
LPV: A Log Parser Based on Vectorization for
Offline and Online Log Parsing

Tong Xiao1, Zhe Quan1,*, Zhi-Jie Wang2,*, Kaiqi Zhao3, and Xiangke Liao4

1College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
2College of Computer Science, Chongqing University, Chongqing, China

3School of Computer Science, University of Auckland, Auckland, New Zealand
4College of Computer Science and Technology, National University of Defense Technology, Changsha, China

{xiaotong18, quanzhe}@hnu.edu.cn, cszjwang@yahoo.com, kaiqi.zhao@auckland.ac.nz, xkliao@nudt.edu.cn

Abstract—As the first and foremost step of typical automatic
log analysis, log parsing has attracted a lot of interest. Most
of existing studies treat log messages as pure strings and rely
on string matching or string distance. In NLP, word2vec has
shown very efficient and effective in representing words with low
dimensional vectors. Inspired by this, in this paper we propose a
novel method, called LPV (Log Parser based on Vectorization),
for both offline and online log parsing. The central idea of our
method in offline log parsing is to first convert log messages into
vectors, and measure the similarity between two log messages
by the distance between two vectors, then log messages can be
clustered via clustering the vectors, and log templates can be
extracted from the resulting clusters. For online log parsing, we
also assign log templates with some kind of average vectors, so
that the similarity between an incoming log message and each
log template can also be measured by the distance between two
vectors. We have conducted extensive experiments based on three
widely used log datasets, and the results demonstrate that our
proposed method LPV can achieve a competitive performance,
compared against state-of-the-art log parsing methods.

Index Terms—log parsing, log template extraction, vectoriza-
tion, clustering

I. INTRODUCTION

Logs contain rich information and play an important role

in the life cycle of computing systems. However, with the in-

creasing scale and complexity of modern computing systems,

the volume of logs explodes, which makes it cumbersome,

error-prone, and impractical to cope with the huge amount of

logs and dig out useful information manually, especially for

large-scale HPC and cloud systems. Therefore, automatic log

analysis is urgently needed, since it can alleviate the above

dilemmas and ease many tasks such as anomaly and failure

detection, diagnosis, and prediction [1]–[4].

Typically, the first and foremost step of automatic log

analysis is to parse unstructured logs into structured data, since

logs are traditionally unstructured plain text produced by the

“printf” or similar statements in C and equivalents in other

programming languages [5]–[8]. As an example, consider the

log message given in Fig. 1. It can be split into constant parts

and variable parts (the texts in bold). The log parsing process

usually needs to obtain a log template which can be achieved

by replacing the variable parts with wildcards (the * in red

color).

* The corresponding author.

Fig. 1. Example of parsing a log message. The parsing result is represented
by a tuple in the form of (log template, [list of variables]).

However, it is often difficult to determine which parts

are constants (resp., variables) in a log message. In existing

literatures, there are roughly three types of methods. The first

one relies on domain experts to inspect logs and provide rules,

which is labor-intensive and tedious. The second leverages

source codes to obtain the “print” statement of a log message

[8], which can get accurate log templates, but relies on the

availability of source codes. The third type of methods [5], [6],

[9]–[13] utilize machine learning and data mining techniques

to figure out the constant parts automatically, which need little

domain knowledge and no access to source codes.

It is possible that some researchers might have attempted

to covert log messages into vectors and apply data clustering

algorithms on the vectors to perform log parsing. However,

there exists no literature yet that shows such a vector-based

clustering method can work well for log parsing. This could

be due to that, logs usually have short length while a likely

large vocabulary size [14], thus it is difficult to perform log

parsing via vector-based models such as bag-of-words, because

of the Curse of Dimensionality [11], [12]. Hearteningly, we

observed that the word2vec [15] in NLP provides an efficient

and effective word embedding method to represent words with

low-dimensional vectors, which capture syntactic and semantic

word relationships well at the same time [16]. This presents

a great opportunity to utilize vector-based clustering methods

to perform log parsing.

Inspired by the above, in this paper we propose a novel

method, dubbed as LPV (Log Parser based on Vectorization),

for both offline and online log parsing. Generally, as for

offline log parsing, LPV first converts textual logs into vectors

with the help of word2vec. Then, it clusters the resulting set

of vectors to get groups of logs, and extracts one or more

1346

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00175

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:44:18 UTC from IEEE Xplore. Restrictions apply.

templates from each group. Finally, it merges similar templates

into a single one to obtain fine-tuned templates and their

corresponding template vectors. As for online log parsing,

LPV first converts each incoming log message into a vector

just like in offline log parsing, and then accelerates log parsing

by matching the incoming log message with only a few closest

log templates, in terms of vector distance. We have conducted

empirical study based on three widely used log datasets. The

results show that LPV achieves a competitive performance,

compared against state-of-the-art log parsing methods.

II. RELATED WORK

Log parsing has attracted a lot of attention in past years [17].

Early works such as SLCT [18] and LogHound [19] leveraged

the idea from the Apriori algorithm, which is used for mining

frequent itemsets, to find frequent words and patterns in the

log dataset. Their basic observation is that frequent words are

more likely to be constant parts. Such methods first identify

all frequent words in the log dataset, and then form different

clusters according to the frequent words contained in each

log message, and finally create a log pattern for each cluster.

An improved approach, called LogCluster [13], was recently

proposed to address shortcomings of SLCT. Nevertheless,

these Apriori-based algorithms are not efficient enough.

In [9], [10], the authors proposed a lightweight algorithm

called IPLoM, which first iteratively partitions the whole log

dataset into respective clusters using three steps (i.e., partition

by token count, by token position, and by search for bijection,

respectively). Then, the method generates a message type

description for each cluster. IPLoM assumes that log messages

having the same message type description should be having the

same token count. This assumption may limit its applications.

In [11], the authors proposed LogTree, which utilizes

the format and structural information of log messages via

building semi-structural log messages and assigning different

importance to different levels. LogTree can employ various

clustering algorithms to generate log templates, but the number

of clusters is a user-given parameter, which is often hard to

determine. In [12], the authors developed logSig, which tries to

partition all log messages into k groups based on the term pairs

generated for each log message. Yet, the number of groups, k,

must be specified by user, which is also difficult to determine.

Different from the above approaches, HELO [20] has an

offline clustering process together with an online one. In

the offline clustering process, HELO recursively finds a split

column (a word position) and divides log messages into

different clusters until all clusters are stable. In the online

clustering process, the template set from the offline process

can be adapted according to each incoming log message.

For open-source softwares, there is also effort to parse logs

by leveraging source code analysis [8], as a log’s schema is

hidden in the log printing statement. Such a method is able

to parse possible log messages accurately, but the access to

source codes is a prerequisite.

With the increasing demand of online monitoring, several

novel online log parsing methods have been proposed recently.

Preprocessing

Vectorization

Clustering

Log Templates Extraction

Offline

Log Dataset

Preprocessing

Vectorization

Candidate Templates Selection

Template Identification

Online

Log Message

Vocabulary

Token Vectors

Fig. 2. Overall framework of LPV.

Spell [5], [6] is an online log parser which utilizes a longest

common subsequence (LCS) based approach. Drain [21] is

another online log parsing approach which utilizes a fixed

depth parse tree to accelerate the log group search process.

In summary, almost all existing works merely treat log

messages as strings and directly process or cluster them based

on string matching or string distance.

III. METHODOLOGY

A. Overview of LPV

The core idea of our approach is to represent log messages

and log templates with vectors and measure the similarity

between two log messages as well as between a log message

and a log template based on the distance between two vectors,

which is thoroughly novel in the log parsing field.

Fig. 2 shows the overall framework of LPV, which consists

of an offline component and an online one. The offline com-

ponent divides the entire log dataset into separate clusters, by

first converting log messages into vectors and then applying a

clustering algorithm on the resulting vector set. Subsequently,

it extracts one or more log templates from each cluster, and fur-

ther merges similar templates into a single one, in order to get

the final fine-tuned templates together with their corresponding

vectors (called template vectors). The online component fully

leverages the outputs of the offline component. For each

incoming log message, the online component first converts

it into a vector just like the offline component does. Then, it

finds the top n closest template vectors (whose corresponding

templates are chosen as candidate templates). Finally, it

matches the log message with each candidate template, and

selects the completely matched one (if exists) as the log

message’s template; otherwise, the log message itself is treated

as a new log template and its actual template can be extracted

in following offline log parsing.

B. Offline Log Parsing of LPV

The input of the offline log parsing is an existing log dataset,

and the outputs are (i) the vocabulary together with all tokens’

vectors, and (ii) a set of log templates together with their

corresponding template vectors. In what follows, we address

each phase of the offline log parsing shown in Fig. 2.

1347

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:44:18 UTC from IEEE Xplore. Restrictions apply.

index log message

0 Connection to 192.168.10.101
is established.

1 Connection to 192.168.10.102
is established.

2 Connection to 192.168.10.103
is established.

3 Connection to 192.168.10.102
is established.

4 Connection to 192.168.10.101
is established.

5 Connection to 192.168.10.102
is established.

index unique log message indices of log
messages

0 Connection to 192.168.10.101
is established.

[0, 4]

1 Connection to 192.168.10.102
is established.

[1, 3, 5]

2 Connection to 192.168.10.103
is established.

[2]

index unique substituted log message indices of unique
log messages

0 Connection to $$IPADDR$$
is established.

[0, 1, 2]

Fig. 3. A simple illustration of the workflow of the Preprocessing phase in the offline log parsing.

1) Preprocessing: In this phase, we aim to reduce the

size of dataset and vocabulary by two operations: duplicates

removal and common variables substitution (cf., Fig. 3).

� Duplicates removal. For a log dataset which spans a long

period, it often has a lot of repeated log messages. Note that,

here we only consider the content field of each log message.

For example, the two supercomputer log datasets used by

[5], [6], [10], [21] (https://www.usenix.org/cfdr-data), denoted

by BGL and HPC respectively, have over 90% repeated

log messages. By removing the duplicates, many repeated

manipulations on identical log messages can be avoided.

� Common variables substitution. We observe that the huge

amount of variables is a main reason that incurs the large

vocabulary size of a log dataset. Though we cannot identify

all the variables, we do know some most possible formats

of variables, such as common variables like IP addresses,

numbers, etc. Our method utilizes some regular expressions to

substitute these common variables with a few special tokens.

For example, in our implementation we substitute all IP

addresses with a special token “$$IPADDR$$”. After this

kind of substitutions, a lot of log messages could be the same,

and duplicates can be removed to get unique substituted log

messages since these duplicated log messages definitely share

the same template. It is worth noting that, (i) the common

variables substitution is not carried out in-place, it makes no

impact on the original log messages; and (ii) the final log

templates are extracted from original log messages.

2) Vectorization: The goal of this phase is to convert each

unique substituted log message into a vector, which is achieved

through two steps: Word2Vector and Log2Vector.

� Word2Vector. This step is to map each unique token (or

word) to a vector, with the help of word2vec. Specifically,

we first split each unique substituted log message into tokens

by whitespaces and punctuations including “=”, “(”, “)”, “[”,

“]”, “:”, “?”, etc. We also treat punctuations as individual to-

kens, since they always keep constant across all log messages

produced by the same “print” statement. For word2vec, we

adopt the Skip-gram model architecture described in [15], and

utilize negative sampling which selects some negative samples

for each data sample. But we disable subsampling of high-

frequency tokens, since they are more likely to be constant

parts. In addition, we constrain the pair of input and label

tokens within a unique substituted log message, since there

are no strong correlations between the tail tokens of a unique

substituted log message and the head tokens of the next one.

� Log2Vector. This step is to calculate a vector for each

unique substituted log message. Specifically, for a unique

substituted log message l consisting of n tokens t1, t2, . . . , tn
(whose corresponding vectors are V1,V2, . . . ,Vn respec-

tively), the vector Vl is computed as: Vl =
∑n

i=1 Vi. This step

ensures that the vectors of unique substituted log messages

having the same template are close in vector space.

3) Clustering: Once all of the unique substituted log mes-

sages have been converted into vectors, we can compute the

semantic distance between two log messages, based on which

we can cluster the log messages. Since the number of log

templates in a log dataset is usually unknown in advance, it is

more desirable to apply a clustering algorithm that does not

need the number of clusters as a user-given parameter. In our

implementation, we adopt the Complete-Linkage clustering

method and use Euclidean distance. The clustering process will

terminate when the minimum distance between two clusters

exceeds a threshold τd.

4) Log Templates Extraction: This phase consists of three

steps: Partition, Intra-cluster Merge, and Inter-cluster Merge.

� Partition. For each cluster of unique substituted log

messages, this step generates a candidate log template for each

member of it. Specifically, for each special token in a unique

substituted log message, we extract all common variables

previously substituted by it. If all the variables are identical,

then we replace this special token with the unique variable

value; otherwise, we replace it with the wildcard. Taking

Fig. 3 as an example, since the IP addresses substituted by

“$$IPADDR$$” are not identical, the candidate log template

would be “Connection to * is established.” if

“*” is chosen as the wildcard. We remark that, since there

may be multiple candidate log templates for a single cluster

after this step, which likes partitioning the cluster into multiple

ones, therefore, we call this step “Partition”.

The Partition step has two advantages: (i) The possible

mistakes made by the previous common variables substitution

will be corrected. (ii) If the clustering distance threshold τd
is too big, then there may be some unique substituted log

messages in a cluster which do not have the same log template,

1348

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:44:18 UTC from IEEE Xplore. Restrictions apply.

(1) a b c d e
(2) a f c g e
(3) a h c i j e
(4) b i j h

(a)

(1) a * c * e
(2) a i c * e

(b)

Fig. 4. Example of merge. (a) Intra-cluster Merge; (b) Inter-cluster Merge.

this step assigns them with different candidate log templates.

� Intra-cluster Merge. This step tries to merge similar

candidate log templates within a cluster into a single one.

Specifically, it can be done by 6 substeps. First, each candidate

log template is split into columns by whitespaces, equal signs,

etc. Without loss of generality, we assume that there are at

most n columns. Second, for each ith column (1 ≤ i ≤ n),
we figure out the most frequent token ti and its frequency fi.
Third, we find the unique values uf1, uf2, . . . , ufm (suppose

that there are m unique values) and their frequencies in the

list [f1, f2, . . . , fn]. We then iterate from the most frequent

unique value to the least frequent that are bigger than 1.

In each iteration (suppose the unique value being iterated is

ufj > 1 (1 ≤ j ≤ m)), we count the number of columns

which satisfies fi ≥ ufj , and check the ratio of the “count

result” to the total number of columns n. If the ratio is no

less than a threshold τr, then we stop the iteration and select

the most frequent token ti of each satisfied column as a

constant. If there is no constant found after the whole iteration,

then we terminate the Intra-cluster Merge step. Otherwise,

we proceed to the fourth substep. Fourth, we pick out all

candidate log templates which contain the selected constants

in a sequential order. Note that constants are not required to

be in fixed columns. Fifth, we get the result log template by

concatenating all constants and inserting a wildcard for the

unsatisfied column(s) of the candidate log templates picked

out. Finally, for the left candidate log templates within the

cluster, we merge them recursively.

Take the four lines in Fig. 4(a) as an example, and let τr =
0.5. First, each line is split into columns by whitespaces, and

there are at most 6 columns. Second, for the 1st column, the

most frequent token t1 is a and its frequency f1 = 3. Similarly,

t2 is b and f2 = 1, t3 is c and f3 = 3, t4 is d and f4 = 1, t5
is e and f5 = 2, t6 is e and f6 = 1. As for the 2nd and 4th

columns, since the frequencies of all tokens in each column are

equal to 1, so any token can be chosen for these two columns.

Third, since [f1, f2, f3, f4, f5, f6] = [3, 1, 3, 1, 2, 1] ⇒ uf1 =
1, uf2 = 3, uf3 = 2, it is clear that the most frequent unique

value bigger than 1 is 3, and the number of columns satisfying

fi ≥ 3 is 2 (f1 and f3). Since 2/6 < τr, we iterate to the less

frequent unique value 2, and the number of columns satisfying

fi ≥ 2 is 3 (f1, f3, and f5). Since 3/6 = τr, so t1, t3, t5, i.e.,
a, c, e are selected as constants. Fourth, lines (1), (2) and

(3) are picked out, since they contain a, c, e sequentially.

Fifth, now we can get result “a * c * e” if “*” is chosen

as the wildcard, since there is at least one unsatisfied column

between a and c, as well as c and e. Finally, since there is

only line (4) left, so there is no need to merge it recursively.

� Inter-cluster Merge. If the clustering distance threshold

τd is too small, it is possible that some unique substituted

log messages having the same template would be assigned to

different clusters. To this, we need to merge their candidate

log templates into a single one as well. In brief, for each

candidate log template in a cluster Ci, we merge it with the

ones in cluster Cj satisfying that, the distance between Ci

and Cj is less than the distance between Ci and any other

cluster Ck(k �= j). In this step, two candidate log templates

are merged only when they have the same length and match

in each column. Here, we say two candidate log templates

match in one column if and only if their values in this column

are equal, or one of them is the wildcard. As for the result

template, we set the value of each column as follows: (i) If

the values of the two candidate log templates in this column

are equal, then the value is set as the result template’s value

in this column. (ii) Otherwise, one of the two values in this

column should be the wildcard. Then, the result template’s

value in this column is set to the wildcard. For example, the

two lines shown in Fig. 4(b) are to be merged into “a * c

* e”, where “*” is the wildcard.

In the end of the Log Templates Extraction phase, we also

get the corresponding template vectors. In our implementation,

a template vector is defined as the average of the vectors of

all unique log messages having the same log template.

C. Online Log Parsing of LPV

Once the offline log parsing is completed, its outputs can

be used in the online log parsing. We perform the online

log parsing through the following four phases: Preprocessing,

Vectorization, Candidate Templates Selection, and Template

Identification, as shown in Fig. 2.

Specifically, for each incoming log message l, the Pre-
processing and Vectorization phases are almost the same as

those in the offline log parsing, except that duplicates removal

and Word2Vector are not needed. Then, in the Candidate
Templates Selection phase, we calculate the distance between

the log message l’s vector and each template vector, and figure

out the top n closest ones, whose corresponding templates

are called the top n candidate templates. For the Template
Identification phase, we attempt to identify the incoming log

message l’s template from the top n candidate templates. This

is achieved by matching l with each candidate template, and

the completely matched one is the result. Note that, we say a

log message and a log template are completely matched if and

only if they can be totally identical after replacing wildcards

in the log template with some characters. For example, if line

(1) in Fig. 4(a) is an incoming log message, and line (1) in

Fig. 4(b) is one of the top n candidate templates, then they

are completely matched. On the other hand, if none of the top

n candidate templates matches the incoming log message, the

log message itself is regarded as its template and the actual

template can be generated in following offline log parsing.

Empirically, a small n like 3 or 5 is enough. Thus our

method can speed up online log parsing by matching each

incoming log message with only a few candidate templates.

1349

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:44:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE THREE LOG DATASETS USED FOR EVALUATION.

Dataset # log messages # ground truth templates

BGL 4,747,963 394
HPC 433,490 105
HDFS 11,175,629 29

IV. EXPERIMENTAL EVALUATION

A. Experimental Settings

1) Log datasets: We used the two supercomputer log

datasets (BGL and HPC) mentioned in Section III-B1. In

addition, we used another dataset of HDFS logs [6], [8],

[21] (denoted by HDFS). Table I gives the numbers of log

messages and ground truth templates of each dataset. For

BGL and HPC, the ground truth templates are extracted and

provided online1 by the authors of IPLoM. For HDFS, the

ground truth templates are provided online2 by the LogPAI

team. Furthermore, for each log dataset, the LogPAI team

provides 2,000 log messages together with every one’s ground

truth template, which are scattered in the entire log dataset.

2) Baselines: Drain and Spell are two state-of-the-art log

parsing methods [6], [21]. Drain utilizes a fixed depth parse

tree to guide log template search. The tree is searched by

log message length and preceding tokens to a leaf node, and

the final template is selected by token similarity, or a new

template is created if no suitable one is found. Spell adopts

the following idea: for the log messages produced by the same

“print” statement, the constant parts often take a majority, and

the longest common subsequence of tokens is likely to be the

log template. To improve efficiency, Spell employs an inverted

list and a prefix tree to avoid matching with all existing strings.

3) Evaluation metrics: For LPV’s offline log parsing,

we use four metrics (Accuracy, Precision, Recall, and

F -measure) to measure the effectiveness. Accuracy is de-

fined as the ratio of correctly parsed log messages in the

entire log dataset. Precision means among all log templates

generated, how many (the ratio) are the same as the ground

truth, and Recall is among all ground truth templates, how

many (the ratio) are correctly figured out. F -measure is

defined as: F -measure = 2×Precision×Recall
Precision+Recall . In addition,

we use the time cost of parsing each entire log dataset to

measure the efficiency. For LPV’s online log parsing, since

it is based on the outputs of the offline log parsing, so it’s

expected that the effectiveness of LPV’s online log parsing

is the same as that of the offline log parsing. We verify this

by testing whether LPV’s online log parsing is able to retain

the effectiveness of its offline log parsing. And the efficiency

is measured by the time cost of online parsing the 2,000 log

messages provided by the LogPAI team.

4) Parameter setting: There are two thresholds in LPV’s

offline log parsing: τd and τr. In addition, we have the fol-

lowing four key parameters of word2vec: the embedding size

1https://web.cs.dal.ca/∼makanju/iplom/
2https://github.com/logpai/logparser

TABLE II
PARAMETER SETTING OF LPV.

Parameter τd τr ES WS epochs NNS

Value 1.2 0.5 24 5 110 25

TABLE III
EFFECTIVENESS COMPARISON BETWEEN LPV AND TWO

STATE-OF-THE-ART LOG PARSING METHODS ON THREE LOG DATASETS.

Dataset Method Accuracy Precision Recall F-measure

BGL
Drain 0.8435 0.1166 0.5227 0.1907
Spell 0.9002 0.6247 0.6561 0.6400
LPV 0.9326 0.6388 0.6787 0.6582

HPC
Drain 0.8288 0.2511 0.5370 0.3422
Spell 0.9692 0.6271 0.7048 0.6637
LPV 0.9929 0.7879 0.7429 0.7647

HDFS
Drain 0.7630 0.4222 0.6552 0.5135
Spell 0.9994 0.8421 0.9412 0.8889
LPV 0.9999 0.8492 0.9310 0.8882

(ES), window size (WS), number of epochs to train (epochs),

and number of negative samples per training example (NNS).

The default values of the six parameters are given in Table II.

5) Experimental environment: All of our experiments were

conducted on a Linux server equipped with a 24-core Intel(R)

Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 128GB RAM and

NVIDIA GeForce GTX 1080 Ti GPU, running 64-bit Ubuntu

16.04.5 LTS. We implement LPV in Python 3.5.2 and Tensor-

Flow 1.10.1 with GPU support.

B. Effectiveness

1) Offline log parsing: Table III shows the effectiveness

comparison results among Drain, Spell, and LPV on the three

log datasets. To avoid bias possibly caused by the randomness

of the vectors, the metric values of LPV are the average

of 5 repeated runs. We can observe that our method LPV

outperforms Drain and Spell in all four metrics on BGL and

HPC. And on HDFS, LPV outperforms the competitors in 2

out of 4 metrics (i.e., Accuracy and Precision), and performs

essentially close to the best in the other 2 metrics. These val-

idate that our attempt to apply such a vector-based clustering

method to offline log parsing is feasible and promising.

2) Online log parsing: For each log dataset, we first picked

out the 2,000 log messages provided by the LogPAI team

and performed offline log parsing with the rest. Then, we

performed online log parsing with these 2,000 log messages

and checked for each whether its template is among the

top 3 candidate templates. The result is given in Table IV,

where, No Match refers to the number of log messages

whose templates are not correctly generated in the offline log

parsing, and Top n (n = 1, 3) is the number of log messages

whose templates are among the top n candidate templates. One

can see that, except for the log messages whose templates

are not correctly generated in the offline log parsing, the

others’ templates are all among the top 3 candidate templates,

and more than 99% are the top 1 candidate. Therefore, we

can say that, LPV’s online log parsing completely retains

1350

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:44:18 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EFFECTIVENESS VERIFICATION OF LPV’S ONLINE LOG PARSING.

BGL HPC HDFS

No Match 199 84 0
Top 1 1793 (99.56%) 1915 (99.95%) 2000 (100%)
Top 3 1801 (100%) 1916 (100%) 2000 (100%)

TABLE V
TIME COST COMPARISON OF PARSING EACH ENTIRE LOG DATASET

(UNIT: SECONDS).

BGL HPC HDFS

Spell 2352.897 60.436 1835.019
Drain 1202.446 58.754 1774.236
LPV 327.376 16.312 2033.449

the effectiveness of its offline log parsing, and needs only

a few string matchings by matching with only top 1 or top

3 candidate template(s), instead of matching with all existing

log templates, which is beneficial to improving efficiency. In

addition, the percentage of Top 1 (more than 99%) indicates

that it’s feasible in online log parsing to measure the similarity

between an incoming log message and a log template by the

distance between their corresponding vectors.

C. Efficiency

1) Offline log parsing: Table V shows the time cost com-

parison of parsing each entire log dataset among Spell, Drain,

and LPV, in which each number is the average time cost of 5

repeated runs. It can be seen that LPV is much faster than the

other two methods on BGL and HPC, and is competitive with

them on HDFS. These show LPV’s competitive efficiency in

offline log parsing. Note that, as for LPV, the word2vec model

training can be done in advance, within several minutes.

2) Online log parsing: For our method LPV, we operate as

in Section IV-B2. For Drain and Spell, we run them with the

2,000 log messages provided by the LogPAI team as input.

Table VI shows the time cost comparison of parsing these

2,000 log messages online among Spell, Drain, and LPV, in

which each number is the average time cost of 10 repeated

runs. We can see that LPV is faster than the other two methods

on all three log datasets, and the average time cost of parsing

a log message is less than 0.15 milliseconds. These confirm

the superior efficiency of our method in online log parsing.

V. CONCLUSION

In this paper, we propose LPV, a novel log parsing method

based on vectorization. Different from prior log parsing meth-

ods, our method converts log messages as well as log templates

into vectors, and measures the similarity between two log

messages or between a log message and a log template by the

distance between two vectors. LPV supports both offline and

online log parsing, and the outputs of the offline log parsing are

fully leveraged by the online log parsing, so it can make full

use of history logs to get good effectiveness, and ensure good

efficiency at the same time. Experimental results on public log

TABLE VI
TIME COST COMPARISON OF ONLINE PARSING 2,000 LOG MESSAGES

(UNIT: SECONDS).

BGL HPC HDFS

Spell 0.3200 0.2770 0.3094
Drain 0.2765 0.2544 0.2805
LPV 0.2365 0.1334 0.2593

datasets have validated the feasibility and competitiveness of

our method.

ACKNOWLEDGMENT

This work is supported in part by the National Key R&D

Program of China (No. 2018YFB0204101), the NSFC (No.

61972425, U1811264), and the Key R&D Program of Chang-

sha (No. kq1901023).

REFERENCES

[1] Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in ICDM, 2009,
pp. 149–158.

[2] J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from console
logs for system problem detection,” in USENIX ATC, 2010, pp. 1–14.

[3] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in CCS, 2017,
pp. 1285–1298.

[4] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. B. Baden, “Dooms-
day: predicting which node will fail when on supercomputers,” in SC,
2018, pp. 9:1–9:14.

[5] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
ICDM, 2016, pp. 859–864.

[6] ——, “Spell: Online streaming parsing of large unstructured system
logs,” IEEE TKDE, vol. 31, no. 11, pp. 2213–2227, 2019.

[7] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log
parsing and its use in log mining,” in DSN 2016, 2016, pp. 654–661.

[8] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP, 2009,
pp. 117–132.

[9] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event
logs using iterative partitioning,” in ACM SIGKDD, 2009, pp. 1255–
1264.

[10] ——, “A lightweight algorithm for message type extraction in system
application logs,” IEEE TKDE, vol. 24, no. 11, pp. 1921–1936, 2012.

[11] L. Tang and T. Li, “Logtree: A framework for generating system events
from raw textual logs,” in ICDM, 2010, pp. 491–500.

[12] L. Tang, T. Li, and C. Perng, “Logsig: generating system events from
raw textual logs,” in CIKM, 2011, pp. 785–794.

[13] R. Vaarandi and M. Pihelgas, “Logcluster - A data clustering and pattern
mining algorithm for event logs,” in CNSM, 2015, pp. 1–7.

[14] J. Stearley, “Towards informatic analysis of syslogs,” in CLUSTER,
2004, pp. 309–318.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[16] Z. Quan, Z. Wang, Y. Le, B. Yao, K. Li, and J. Yin, “An efficient
framework for sentence similarity modeling,” IEEE ACM Trans. Audio
Speech Lang. Process., vol. 27, no. 4, pp. 853–865, 2019.

[17] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in ICSE (SEIP), 2019, pp.
121–130.

[18] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IPOM, 2003, pp. 119–126.

[19] ——, “A breadth-first algorithm for mining frequent patterns from event
logs,” in INTELLCOMM, 2004, pp. 293–308.

[20] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer, “Event log
mining tool for large scale HPC systems,” in Euro-Par, 2011, pp. 52–64.

[21] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in ICWS, 2017, pp. 33–40.

1351

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:44:18 UTC from IEEE Xplore. Restrictions apply.

