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ABSTRACT
Generating realistic images from text descriptions is a chal-
lenging problem in computer vision. Although previous
works have shown remarkable progress, guaranteeing seman-
tic consistency between text descriptions and images remains
challenging. To generate semantically consistent images,
we propose two semantics-enhanced modules and a novel
Textual-Visual Bidirectional Generative Adversarial Network
(TVBi-GAN). Specifically, this paper proposes a semantics-
enhanced attention module and a semantics-enhanced batch
normalization module. These modules improve consistency
of synthesized images by involving precisely semantic fea-
tures. What’s more, an encoder network is proposed to ex-
tract semantic features from images. During the adversarial
process, the encoder could guide our generator to explore cor-
responding features behind descriptions. With extensive ex-
periments on CUB and COCO datasets, we demonstrate that
our TVBi-GAN outperforms state-of-the-art methods.

Index Terms— Text-to-Image Synthesis

1. INTRODUCTION

Text-to-image generation, which synthesizes images from
text descriptions, has become an active research area. Al-
though previous works have made impressive results based on
Generative Adversarial Networks (GANs) [4], the uncertainty
of natural language [7] makes text-to-image task theoretically
an ill-posed problem. Fully understanding the relation be-
tween vision and language still has a long way to go.

Leveraging the power of GANs, existing methods make
progress on fine-grained image generation by stacking sev-
eral generators [25, 26, 27], imposing attention guided re-
finement modules [23, 28, 16, 8] and proposing auxiliary ar-
chitectures [24, 13]. However, the gap between natural lan-
guage descriptions and visual contents makes semantic con-
sistency hard to establish. Natural language is ambiguous, so
it’s nearly impossible to extract precisely semantic features
(e.g., texture, colour and shape) from a brief description. In
order to overcome this drawback, we explore the possibility
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Fig. 1. Overview of the TVBi-GAN. First row shows our gen-
eration process which bases on a text description. The follow-
ing row illustrates how we extract semantic features from the
original image.

of utilizing semantic features behind visual contents to help
text-to-image synthesis and propose a novel Textual-Visual
Bidirectional Generative Adversarial Network (TVBi-GAN).
Our model includes an encoder which maps images to seman-
tic feature space (Figure 1). During the adversarial process,
the encoder guides our generator to extract precisely seman-
tic features from descriptions. If we make an analogy between
how the generator synthesizes images and how humans imag-
ine images from text descriptions, we could regard the encod-
ing process as how humans comprehend images.

Previous works [13, 23, 24, 8] have shown that text-to-
image synthesis could benefit from combining visual con-
tents with sentence or word features. Different from previ-
ous works, we pay close attention to precisely semantic fea-
tures. Specifically, we reformulate attention module from
AttnGAN [23], dubbed as Semantics-Enhanced Attention
(SEAttn). SEAttn merges semantic features into an adaptive
layer, which not only takes in semantic cues but also recal-
culates the importance of every specific word. After that, we
draw inspiration from SD-GAN [24] and propose Semantics-
Enhanced Batch Normalization (SEBN). SEBN balances se-



mantic consistency and individual diversity by shifting visual
contents to a proper direction. SEAttn and SEBN enable our
TVBi-GAN manipulate visual contents toward fine-grained
generation and significantly improve the performance. We
also note that even without image encoding process, SEAttn
and SEBN could adaptively extract valuable semantic cues
and still perform better than original modules.

To summarize, we make following contributions. (i) We
propose a novel GAN model with a bidirectional architec-
ture to combine text descriptions with visual contents. (ii)
We reformulate two modules which could adaptively extract
detailed semantic cues behind text descriptions and preserve
the consistency of generation process. (iii) The experimental
results demonstrate that our TVBi-GAN outperforms state-
of-the-art methods.

2. RELATED WORK

2.1. Image Generation Model

Image generation is a fundamental problem in computer vi-
sion. Recently, three classes of algorithms have attracted
much attention: Variational Autoencoders [6], GANs [4] and
autoregressive approaches [17]. Particularly, GANs have be-
come main stream generation models because of its excellent
performance. For instance, Brock et al. [1] successfully gen-
erates impressive images on a large scale using GANs. More-
over, GANs also make great achivements in many other tasks
like saliency detection [19, 20, 10, 21] and information rec-
ommendation [11].

2.2. Bidirectional Generative Adversarial Networks (Bi-
GANs).

BiGANs [3, 2] are proposed as an extension of GANs, which
augment standard GANs with an encoder network mapping
real data to latent features. It shares many theoretical prop-
erties of GANs [4] and proves to be effective in unsuper-
vised learning. For example, Donhahue and Simonyan [2]
demonstrate that BiGANs could achieve state-of-the-art per-
formance on unsupervised representation learning. In our
work, BiGANs are reconstructed. Specifically, we extend the
definition of latent feature space in [3] and project sentence
features into this space. As a result, TVBi-GAN enhances
the semantic connection between vision and natural language,
and improves the performance of generation.

3. TVBI-GAN FOR TEXT-TO-IMAGE GENERATION

3.1. Image Generation Process

Text Encoder. As shown in Figure 2, we firstly employ a
pre-trained text encoder developed by Xu et al. [23].

w, s = RNN(Text) (1)
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Fig. 2. The architecture of the Generator in TVBi-GAN.

where w = {wi|0 ≤ i ≤ L − 1} ∈ RD×L indicates word
features, L represents the length of current text description,
s ∈ RD means current sentence features and D is the dimen-
sion of wi and s. Then, we take sentence features into condi-
tioning augmenting function, and resample sentence features
from an independent Gaussian distribution N (µ(s), σ(s)).
We use CA to represent this process:

sca = CA(s) (2)

where sca ∈ RD
′

is semantic features extracted from de-
scriptions, the superscript D

′
is the dimension of semantic

features. CA [25] is used to smooth semantic data manifold
in previous works. However, CA plays a greater role in our
work and provides discriminator semantic features of current
generated images.
Hierarchical Generative Adversarial Network. Following
previous works [27, 25, 26], we put a multi-stage cascaded
generator from low-resolution to high-resolution image gen-
eration. Specifically, we use F0, F1 and F2 to denote visual
content transformers, and G0, G1 and G2 to denote image
generators from coarse to fine. This way, each stage is ex-
pressed as:

f0 = F0(z, sca) (3)

fi = Fi(fi−1, FAi
(fi−1, w, sca), z, sca, s), i ∈ 1, 2 (4)

Imagei = Gi(fi), i ∈ 0, 1, 2 (5)

where z ∼ N (0, 1) denotes random noises and FA is our at-
tention module. We cut random noises into several pieces and
integrate noises with each generation block. Futhermore, we
stack the basic residual block from [5], due to its outstand-
ing performance. After generators output images, they are
combined with their sca and s to discriminators. Note that
the discriminators after each generator are independent from
each other and accept different resolution images.
Semantics-Enhanced Attention (SEAttn). We propose a
semantics-enhenced attention module to improve generation



consistency. Although attention proposed by [23] takes in the
word-level attention and synthesizes fine-grained visual de-
tails, it is insufficient to count different words to a same level.
Inspired by the gate mechanism [28], we compare semantic
features with each word features. SEAttn calculates the im-
portance between word features and semantic features before
attention. Our gate mechanism could be formulated as follow:

Impi(sca, wi) = σ(Wimp ∗ concat(sca, wi)) (6)

where σ represents sigmoid function and wimp is a 1× (D+

D
′
) matrix. After that, we refine specific word features:

w
′

i = Impi ∗Mw(wi) + (1− Impi) ∗Ms(sca) (7)

whereMw(·) andMs(·) denote 1×1 convolutional operation
which map sca and wi into the same dimension feature space.
After the above gate mechanism, we replace w

′

i for wi as spe-
cific word features and utilize the attention layer proposed by
[23] to synthesize fine-grained visual details.
Semantics-Enhanced Batch Normalization (SEBN). As in-
dicated in SD-GAN [24], modulating the scale-and-shift op-
eration with sentence cues could improve diversity of synthe-
sized images. However, linguistic descriptions are subjective
and usually bring inessential features. In order to prevent vi-
sual contents shifting to unproper direction too much and to
sustain consistency of generation, we integrate semantic fea-
tures into SEBN. Particularly, we incorporate random noises
z into SEBN, which slightly improves the performance of
GANs [1]. SEBN is formulated as:

γc = fγ(concat(s, sca, z)), βc = fβ(concat(s, sca, z)) (8)

BN(x, s, sca, z) = γc ·
x− µ(x)
σ(x)

+ βc (9)

where fγ and fβ are projection layers.

3.2. Encoder

Encoding images to semantic feature space is an essential part
of TVBi-GAN. We use a deep convolutional network to in-
verse the image generation process:

fi = Fi(fi−1), i ∈ 1, 2, ..., t (10)

where Fi denotes a residual block which is similar to the gen-
erator. But we erase the conditional projection layer in Batch
Normalization and resample the outputs of encoder, like the
text encoder.

3.3. Objective Function

The purpose of TVBi-GAN is to extract precisely semantic
features for text-to-image generation. We propose two kinds
of adversarial loss: semantic feature loss and conditional se-
mantic feature loss. These functions induce the learnt joint

distributions to match at the global optinum. As a result, our
generator could learn how to extract semantic features from
descriptions. We also employ two adversarial losses to ap-
proximate conditional and unconditional distributions. Dur-
ing each stage of training, generator, encoder and discrimi-
nator are trained separately. Specificly, in the ith stage, we
minimize loss function as follows:

LDi = Ex∼pdata
h1(Di(x)) + Ex∼pGi

h2(Di(x))︸ ︷︷ ︸
unconditional loss

+ Ex∼pdata
h1(Di(x, s)) + Ex∼pGi

h2(Di(x, s))︸ ︷︷ ︸
conditional loss

+ Ex∼pdata
h1(Di(x,E(x))) + Ex∼pGi

h2(Di(x, sca))︸ ︷︷ ︸
conditional semantic feature loss

+ Ex∼pdata
h1(Di(E(x))) + Eh2(Di(sca))︸ ︷︷ ︸
semantic feature loss

(11)
where h1(t) = max(0, 1− t) and h2(t) = max(0, 1+ t) are
”hinge” losses, x denotes images from the image data distri-
bution or from the generated distribution. We use hinge loss
here to improve stability and prevent our model from gradient
vanish. For the loss function of generator, we add condition-
ing augmentation loss and DAMSM loss [25, 23], because of
their excellent performance towards text-to-image synthesis.

4. EXPERIMENT

4.1. Experiment Settings

Datasets. TVBi-GAN is evaluated on CUB bird dataset [18]
and COCO dataset [9], following previous text-to-image syn-
thesis methods [25, 23].
Evaluation metrics. How to evaluate the performance of
generative models is still a hard problem. We follow previous
works [25, 23, 28] on this task. We use Inception Score (IS)
and Fréchet Inception Distance (FID) [22] for quantitatively
evaluation. Besides that, we also conduct Human Perceptual
Test to evaluate whether the generated images are conditioned
on the text descriptions.

4.2. Main Results.

4.2.1. Quantitative results

To evaluate our TVBi-GAN, we compare our results with
state-of-the-art methods [25, 26, 14, 23, 24, 27, 28, 13, 12,
15, 8, 16].

As shown in Table 1, our TVBi-GAN achieves 5.03 IS
on CUB dataset and 31.01 IS on COCO dataset. Although
TVBi-GAN performs worse than SD-GAN on COCO dataset,
SD-GAN [24] has a serious defect. Specifically, SD-GAN
makes use of the siamese network to extract semantic com-
mons from a pair of descriptions, which highly relies on the
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(a) This white bellied and 
breasted bird has a head 
that is smaller than it's body. 
(b) This particular bird has a 
belly that is white with gray 
secondaries. 
(c) The bird is small and 
brown with light orange 
tarsus and short bill. 
(d) A very large bird with 
gray and white feathers and 
a yellow beak. 
(e) A white bathroom with 
sink and shower cleaned. 
(f) A pizza with leafy greens 
on it is on a table. 
(g) A mountain valley with 
several cattle grazing on it. 
(h) A large group of people 
flying and looking at kites.

Fig. 3. Random generated examples by TVBi-GAN, StackGAN [25], HDGAN [27], AttnGAN [23] and DM-GAN [28] on
CUB (four left columns) and COCO (four right columns) test sets.

Methods CUB COCO
GAN-INT-CLS [14] 2.88± .04 7.88± .07

GAWWN [15] 3.62± .07 -
StackGAN [25] 3.70± .04 8.45± .03

StachGAN++ [26] 4.04± .05 -
PPGN [12] - 9.58± .21

HDGAN [27] 4.15± .05 11.86± .18
AttnGAN [23] 4.36± .03 25.89± .47

MirrorGAN [13] 4.56± .05 26.47± .41
ControlGAN [8] 4.58± .09 24.06± .60

SEGAN [16] 4.67± .04 27.86± .31
DM-GAN [28] 4.75± .07 30.49± .57
SD-GAN [24] 4.67± .09 35.69± .50

TVBi-GAN (backbone network) 4.95± .06 31.33± .41
TVBi-GAN 5.03± .03 31.01± .34

Table 1. The performance of IS for TVBi-GAN comparing
with others on CUB and COCO test sets. For IS, higher means
better. Red, blue and green are corresponding to first, second
and third top result. Backbone network doesn’t have an en-
coder network proposed in Section 3.2.

diversity of text descriptions. As a result, it’s impossible for
SD-GAN to widely applicate. Interestingly, we find that the
backbone network, which doesn’t include the encoder net-
work, performs slightly better than TVBi-GAN on COCO. A
possible reason is that IS mainly focuses on the major sets of
data distribution and doesn’t give enough punishment on the
mismatching overall distribution. On the other hand, previous
work [22] has investigated that FID is a better measurement
compared with IS in terms of discriminability and roubust-

Methods CUB COCO
AttnGAN [23] 23.98 35.49
DM-GAN [28] 16.09 32.64

TVBi-GAN (backbone network) 12.78 32.50
TVBi-GAN 11.83 31.97

Table 2. The FID scores of the TVBi-GAN, AttnGAN [23]
and DM-GAN [28] on CUB and COCO test sets. The bold
results are the best. For FID, lower means better.

ness. In our experiments, we also test FID scores (table 2)
and find that TVBi-GAN achieves better FID than the back-
bone network. These results imply that our encoder network
could help generator distinguish different kinds of parts and
help generator synthesize images corresponding to the groud
truth image distribution. Moreover, Table 2 also compares
FID scores of TVBi-GAN with AttnGAN and DM-GAN on
CUB and COCO datasets. Our TVBi-GAN decreases the
FID from 16.09 to 11.83 on CUB dataset and from 32.64 to
31.97 on COCO dataset. Our TVBi-GAN achieves excellent
performance on both datasets, which means the efficiency of
our method and indicates TVBi-GAN could not only generate
divers images but also high-quality images.

4.2.2. Qualitative results

Human Perceptual Test. Although existing measurements
of GANs have revealed its correspondence to humam percep-
tion, it’s still hard to evaluat the semantic consistency between
images and text descriptions. In order to thoroughly compare
our method with others, we extend our experiment to Human
Perceptual Test. We invite 40 volunteers to conduct our test



Methods CUB COCO
AttnGAN [23] 5.0% 10.4%
DM-GAN [28] 21.9% 36.1%

TVBi-GAN 73.1% 54.5%

Table 3. The results of Human Perceptual Test (Ratio of first
by volunteers’ ranking).

ID Components IS↑
Attn SCBN SEAttn SEBN CUB COCO

1
√ √

- - 4.66± .03 26.55± .26
2 -

√ √
- 4.81± .05 28.26± .37

3
√

- -
√

4.73± .02 27.98± .39
4 - -

√ √
4.95± .06 31.33± .41

Table 4. Ablation study of SEAttn and SEBN.

and our aim is to find out whether our TVBi-GAN could gen-
erate veritable images based on corresponding text descrip-
tions. Each participant was presented 100 groups of images,
50 from CUB dataset and 50 from COCO dataset. Images
are random generated from each dataset. In each group, vol-
unteers are given at most 90 seconds to tell the best image
according to the corresponding text description.

As shown in Table 3, we compare TVBi-GAN with At-
tnGAN [23] and DM-GAN [28]. TVBi-GAN shows better
semantic consistency than others, and these results are simi-
lar to our improvement on IS and FID. In addition, Figure 3
shows that TVBi-GAN generates vivid parts according to text
descriptions. However, previous methods suffer from varying
degrees of deformation (b, d, e) and semantic inconsistency
(f). These results demonstrate the superiority of TVBi-GAN
on synthesizing semantic consistent images.

4.3. Component Analysis

Ablation study. We evaluate the performance of each pro-
posed module. As shown in Table 4, we quantitatively evalu-
ate our modules with Attn [23] and SCBN (SCBN-sent) [24].
Note that all of the ablation experiments don’t include the en-
coder network. By comparing each proposed component, we
find our SEAttn and SEBN could adaptively extract proper
features and improve the performance on IS.

We also visualize the importance of every single word
compared with semantic features (Figure 4). On CUB dataset,
some words (e.g., colors) have higher value than others, while
results on COCO dataset are different. Every word in de-
scriptions plays far more role than that on CUB dataset. We
assume that CUB is a simple bird dataset, so SEAttn doesn’t
have to pay attention to every word. However, COCO is a far
more diverse dataset and SEAttn has to focus on most words.
Encoder Analysis. As shown in Table 5, we conduct an ex-
periment to understand the performance of different grained
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Fig. 4. Importance of every single word compared with se-
mantic features in SEAttn. Left synthesized images are con-
ditioned on the text descriptions below the histogram.

Evaluation Metric IS↑ FID↓
CUB COCO CUB COCO

TVBi-GAN (642) 4.91± .06 29.71± .82 12.86 32.87
TVBi-GAN (1282) 4.99± .07 30.79± .70 12.37 32.39
TVBi-GAN (2562) 5.03± .03 31.01± .34 11.83 31.97

Table 5. The performance of different encoder network.
Numbers in bracket represent input resolution.

encoder networks. IS and FID slightly improve, when en-
coders extract semantic features from high-quality images,
because high resolution images usually contain more detailed
features than lower ones. Due to the limitation of equipments,
we encode 2562 images for our TVBi-GAN. Note that gener-
ator is same across all three encoder networks.

We could see an interesting phenomenon in Figure 5. We
seperately generate images from different semantic features.
Both generation ways synthesize high-quality images con-
forming to text descriptions. But image generated from en-
coder is almost similar to original image. This indicates that
semantic features could encode object’s orientations, shape
details and postures. Significantly, descriptions toward this
bird lack color information about the bird’s head. As a result,
generator soley based on text descriptions indicates this bird
head is yellow, which is as same as the body. But when we
synthesize images from semantic features of the original im-
age, they don’t lose the specific head color. This experiment
tells us that abundantly semantic features are hidden behind
images and text descriptions. Due to conditional loss (Sec-
tion 3.3), we can’t learn identically semantic features from
original images entirely. But we could exploits this feature
space to dig out precisely corresponding features between vi-
sual contents and natural language. Our experiment results
presented in Tables 1, 2, and 3 demonstrate this process could
help generator synthesize high-quality images.



Ground Truth Image

(a) The bill is orange 
and starts wide 
before narrowing.

(b) This bird is 
yellow and black in 
color with a orange 
beak, and red eye 
rings.

(c) This bird has 
wings that are black 
and yellow and has 
an orange bill.

Fig. 5. Images from top line are conditioned on semantic fea-
tures from the encoder, G(E(image), s). The followings are
generated solely from text, G(CA(s), s).

5. CONCLUSION

In this paper, we propose a Textual-Visual Bidirectional Gen-
erative Adversarial Network called TVBi-GAN, for the fine-
grained text-to-image synthesis task. First, we design two
semantic enhanced modules, denoted as SEAttn and SEBN.
SEAttn embeds semantic features in word vectors and im-
proves reality of synthesized images. SEBN balances the
semantic consistency and individual diversity. Furthermore,
to explore semantic features behind images and text descrip-
tions, we propose a cross-modal network and integrate visual
contents into text-to-image generation process. Our experi-
ment results on two real-world datasets show that TVBi-GAN
achieves the state-of-the-art performance.
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