost. In what follows, when we discuss aggregation queries, we
mainly report the SUM aggregation query results for saving space.

I Temporal join queries on the SX-ST dataset. Now we investigate the TER-Join
operation on the real dataset SX-ST. In the experiments, the size of both of the
datasets to be joined (i.e., left and right datasets) is 0.44 × 106 records. Note
that we only have one real word dataset, so we generate another by adjusting the
intervals randomly.
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Fig. 24 The comparison resluts of temporal join queries on the SX-ST dataset.

From Figure 24, we can observe the huge performance gap between our pro-
posed ITISS and OcRT (NISS). It is obvious that we can get larger performance
(more than ×10) boosting in temporal join than that in time travel or aggregation
due to the larger complexity of join queries.

6.6 Summary of Experimental Results

As for the local index, there is a non-linear relationship between partition size
and the index construction time. Nevertheless, the overall construction time of
the used indexes is acceptable. As for the global index, the index size is strictly
proportional to the number of partitions, and its construction is very fast, about
330 milliseconds even if the number of partitions is set to the largest value. In
addition, the partition size has the significant impact on the query performance,
and so it is important to choose the number of partitions in distributed systems.

On the real dataset, the proposed method takes about 0.3 seconds for temporal
aggregation query, and takes less than 0.2 seconds for time travel query, and takes
about 0.1 minutes for temporal join query. The query performance is pretty good,
compared against the strong competitors adapted from state-of-the-art methods.
In brief, for time travel and temporal aggregation queries, the proposed method
(i.e., ITISS) is about 3× faster than NISS, and 4× faster than OcRT, respectively.
For temporal join query, the proposed method is about 5× faster than NISS, and
7× faster than OcRT, respectively.
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On the synthetic dataset (which is larger than the real dataset mentioned
before), the performance gap between our proposed method and the competitors
are much more obvious. In brief, as for time travel and temporal aggregation
queries, our solution is 3∼7 times faster than OcRT. And it outperforms NISS
about one order of magnitude on both runtime and throughput when dataset size
|D| ranges from 106 to 4×109 records; especially, it outperforms NISS near to two
orders of magnitude when |D| = 4× 109. For the temporal join query, our method
is more than ten times faster than OcRT when the dataset size is 10 × 106. On
the other hand, when the size of dataset is below 6× 106 records, ITISS is about
2 orders of magnitude faster than NISS. Also, we can see that the performance of
our framework drops much slower than that of competitors.

In summary, our method has better scalability and query performance, com-
pared against the competitors. These results consistently demonstrate the superi-
ority of our proposed method.

7 Conclusion

In this paper we suggested a distributed in-memory analytics framework for big
temporal data and implemented it on Spark. Our framework used a two-level index
structure to enhance the pruning power. Based on the proposed framework, we
developed targeted algorithm for time travel, temporal aggregation and temporal
join queries, respectively. Besides, we also provided declarative SQL query interface
that enables users to perform typical temporal operations with a few lines of SQL
statements. We conducted extensive experiments to demonstrate the superiorities
of our solution.
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