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Abstract. Nowadays, in-memory computing has plenty of applications
like artificial intelligence, databases, machine learning, etc. These ap-
plications usually involve with the frequent access to memory. On the
other hand, memory components typically become error-prone over time
due to the increase of density and capacity. It is urgently important to
develop solutions for high-availability memory access. Yet, existing so-
lutions are either lack of flexibility, or consistently more expensive than
native memory. To the end, this paper presents a solution called SC2M. It
is a software-controlled, high-availability memory mirroring solution. Our
solution can flexibly set the granularity of the memory areas for various
levels. Furthermore, it can perform duplication of the user-defined data
structures in a high-availability version. The systematic instruction-level
granularity for memory duplication reduces the overheads for backup,
and lowers the probability of data loss. Experiment results demonstrate
the feasibility and superiorities of our solution.
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1 Introduction

In modern artificial intelligence (AI) system, it is known that vicious attacks
to memory modules are common [33, 27]. An error-prone AI system may cause
serious issues in terms of service quality and computation efficiency [15]. Besides
the AI system, many other applications are also significantly depended on the
correctness of memory. For example, in recent years in-memory computing has
been more and more applications such as Redis [23], Memcached [1], Spark [34].

The above applications and many others generate large mission-critical work-
loads, which need to frequently access memory or cache. Particularly, these ap-
plications have strict requirements on the correctness and stability of memory.



Yet, memory components typically become error-prone over time, due to the
increase of density and capacity [13]. Eventually, they may no longer guaran-
tee high availability (HA). Moreover, although some errors from the dynamic
random access memory (DRAM) can be detected by the hardware, they usu-
ally cannot be corrected instantly. These uncorrected errors often incur system
crash [18, 5, 29]. All of the above facts have led to a sharp increase in the demand
for high-availability memory access.

To provide high-availability memory access, different hardware vendors have
implemented their own product-related solutions. For example, the bit-retrieval
approach [14] has been widely used in industry, including the HP corpora-
tion [13], IBM corporation [7]. In these industries, a handful of motherboards
have integrated the error correcting code (ECC) memory into their servers [14].
This approach, however, is often ineffective for the block failure. Moreover, an-
other well-known hardware-based approach is mirror memory [14]. This ap-
proach uses the dual chip (i.e., double chips) to backup data on-the-fly. Although
this dedicated approach is useful for many applications, it often generates too
much overhead, and is consistently more expensive than native memory [30].

As for software-based solutions, a common method is by simulating hard-
ware checking. For example, software ECC [12] works quite similarly as hardware
ECC. Another useful software-based approach is to duo-backup at the applica-
tion level [5, 18]. This can be witnessed in the Google and Amazon services [27].
Although duo-backup solutions show low latency and fewer interruptions, they
usually only consider the application’s tolerance, which cannot provide trans-
parent high-availability for operating systems. On the other hand, some virtual
machine (VM)-based solutions do effectively deal with this shortcoming [31, 30].
For example, a system named Remus [5] uses virtualization checkpointing tech-
nology to backup an entire VM. However, checkpointing technology does not
backup the system extemporaneously, so data between two checkpoints may be
lost during failure; in addition, the overhead of such solutions like Remus is more
than 100%, compared to the native memory [5].

Instead of directly repairing above approaches, this paper presents a solution
that is a software-controlled memory mirroring (known as SC2M), based on the
principles of static binary translation and hardware virtualization. Here static bi-
nary translation technology enables our solution to provide a software-controlled
high-availability, while virtualization technology uses software/firmware that di-
vides physical hardware equipments into multiple independent virtual instances,
it enables our solution to support multiple VMs on the same physical machine. In
brief, SC2M explores a redundant memory space (called the mirror space) in the
physical host machine; it injects instructions into the mirror space to backup the
multi-level memory writes, where the static binary translation is used. Particu-
larly, to backup data, it implements mirror instructions not only for user mode
codes, but also for kernel mode codes. Therefore, when errors happen in the
original memory space, the compromised data can be recovered from the mirror
space, where only low-cost memory is required to recover data. Our solution
allows the application to specify the data structure to be duplicated, and it is



flexible since it can support memory mirroring at different levels (ranging from
data level, application level, to system level), and the mirror memory can be eas-
ily set to support N -modular redundancy for some specialized, business-critical
applications. In addition, it is a lightweight and real-time mirroring solution,
compared against traditional methods that use memory-mapped files [27]. Par-
ticularly, our solution is implemented by integrating the Intel shadow page table
(SPT) [35]; this provides even more flexibility in distributed environments or
other similar environments, where the operating system (OS) level access cannot
be perceived by users. To summarize, the main contributions of this paper are:
(i) We develop a software-controlled memory mirroring solution, called SC2M,
that can achieve high availability, and is cost-effective. (ii) We conduct extensive
experiments to evaluate its performance. The experimental results demonstrate
the feasibility and effectiveness of our solution.

In next section, we review the related work. Section 3 presents the system ar-
chitecture of SC2M. The workflow and implementation of our solution are covered
in Section 4. We evaluate the performance of our solution in Section 5. Finally,
Section 6 concludes this paper.

2 Related work

Existing solutions for high availability (HA) memory can be generally classi-
fied into two categories: hardware-based and software-based solutions. We next
review prior works related to these two categories.

2.1 Hardware-based HA Memory

Initially, hardware providers adopt extra bits to check and correct memory errors,
e.g., the well-known techniques are like parity checking [3] and error correcting
codes (ECC) [16]. Some hardware vendors also promote ECC to support their
motherboard services. For example, HP Advanced ECC [13], Google ECC [6],
and IBM Chipkill [7]. Besides above approache, there are also various solutions
that further improve ECC technique. For example, Odd-ECC [19] is used for
conventional 2D DRAMs, DIMMs, or even to 3D-stacked DRAMs. Another no-
table ECC-based scheme is also proposed, and it introduces the In-DRAM ECC
architecture [2]. On the other hand, bit-checking method for large area failures
is also investigated [28]. Overall, these methods are effective to deal with lim-
ited bit errors, yet they are not suitable for handling massive block failures. To
retrieve massive block failures, some works use the mirrored hardware. For ex-
ample, HP’s mirrored channel [13] provides full protection against single-bit and
multi-bit errors. The subsystem writes identical data to two channels simulta-
neously. In case of errors, the system is able to automatically recovery the data
from the mirrored memory. In [14], two optimization techniques are developed:
lazy-migration and adaptive-activation. The lazy-migration technique increases
the utilization of the rental memory via the volatile page allocations, while the
adaptive-activation technique saves the active pages in the rental memory during



the reallocation. To some extent, these hardware-based solutions are usually not
cost-effective, and may lack the flexibility.

2.2 Software-based HA Memory

In the literature, there are also many software-based solutions for HA memory.
For example, SWIFT [24], a software-only fault-detection technique, duplicates
a program’s instructions by inserting explicit validation codes, and compares
the results of original instructions and their corresponding duplicates. Later,
CRAFT [25] adopts the extra hardware structures to improve the SWIFT tech-
nique. Compared to these methods, our solution mainly duplicates the memory
write instructions, avoiding the extra overhead. Another typical software-based
solution is the dual-machine VM replication [18]. As for this method, a backup
server is synchronized to the host machine. Besides the methods mentioned
above, there are also a lot of works that use VM migration and/or replica-
tion [10, 5]. For example, Remus [5], in which the state of the primary VM is
frequently recorded and transmitted to the backup server during execution. Re-
mus achieves the high availability memory, yet the compile time of the Linux
kernel is doubled. In order to improve the performance and scalability of the Re-
mus, the ReNIC system provides an architectural extension to the Single Root
I/O Virtualization (SR-IOV) system that achieves efficient I/O replications [10].
This method requires some new hardware-assisted I/O virtualization (such as
SR-IOV). Moreover, a system called Memvisor [9, 22] is proposed, which uses
the direct page table (DPT) technique and is tailored for HA memory in cloud
environments. Later, a system called kMemvisor [30] is also developed for HA
memory in cloud environments and uses also DPT technique. However, this ar-
chitecture requires the large modifications on the guest OS, while our solution
does not need to perform those complicated modifications. In addition, our solu-
tion employs the shadow page table, which provides much more flexibility, and
so it could be used for more environments besides cloud environments.

2.3 Others

Besides the above works, we also note that there are some works (e.g., memory
error prediction and algorithm-based recovery) that could be complementary
to our solution. For example, the authors in [29] propose a scalable and fault
tolerant HPL, called SKT-HPL, and validate their method on two large-scale
systems. Moreover, a system called Jenga [20] is proposed for protecting 3D
DRAM, specifically high bandwidth memory (HBM), from failures in bits, rows,
and blocks in the memory. On the other hand, memory error prediction is also
benefit to improve the high availability of memory. For example, the work [17]
introduces the cache persistence analysis into memory backup for self-powered
non-volatile processors. One can integrate this prediction technique to improve
the reliability of memory.



3 System Architecture

Figure 1 shows the architecture of SC2M. At the bottom of our architecture, two
kinds of memories are deployed: (i) a native memory, and (ii) a mirror mem-
ory. The former is mainly used to achieve the high available VMs that can run
mission-critical applications; here the VMs can be configured at the data-level,
application-level or even to system-level, according to the mirror requirements.
Correspondingly, the latter is mainly used to backup the native VM. Generally,
SC2M is implemented with a copy-on-write manner. That is, whenever a write op-
eration occurs in the native memory, the same write operation should be done in
the mirror memory. At the top of our architecture, there are two major modules,
which are memory management module and code translation management mod-
ule. These two modules shall interact with the components at the middle level
of our architecture. Next, we discuss more details about these two modules.

I Memory management module. It monitors the operations related to page table,
and maintains both native and mirror page table entries (PTEs). Same to the
memory management of modern OS (i.e., operating system), here page table
is used to map virtual addresses into physical addresses, so that address space
can be extended in memory. A PTE can be created using “syscalls” such as
mmap(), malloc() methods in the kernel space. The memory allocator [4] in the
hypervisor maintains the relationship between the guest physical address and
the guest virtual address for each VM, and intercepts all PTE operations. In our
solution, we implement the virtual memory allocator via Intel SPT (i.e., shadow
page table) technique [35], which is a memory virtualization technology used in
full virtualization where host OS can run multiple guest page tables, and the
guest OS do not need to be modified [4, 35]; this provides even more flexibility
in distributed environments or other similar environments, where the operating
system (OS) level access cannot be perceived by users.

Denote by Addmva and Addnva the mirror virtual address and the native
virtual address, respectively. The relationship between them is established by
the equation: Addmva = Addnva + offset, where the offset is a constant value.
In order to provide data and application-level mirror memory, SC2M defines inter-
faces by wrapping up the memory area with getter() and setter() methods.
Actually, setting the offset is the most direct way to build the mirror address,
since there is no need to modify the memory layout. Notice that, an appropriate
value should be carefully selected for the offset, in order to avoid the address
conflict and also to ensure the correct creation of the mirror address.

I Code translation management module. It inserts mirror instructions, identifies
all memory write instructions, and replicates them. As we know, in the tradi-
tional X86 architecture, an instruction “write destination” is usually translated
into a virtual address. Yet, injecting mirror instructions is complicated when
some instructions do not have explicit write destinations. For example, as for
the atomic and privilege operations, it is difficult to mirror them, due to the
reasons above. SC2M alleviates these problems by using two ideas together: (i)
translating the explicit write destinations into all write destinations using static
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Fig. 1. Architecture of SC2M.
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Fig. 2. Workflow of mirror initialization.

binary translation; and (ii) generating mirrored instructions at the instruction
compile stage. An extra benefit of the above strategy is that it also reduces the
runtime overhead. Specifically, the mirrored instructions are inserted when OS
loads the program from the disk (see Figure 1 again).

4 Workflow and Implementation of SC2M

There are several important issues needing to be clarified in the implementation.
They are: (i) the creation of mirror page table; (ii) the mapping from physical
addresses to virtual addresses; (iii) data synchronization; and (iv) mirroring data
for high-availability applications. Before we discuss these issue in detail, we first
introduce the workflows of mirror initialization and data recovery, which could
be helpful to understand the rest of the paper.

4.1 Mirror Initialization and Data Recovery

As for the mirror initialization, SC2M shall do the following steps (see Figure 2).
Step 1 — Reserve physical memory. When a VM (i.e., virtual machine) starts

up, SC2M checks its configuration. When the VM is configured as HA-type, both
native and mirror memory are to be created for this VM, and the sizes of the two
memories are the same. In other words, in this step a block of physical memory
will be reserved when the VM starts up.

Step 2 — Create mirror page table. SC2M intercepts the operations related to
page table from the VM, and simultaneously creates mirror page tables. That is,
when native PTEs are updated, related mirror PTEs are created as well. In our
solution, Intel SPT technique is used, which provides us the application program
interfaces (APIs) to implement this step.

Step 3 — Write redundant data. The mirror write instruction is replicated
through the static binary translation, and the redundant data is written using the
mirror instruction. In other words, native instructions and mirror instructions
will write the same data to different addresses.

As for data recovery, it is mainly for recovering the corrupted data based
on the data in the mirror space. Specifically, when a memory failure occurs,
the hardware detection module (e.g., parity checking or ECC) notifies SC2M by
invoking a machine check exception. Unlike the normal response of restarting the
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Fig. 4. Data synchronization of SC2M

OS (i.e., operating system), SC2M quickly and effectively retrieves the corrupted
data through the following steps (see Figure 3).

Step 1 — Allocate a new page. In the native memory, the memory module
allocates a new page from the free zone, blanks the options of the new page, and
marks it with “writable”; here the new page will be allocated to the VM.

Step 2 — Remap the new page. The corrupted PTE is rewritten and mapped
to the new page (allocated in Step 1). Here the virtual address will be mapped
to the new page.

Step 3 — Recovery corrupted data. Data is copied from the mirror virtual address
to the native virtual address. After that, the program continues to execute.

4.2 Creation of Mirror Page Table

As mentioned earlier, we employ the SPT (i.e., shadow page table) technique
when creating mirror page table. In general, SPT is a technique that maintains
the real mapping in the hardware when executing the guest instructions. Here
the SPT module is invoked when the guest OS modifies the CR3 register, which
is one of control registers. It contains the base address of the page table. In our
implementation, SC2M translates the native page table to a new table, and resets
the CR3 such that it still points to this new page table. Meanwhile, during the
translation, SC2M creates the mirror PTEs (i.e., page table entries) in the new
table. The above is the general implementation of creating the mirror page table.

We may need to mention that, in the full virtualization mode of our SC2M,
the CPU shall conduct a permission check when an instruction is executed.
Specifically, if the check reports an illegal operation, the hypervisor executes
a predefined procedure to handle the problem. On the other hand, if a sensi-
tive instruction is not privileged, then a guest OS may obtain (or even modify)
resources belonging to the host (or other VMs), yet it does not inform the hyper-
visor. An immediate example is the mov() instruction, which is not privileged
in X86-64, and so the hypervisor cannot trap any guest PTE operation from
mov() instruction. Compared to the instructions like move(), updating the CR3
is a privileged instruction that can be used to track the operation of the guest
PTEs. In our implementation, the CR3 operations are intercepted by the SC2M.



Naturally, our SC2M can easily read the PTE of the guest OS. This way, a new
page can be translated to a new space in the SPT.

Additionally, we observe that OS may not always use the new information
changed from the translation. This implies that, during the SPT implementation,
there may not need to do a complete translation for every change in the CR3. To
improve the performance of SPT, one can set the P (i.e., present) bit to 0 in SPT
entries. This way, when a guest OS accesses this address, it causes a page fault
due to the nature of the x86 architecture. This page fault can be also captured
by SC2M. In this case, SC2M shall find the original value in the CR3, according
to the SPT. Then, it determines whether the page fault is caused during the
translation. If so, SC2M translates the PTE (i.e., page table entry) to finish the
exception handling. Otherwise, it indicates that the page fault is produced by
the guest OS, and so SC2M forwards it to the guest OS that shall handle it.

4.3 P2V Mapping

In the virtualization mode, it is necessary to build a mapping between phys-
ical addresses and virtual addresses. In our implementation, we rebuild the
“vm struct”, which is a special data structure that stores the mapping between
the virtual addresses and the physical addresses [31, 29, 31]. Our modification
is mainly on the layout of guest memory. In our implementation, each virtual
memory area has its own mirrored area. The native and the mirrored virtual ar-
eas are mapped to different physical memories to ensure that data is replicated
physically. This modification allows us to free address space more efficiently. For
example, when a process is killed, the virtual address and its related physical
address can be released simultaneously. On the other hand, as for the layout
of host memory, we exploit the mirror area in both the kernel and user spaces,
and so each part of the memory shall reside in different locations of the physical
memory. This way, it allows the system to perform physical replication of the
data easily. Note that, in our implementation we use the simple memory layout
for both guest and host ends. Nevertheless, one can also use more complicated
layouts, which are depending on the specific application requirements.

4.4 Data Synchronization

In order to guarantee the data synchronization, the GNU compiler collection
(GCC) procedure is modified to perform the analysis of the assembly source
files and the static binary translation, before the assembler handles them. In
our implementation, SC2M calculates the mirror memory addresses to determine
where to replicate the data. Then, mirror instructions are injected into the source
files, which are processed by the assembler as executable files. Note that, since as-
sembling files (created by the GCC) have target addresses represented as labels,
these instructions do not cause any problems for indirect branches or indirect
jumps. In addition, once the executable files are generated, they shall have the
ability to write data into both native and mirror memories. This way, when the
programs run, the data is replicated instantly.



Nevertheless, we may need to note that, there are two types of mode codes,
which need to be considered carefully. We next address them respectively.

I User mode code. In the user mode, some special instructions can change the
execution sequence. So, in some cases they can be incorrectly mirrored even
if the native instructions are correct; this incurs the inconsistent data. For ex-
ample, the method call() saves procedure linking information on the stack,
and branches to the called procedure; in this case, if the mirror instructions are
inserted right after the native ones, they will not be executed until the called
procedure returns. This creates a long-time data inconsistency between the na-
tive and mirror memories. To remedy this, we employ a copy-on-call method
to replicate the linking information, by inserting mirror instructions at the very
start of the called procedure. Since a procedure may be called several times
but needs to be implemented only once, the copy-on-call method reduces the
overall number of mirror instruction calls.

I Kernel mode code. Codes in the kernel mode are much more complicated than
codes in the user-mode programs, although some instructions can be mirrored
according to the user mode codes. The complexity is mainly because we need
to take into account the atomic operations and privilege changes in the kernel
mode. Generally, when an interrupt occurs, the kernel stops the normal processor
loop, and starts to process the execution of a new sequence, called an interrupt
handler. When an interrupt occurs, the processor first saves several registers such
as eip and esp. This is mainly for restoring, when it returns from the interrupt.

4.5 Mirroring Data for High-Availability Applications

The SC2M can achieve fine-grained replication, e.g. data-level memory mirroring.
This means that, SC2M can choose a certain address area for the application rather
than using the entire VM memory. This can protect the important memory areas
from more overhead. In our implementation, SC2M performs data-level replication
by wrapping the memory area with getter and setter methods. Generally, SC2M

provides four interfaces for data-level memory mirroring:

– create. The create operation generates a memory area for mirroring.
– get. The get operation fetches the content of the mirror memory.
– set. The set operation configures the mirror memory according to the re-

quirements of the application.
– destroy. The destroy operation deletes all the mirror PTEs and releases the

mirror space.

The steps of these operations can be briefly described as follows. First, de-
velopers use the create command to create a memory area and then use the get
and the set to access this memory area. Later, they use the destroy command
to invalidate the memory area. To reduce the complexity of the program, SC2M

also provides an approach to mirror the user-defined format of the memory area,
based on the user-defined data structure. In this case, users need to declare the
structure, implement the create, get, set and destroy methods based on specific
requirements. SC2M wraps the four methods with binary translation so that every



memory-write operation in the memory area is duplicated to the mirrored area.
More importantly, SC2M can also mirror some structures and classes in certain
libraries by translating libraries to a redundant version. Therefore, this tech-
nique can be used by developers to create high-availability STL map and list in
their applications. In that case, the map and list are used to build parts of the
infrastructure library.

5 Performance Evaluation

In this part, we first present the experimental settings (Section 5.1), and then
present our main experimental results (Section 5.2), and finally discuss the lim-
itations and summarize our findings (Section 5.3).

5.1 Experiment Setup

As mentioned earlier, the SC2M is developed for high availability. In our exper-
iments, we use the gzip and gunzip software sets to conduct evaluation on the
data-level high-availability. We test the gzip and the gunzip programs with eight
different file sizes. They range from 100 MB to 800 MB. Following prior works [5,
11], we use the execution time to measure the performance. The execution time
can easily represent the overhead. The execution time for these two applications
refer to the compressing/decompressing time. Similar to prior works [5, 14, 11],
we compare our proposed solution with the original (native) implementation. As
for the former, it is a double write, while the latter a single write. In our experi-
ments we did not extensively compare with existing solutions, since most of them
are hardware-based solutions, which are hard to implement in our experimental
platform. As for the software-based solutions, most of them are developed for
the application level, or rely on disk. Our solution relies on memory and can
provide high availability for data-, application-, and system-levels. Its superior-
ities are obvious, since (i) it is clearly faster than them (due to the difference
between memory and disk), and (ii) it has more service domains, ranging from
data-, application-, to system-level. Nevertheless, in Section 5.3 we shall give a
discussion between our solution and the one most closest to ours.

We use XV6 [32] as the guest OS, and test the syscall mmap() function in
the kernel space using or without using the SC2M, for evaluation on the system-
level high-availability. To compare, we choose three write back frequencies for
mmap(), they are 2048, 4096, and 8192; and we create an array of characters and
a memory-mapped area to test the sequential read performance of our solution
and the native system call command mmap() with different frequencies.

Our solution SC2M generates mirror instructions at the compile stage. It is nec-
essary and also interesting to investigate the number of inserting mirror instruc-
tions, which can reflect the application-level high-availability, to some extent.
To evaluate this performance, we use several applications like Memcached [1],
Parsec Ferret [21] and SPECjbb [26] as testing benchmarks. Additionally, since
our SC2M can support an extra interface that allows us to analyse the mirror
instructions in detail, we also present the results related to this feature.
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Our goal in this work does not optimize the performance inside the native
memory, we shall mainly test how much overhead shall be used for our solution.
Ideally, if our overhead is less than two times of the overhead used by native, then
our solution should be effective. Our tests are run on a DELL PowerEdgeT30
with a 16-core 3.7GHz Intel Xeon E3-1225v5 CPU with 8 GB DDR3 RAMs with
ECC and a 1 TB SATA Disk. Our SC2M is implemented on an Xen-4.6. We use
Linux (kernel version 4.3.31) as the host OS, and deploy a lightweight system,
Busybox-1.19.2 [8]. Each VM is allocated two virtual CPUs and memories.

5.2 Experimental Results

Data-level. As we know, the gzip program does not occupy too many CPU re-
sources while it is memory-intensive. We first test gzip application to see whether
our solution is favourable.

Figure 5 shows the results when the gzip application is used. In this figure, the
“our-gzip” means that the hypervisor has already been patched with SC2M, while
the “native-gzip” means that the benchmark was run without any modification
inside the hypervisor. That is, it does not use the memory mirror and thus no
write backup operations are involved. From this figure, we can see that these two
curves are almost coincident, although our solution employs the memory mirror
that needs the write backup operations and the extra space for mirroring. This
result essentially implies that our solution is slightly affected by the mirror space
and also the write backup operations. In other words, for the gzip application,
adding the mirror leads to only a minor performance degradation. This should be
pretty positive and optimistic. The reader could be curious why the overhead of
SC2M is too low, instead of two times of the native overhead. The main reasons are
(i) SC2M uses redundant memory to backup native memory, avoiding additional
I/O reads and writes; and (ii) most of mirror instructions generated by the static
binary translation are explicit instructions, SC2M can read the destination address
directly, which significantly speed up the process of mirror writes and reads.

Correspondingly, Figure 6 shows the results when the gunzip application
is used. In this figure, the “our-gunzip” and “native-gunzip” have the similar
meanings with those mentioned in the previous paragraph. We can also see that
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the overhead of our solution is also close to that of the benchmark. This further
demonstrates the feasibility of our solution. Moreover, one can see that when
the file size is equal to 800 MB, our solution presents the worst performance,
compared against the benchmark. Nevertheless, the gap is still very small. Specif-
ically, the extra overhead incurred by our solution is less than 10% overhead in
the gunzip benchmark. This minor extra overhead is fully acceptable and rea-
sonable for most of real applications, since our solution (supporting the memory
mirror) provides high-availability memory access.

System-level. As for evaluation on the system-level high-availability, we test the
sequential read performance. The comparative results of our tests are plotted in
Figure 7. In this figure, the “our-read” means our solution, while “mmap-2048”,
“mmap-4096” and “mmap-8192” refer to the native system call method mmap()
with different frequencies. The results show that the execution time of our so-
lution lies between mmap-2048 and mmap-8192. The performance is reasonable
since our solution uses the memory mirror that can achieve high-availability.
In contrast, for the benchmark, although we execute system calls periodically
(every 2048, 4096 and 8192 bytes), the memory-mapped file could still not guar-
antee that all memory states are retained before the next write sequence. In this
case, once a memory error occurs, the new data, which has not been written
in the last call, could be lost. This reflects from another perspective that our
solution is much more reliable and reasonable than the mmap alternative.

Application-level. This experiment is used to study the application-level high
availability. Figure 8 shows the number of inserting instructions at the compile
stage for the Memcached benchmark. In this figure, the “native” denotes the
compile test using the original GCC, while “our” denotes the compile test using
our solution, SC2M. It can be seen that, on average, our solution at compile stage
only leads to about 20% increase, in terms of the number of compile instructions
(notice: the famous Remus system leads to 70% increase, as stated in [5]). This
essentially reflects that our solution should be favourable. As mentioned earlier,
our SC2M can support an extra interface that allows us to analyse the mirror
instructions in detail. Note that, since mirror instructions correspond to the
native ones, they essentially also provide detailed information for the native



programs, to some extent. Figure 9 shows the detailed information of mirror
instructions in Memcached, Ferret and SPECJbb, respectively. We can see that,
the numbers of mov and push instructions alone are about 80% of the total
number of instructions. In addition, it can be seen that, among all the memory
write instructions, the majority of instructions are comprised of explicit write
instructions (e.g., mov). The implicit write instructions are fewer (e.g., imull,
sub, or, les) but usually are more complicated, which easily incur the extra
overhead.

5.3 Discussion and Summary

Although all the experimental results show the feasibility and benefits of our
solution, we would like to point out that, our solution may not be absolutely
better than some existing (hardware-based or software-based) solutions. This
is mainly because different solutions rely on different configurations, they may
have their own advantages. A good example could be Remus [5]. It backs up
the whole virtual machine in disk, has the full checkpoints and recovery mecha-
nisms. In this regard, our solution does not always perform better than Remus.
Yet, Remus generates 100% (double write) overhead using duo-backup, which is
significantly larger than our overhead. Our solution uses directly the memory to
backup memory data, it avoids additional disc I/O read and write. In this re-
gard, our solution has its largest superiority than almost all the previous memory
fault-tolerant solutions. Besides, our solution is also equipped with the following
advantages: (i) it can retrieve the data quickly because it does not need any I/O
operation from external devices; (ii) a hypervisor in the physical host does not
need to launch new VMs for the backup of native VMs; and (iii) redundancy is
narrowed down to one general machine or single server, so it does not involve
networking resilience or migration maintenance; that is to say, large-scale de-
ployment of our proposed system affects bandwidth utilization only minimally.
Therefore, on the whole our solution is still competitive and attractive.
Summary. We find that (i) although our solution employs the memory mirror
that needs the write backup operations for mirroring, it only leads to a minor
performance degradation (e.g., executing gzip and gunzip applications), instead
of two times of the native overhead. Specifically, in most of cases it curs about
only 1.5% performance degradation. Such a performance is very positive, since
our solution uses the memory mirror that can achieve high-availability for data
level. (ii) Our solution can efficiently perform system-level operations (e.g., se-
quential read), and its performance is optimistic. Specifically, its performance
is close to native system call method, yet it is much more reliable than native
method. (iii) As for application-level (e.g., Memcached), our solution incurs a
little more (about 20%) inserting instructions at the compile stage, and most of
instructions are explicit write instructions (e.g., mov), which usually take less
overhead, compared implicit instructions (e.g., imull).

6 Conclusion

In this paper, we proposed SC2M, which provides software-controlled memory
mirroring based on hardware virtualization and static binary translation. SC2M



duplicates memory by implementing mirror instructions in both user and kernel
modes. It is able to simultaneously support high-availability and native virtual
machines. For each VM one can choose to use data-, application-, or system-level
high availability. SC2M can also increase the memory copies on demand, and so
is more flexibility than hardware-based approaches. We conducted experiments
to validate the feasibility and superiorities of our solution.
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