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Abstract— Tensor-based big data analysis approaches are
effectively exploited to handle multisource and heterogeneous
cyber–physical–social big data generated from diverse spaces.
However, the curse of dimensionality seriously restricts their
widespread exploitation, especially under edge/fog computing
environments. To alleviate the dilemma, we attempt to present a
set of tensor-train (TT)-based tensor operations with their scal-
able computations and then propose a novel TT-based big data
processing framework under edge/fog computing environments.
Specifically, in this article, we first summarize and present a set of
TT-based tensor operations by converting the original high-order
tensor operation to a series of low-order (second- or third-order)
TTcore-based operations. Then, we propose a two-layer scalable
TT-based computation architecture, including inter-TTcore and
intra-TTcore scalable models. Afterward, according to various
scalable models, a series of scalable TT-based tensor computa-
tions (STT-TCs) with their complexity analysis are proposed in
detail. Finally, we propose a novel TT-based big data processing
framework to adapt to edge/fog computing environments. We
conduct extensive experiments based on both random data sets
and real-world ubiquitous bus traffic data sets. Experimental
results demonstrate that the proposed STT-TCs can significantly
improve computation efficiency and are suitable for edge/fog
computing environments.

Index Terms— Big data processing, cyber–physical–social sys-
tem (CPSS), distributed/parallel computing, edge/fog computing,
scalable tensor computations, tensor-train (TT)-based tensor
operations.

I. INTRODUCTION

ALONG with the prosperous development of hardware
infrastructure and mobile networks, widespread Internet
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of Things (IoT), such as smartphones, embedded devices,
sensors, switches, routers, and base stations, have been ubiq-
uitously connected to the Internet [1], [2]. An estimate
from Cisco demonstrates that 50 billion such things shall
be connected to the Internet by 2020 [3]. These ubiqui-
tous IoTs will continuously generate all sorts of data from
diverse spaces, including cyber space, physical space, and
social space (i.e., cyber–physical–social system, CPSS) [4].
These human-centric intertwined data are forming cyber–
physical–social big data and have some unique charac-
teristics, e.g., multisource and heterogeneous data type,
complicated data relationship, and real-time updated data
streaming [5]–[7].

Due to the increasing improvement of hardware perfor-
mance and 5G technologies, the extensively deployed IoTs
are generally equipped with sufficient storage, communication,
and computation capabilities [8]. They can perform some
lightweight computational tasks, such as data prefiltering,
data aggregation, and online processing. Therefore, edge/fog
computing, an emerging computing paradigm, has gradually
sprung up and extensively developed [9]. It allows computa-
tion tasks to be performed at the edge of the network and
has some distinct advantages, e.g., location awareness, low
latency, and support for mobility [2], [10]. By exploiting
the advantages of edge/fog computing, it is conducive to
satisfy the requirements of real-time information exchange and
providing elastic services to end users [11]. However, how to
represent, store, handle, and analyze the cyber–physical–social
big data in an efficient manner under edge/fog computing
environments remains a challenging problem and needs more
exploration.

To represent and deal with the cyber–physical–social
big data, tensor has been viewed as an efficient process-
ing tool because of its prominent advantages in han-
dling multidimensional data [12], [13]. Meanwhile, some
tensor-based analysis approaches, such as tensor-based
accurate recommendation [14], tensor-based multicluster-
ing [15], tensor-based deep computation [16], [17], and
tensor-based multimodal prediction [18], [19], play significant
roles in practical applications and are applied to various
fields, e.g., social network, online education, and intelligent
transport [20].

However, during implementing the tensor-based big data
analysis, the curse of dimensionality arising from high-order
tensor is still the main bottleneck of widespread exploita-
tion, especially under edge/fog computing environments. To
address this, some typical tensor networks, such as hierarchical
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Tucker (HT), tensor train (TT), and quantized TT (QTT)
decompositions, are presented successively [13]. Oseledets
[21] proposes a TT decomposition approach, which decom-
poses a high-order tensor into a battery of low-order (typ-
ically second- or third-order) core tensors. TT has some
prominent advantages, such as stable decomposition algo-
rithm, fewer parameters, distributed storage of TT cores, and
TT-based tensor operations. Thus, it has been adopted to
solve many intractable high-dimensional problems, such as
higher dimensions eigenvalues [22], high-dimensional oper-
ator equations [23], deep computation [24], and multimodal
prediction [25], [26].

Although tensor-based data analysis methods are efficient,
there remain many challenges in implementing tensor com-
putations under edge/fog environments. First, the constructed
tensor is hard to be directly stored because of the curse of
dimensionality. It is necessary to select a low parameter-based
tensor decomposition to alleviate the dilemma. Second, how
to implement tensor computations and tensor analysis based
on the decomposed results is also a challenge. It is hardly
possible to perform tensor computations by reconstructing
the original tensor based on decomposed results on edge/fog
devices because of the curse of dimensionality. Thus, we may
need to explore an approach to perform tensor operations
directly based on decomposed results. Third, due to the
relatively poor performance of edge/fog devices in compu-
tation, storage, bandwidth, and so on, it will be incapable
to perform the whole tensor operation on a single edge/fog
device. Thus, we should seek for a solution to break each
tensor operation into some smaller ones to adapt to edge/fog
devices. To the best of our knowledge, there is no holistic
approach to tackle the above-mentioned challenges. There-
fore, it is very meaningful to develop an efficient process-
ing framework to represent, store, compute, and analyze
the cyber–physical–social big data under edge/fog computing
environments.

By taking the advantages of TT, this article focuses on
presenting a set of tensor operations based on decomposed TT
cores with their scalable implementation and then proposing a
novel TT-based big data processing framework under edge/fog
computing environments. The main idea is to equivalently
convert the original high-order tensor operation to a battery of
low-order (second- or third-order) TTcore-based operations,
and these lightweight operations are then implemented on
edge/fog devices in a distributed or parallel manner. Fig. 1
depicts the edge-fog-cloud computing architecture [2]. Tradi-
tionally, tensor-based data analysis methods are implemented
on cloud [27]. Under edge/fog environments, various ubiqui-
tous data are generated from edge plane and then uploaded
to cloud via fog plane. However, if there are some relatively
small-scale tensor-based computational tasks with quick feed-
back requirement, it might be incapable to upload them to
cloud due to the long delay. Here, our proposed TT-based
processing approach can be used to deal with these situations
by fully utilizing the computation capability of edge/fog
devices. Meanwhile, it can also provide a feasible solution
if the computing resources on the cloud are not available
or the total overheads on the cloud are very large, such as
prices, delay, and networking. Through the proposed TT-based

Fig. 1. Edge-fog-cloud computing architecture.

processing approach, it is possible to flexibly select more
feasible computing solutions.

Concretely, we first summarize the existing TT-based ten-
sor operations and present other TT-based tensor opera-
tions, including mode-n product and Tucker mode-n product.
Then, we propose a two-layer scalable TT-based computa-
tion architecture (STT-CA), including inter-TTcore (containing
vertical, horizontal, and hybrid schemes) and intra-TTcore
scalable models. Afterward, according to various scalable
models, we put forward a series of scalable TT-based tensor
computations (STT-TCs) and give their detailed complexity
analysis. Furthermore, a novel TT-based big data processing
framework is proposed to adapt to the edge/fog computing
environments.

To summarize, the major contributions of this article are
listed as follows.

1) Summarize and present a set of TT-based tensor oper-
ations directly based on the decomposed TT cores and
guarantee that the result remains TT format.

2) Put forward a two-layer STT-CA, including inter-TTcore
and intra-TTcore scalable models.

3) Propose a series of STT-TCs according to various scal-
able models.

4) Present a TT-based big data processing framework to
adapt to the edge/fog computing environments.

Besides, we conduct extensive experiments based on both
random and real-world ubiquitous bus traffic data sets. The
experimental results demonstrate that the proposed STT-TCs
can significantly improve computation efficiency and reduce
the running memory, which is conducive to tensor-based data
analysis under edge/fog computing environments.

The rest of this article is organized as follows. Section II
briefly recalls tensor preliminaries, as well as TT decompo-
sition. Section III illustrates the TT-based tensor operations.
In Section IV, an STT-CA is established. In Section V, some
STT-TCs are presented in detail. A TT-based big data process-
ing framework under edge/fog computing environments is pro-
posed in Section VI. Section VII compares the experimental
results, and Section VIII concludes this article.
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Fig. 2. Some examples of tensor symbols and operations using TND.

Fig. 3. TT format of an N th-order tensor.

II. PRELIMINARIES

In an N th-order tensor X ∈ RI1×I2×···×IN , N is called
tensor’s order and In (1 ≤ n ≤ N) is the dimensionality of the
nth order. To facilitate tensor-based data analysis, some tensor
operations play significant roles in practical applications, such
as mode-n product, single-mode product, and multiple-mode
product. For more concrete descriptions about other tensor
operations, please refer to [13] and [28]. To visualize the
complex interactions and operations between different tensors,
the tensor network diagram (TND) is gradually utilized. For
more concrete descriptions about TND, please refer to [13]
and [29]. Fig. 2 depicts the graphical representation of basic
symbols through TND.

TT decomposition is to decompose a high-order tensor to a
battery of low-order core tensors [21]. Formally, the definition
of TT format is illustrated as follows.

Definition 1 (TT decomposition): An N th-order tensor X ∈
RI1×I2×···×IN is defined to be the TT-format if it satisfies the
following format:

X = X1 • X2 • · · · • Xn • · · · • X N (1)

where Xn ∈ Rrn−1×rn×In (n = 1, . . . , N ; r0 = rN = 1) denotes
core tensor (or core), {r0, r1, . . . , rN } are called TT ranks, and
• denotes the contraction operation (i.e., ×1

2).
Fig. 3 illustrates the graphical representation of the TT

format for an N th-order tensor. For notational convenience,
each core tensor is regarded as a third-order tensor, and
the first order of X1 and the third order of X N are equal
to 1. Alternatively, if the tensor is assigned to a specified
index (i1, i2, . . . , iN ), then the entrywise TT format can be
represented as follows:

X(i1, i2, . . . , iN ) = X1(i1)X2(i2) · · · X N (iN ) (2)

where Xn(in) ∈ Rrn−1×rn ( n = 1, . . . , N; r0 = rN = 1).

III. TT-BASED TENSOR OPERATIONS

This section presents a series of computation approaches
to implement some tensor operations directly based on the
decomposed TT cores without reconstructing their TT cores
to the original tensor.

Fig. 4. Graphical representation of tensor addition in TT format.

A. Basic Tensor Operations in TT Format

In the previous work in [21], some basic tensor operations
have been implemented in TT format, such as addition,
scalar multiplication, minus, contraction, multilinear contrac-
tion, the Hadamard product, inner product, and norm. In
these operations, if the operation is a binary operator, then
the operands are with the same order and dimensionality.
Given two tensors A ∈ RI1×I2×···×IN and B ∈ RI1×I2×···×IN ,
we suppose their TT formats are known as follows:

A(i1, i2, . . . , iN ) = A1(i1)A2(i2) · · · AN (iN ) (3)

B(i1, i2, . . . , iN ) = B1(i1)B2(i2) · · · BN (iN ) (4)

where An(in) ∈ Rrn−1×rn ( n = 1, . . . , N; r0 = rN = 1) and
Bn(in) ∈ Rsn−1×sn ( n = 1, . . . , N; s0 = sN = 1).

Based on these decomposed TT cores, we can implement
some basic tensor operations directly in the TT format, and
the result remains in the TT format. Next, we take a TT-based
tensor addition as an example to illustrate the process, and
the graphical representation is depicted in Fig. 4. Suppose
there are two TT formats Att and Btt , and A and B are
their reconstructed tensors. On the one hand, if we add
reconstructed tensors A and B according to the original tensor
addition, the result is a new tensor C . On the other hand,
if we perform the TT-based tensor addition based on TT
cores Att and Btt according to the TT-based computational
rule in Table I, it will generate a new TT format Ctt .
At last, if we reconstruct TT cores Ctt , then the reconstructed
tensor will equal tensor C . Finally, we summarize some
TT-based computational rules and illustrate them in Table I. Its
four columns represent the operation name, operands, tensor
operations and results, and TT-based computational rules,
respectively.

Especially, the tensor minus operation can be realized
according to tensor addition and scalar multiplication oper-
ations, i.e., A − B = A + (−1)B. Furthermore, the Frobenius
norm of the difference of any two tensors �A − B�F can
be calculated by combining the tensor minus and Frobenius
norm operations. Note that the TT ranks of the result after
executing some TT-based operations (e.g., tensor addition)
shall increase, and we can adopt the rounding algorithm pro-
posed in [21] to compress the TT ranks according to practical
applications.
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TABLE I

COMPUTATION RULES OF SOME BASIC TENSOR OPERATIONS IN TT FORMAT

B. Tensor-by-Matrix Operation in TT Format

In this section, we propose some other tensor-by-matrix
operations based on the TT format, including mode-n product
and Tucker mode-n product.

Theorem 1 (TT-Based Mode-n Product): Given the TT
format of an N th-order tensor A ∈ RI1×I2×···×IN in (3)
and a matrix Un ∈ RIn×Jn , and suppose that the TT for-
mat of the mode-n product B = A×nUn is represented as
B(i1, i2, . . . , iN ) = B1(i1)B2(i2) · · · BN (iN ), then their TT
cores can be obtained according to the following generation
rule:

Bk(ik)=

⎧⎨⎨
⎨⎩

In�
in=1

Un(in, jn)An(in), k =n

Ak(ik), k =1, 2. . ., N and k �= n.

(5)

Proof: According to the definition of the mode-n product,
we have

B(i1, . . . , in−1, jn, in+1, . . . , iN )

=
In�

in=1

A(i1, . . . , in−1, in, in+1, . . . , iN )Un(in, jn)

=
In�

in=1

A1(i1) · · · An−1(in−1)An(in)An+1(in+1)

· · · AN (iN )Un(in, jn)

= A1(i1) · · · An−1(in−1)

⎛
⎝

In�
in=1

Un(in, jn)An(in)

⎞
⎠

× An+1(in+1) · · · AN (iN ).

It can be found that the result is equal to that of putting (5)
to the TT format of tensor B .

Theorem 2 (TT-Based Tucker Mode-n Product): Given the
TT format of an N th-order tensor A ∈ RI1×I2×···×IN in (3)
and N matrices Uk ∈ RIk ×Jk , k = 1, 2, . . . , N , and sup-
pose that the TT format of Tucker mode-n product B =
A×1U1×2U2 · · ·×N UN is represented as B( j1, j2, . . . , jN ) =
B1( j1)B2( j2) · · · BN ( jN ), then the generation rule of their TT
cores is defined as follows:

Bk( jk) =
Ik�

ik =1

Uk(ik, jk)Ak(ik), k = 1, 2, . . . , N. (6)

Proof: According to the definition of the Tucker mode-n
product, we have

B( j1, . . . , jn, . . . , jN )

=
I1···In ···IN�

i1 ···in ···iN =1

A(i1, . . . , in, . . . , iN )U1(i1, j1)

· · · Un(in, jn) · · · UN (iN , jN )

=
I1···In ···IN�

i1 ···in ···iN =1

A1(i1) · · · An(in) · · · AN (iN )U1(i1, j1)

· · · Un(in, jn) · · · UN (iN , jN )

=
I1···In ···IN�

i1 ···in ···iN =1

U1(i1, j1)A1(i1) · · · Un(in, jn)An(in)

· · · UN (iN , jN )AN (iN )

=
⎛
⎝

I1�
i1=1

U1(i1, j1)A1(i1)

⎞
⎠ · · ·

⎛
⎝

In�
in=1

Un(in, jn)An(in)

⎞
⎠

· · ·
⎛
⎝

IN�
iN =1

U1(iN , jN )AN (iN )

⎞
⎠ .
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Fig. 5. Graphical representation of the Tucker mode-n product in TT format.

Fig. 6. STT-CA.

We can find that the result is exactly equal to that by putting (6)
to the TT format of tensor B .

The graphical representation of the Tucker mode-n product
through TND is depicted in Fig. 5.

IV. STT-CA

This section presents an STT-CA. Generally, the TT cores
after implementing TT decomposition can be stored in dif-
ferent nodes in a distributed way. According to the analysis
in Section III, most of the tensor operations can be directly
implemented in the TT format. Therefore, the original tensor
operations can be transformed to the corresponding operations
for their TT cores, and the result remains in the TT format.
Because of their natural distributed storage and computational
characteristics, these computations among TT cores are suit-
able to be executed in a distributed or parallel manner.

A. Overview of STT-CA

The overview of the STT-CA is illustrated in Fig. 6. Based
on these distributed TT cores stored in different nodes, most
of the TT-based tensor computations can be suitably realized
in a scalable manner. According to the characteristics of all
TT-based tensor operations, we design two-layer scalable com-
putation models in STT-CA: inter-TTcore and intra-TTcore
scalable models. The inter-TTcore scalable model mainly
refers to the distributed or parallel computation among dif-
ferent pairs of TT cores. In the inter-TTcore scalable model,
the original operations for high-order tensor are transformed
to the current operations for low-order TT cores. Thus, its

executable unit is TT core, and the degree of parallelism is ten-
sor’s order. According to the characteristics of TT-based tensor
operations, there are three implementation schemes in the
inter-TTcore scalable model, i.e., vertical distributed scheme,
horizontal parallel scheme, and hybrid scalable scheme. For
instance, A1 O P B1 = C1, A2 O P B2 = C2, . . .,
AN O P BN = CN in Fig. 6 can be vertically executed in
a distributed mode. Then, C1 O P C2, . . ., CN−1 O P CN can
be horizontally executed in parallel. The intra-TTcore scalable
model refers to the parallel computation of different slices
in a pair of TT cores, especially when the dimensionality is
huge, e.g., A2 O P B2 or AN−1 O P BN−1 in Fig. 6. In the
intra-TTcore scalable model, the executable unit is data slice,
the parallel granularity is further reduced from TT core to data
slice, and the degree of parallelism is tensor’s dimensionality.

B. Inter-TTcore Scalable Model

In the inter-TTcore scalable model, multiple operations
among different pairs of TT cores can be concurrently exe-
cuted. According to the characteristics of different tensor
operations, there are three kinds of scalable schemes: the
vertical distributed scheme, horizontal parallel scheme, and
hybrid scalable scheme.

1) Vertical Distributed Scheme: The vertical distributed
scheme refers to that the corresponding operations between the
coupled TT cores of two different TT formats are concurrently
executed. Generally, the vertical distributed scheme is applied
to most binary tensor operators, such as tensor addition,
minus, the Hadamard product, and the Tucker mode-n product.
For instance, the implementation of the TT-based Tucker
mode-n product in Fig. 5 is a typical vertical distributed
example. According to the TT-based computational rule in
Theorem 2, the original Tucker mode-n product operation
can be transformed to the TTcore-based operations in (6),
and these N TTcore-based operations can be executed in the
vertical distributed mode.

2) Horizontal Parallel Scheme: The horizontal parallel
scheme refers to that the corresponding operations among
any two adjacent TT cores belonged to the same TT format
are concurrently executed. The horizontal parallel scheme
is ordinarily applied to the unary tensor operators, such as
tensor extractions (including scalar, fiber, slice, and subtensor),
in which tensor contractions are continually executed. Because
tensor contraction satisfies the associative law but not the
commutative law, adopting different associative orders will
consume different execution times. Therefore, we design two
modes in the horizontal parallel scheme: binary parallel and
bidirectional parallel modes. The binary parallel mode refers
to that the command operations among every two TT cores in
each layer are concurrently executed. Given a TT format with
N TT cores, an inverted binary tree with �log2 N� depth will
be formed if the binary parallel mode is adopted. Fig. 7(a) is
an example of the binary parallel mode for a TT format with
six TT cores. The bidirectional parallel mode refers to that the
command operations are concurrently executed from both ends
to the middle of the TT format. Fig. 7(b) is a schematic of
the bidirectional parallel mode. Facing different TTcore-based
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Fig. 7. Two horizontal parallel modes. (a) Binary parallel mode. (b) Bidi-
rectional parallel mode.

horizontal parallel operations, we can select different parallel
modes according to the time complexity of different tensor
operations.

3) Hybrid Scalable Scheme: The hybrid scalable scheme
refers to that the vertical distributed and horizontal paral-
lel schemes are simultaneously implemented. In the hybrid
scalable scheme, the execution sequence of the vertical and
horizontal schemes need to satisfy the logical relationship
of different tensor operations. For instance, in the TT-based
tensor inner product operation, the vertical distributed scheme
should be first executed, and then, the horizontal parallel
scheme is exploited.

C. Intra-TTcore Parallel Model

In the intra-TTcore parallel model, the corresponding oper-
ations among different data slices in a specific pair of TT
cores are concurrently executed. When the dimensionality is
huge, the intra-TTcore parallel model can further improve
the computation efficiency in finer-granted parallelism. For
instance, the original tensor Hadamard product operation can
be transformed to the TTcore-based Kronecker product, and
it can be further transformed into the slice-based Kronecker
product. Similarly, the finer-granted intra-TTcore parallelism
can be applied to the tensor inner product, tensor Frobenius
norm, and so on.

V. STT-TCS

In this section, a series of STT-TCs are illustrated. We select
some typical tensor operations and illustrate their distributed
or parallel implementation according to different scalable
schemes in STT-CA and further analyze their complexity
including computation, communication, and space complexity.

A. STT-TCs in Vertical Distributed Scheme

Vertical distributed scheme is applicable to the scalable
TT-based implementation for most binary tensor operations,
such as tensor addition, minus, the Hadamard product, inner
product, the Frobenius norm, as well as some tensor con-
traction operations, such as multilinear contraction and the
Tucker mode-n product. In the following, we take the STT
Hadamard product as a typical example to illustrate the vertical
distributed scheme.

1) STT Hadamard Product: Given two tensors A and B
and their TT formats, illustrated in (3) and (4), according
to the computational rule in Table I, we can find that the
TT format Ck(ik) of their Hadamard product C = A � B
can be calculated through Ck(ik) = Ak(ik) ⊗ Bk(ik), k =
1, 2, . . . , N . Obviously, these N pairs of Kronecker operations

Fig. 8. Implementation of the TT-based Hadamard product in the vertical
distributed scheme.

TABLE II

COMPLEXITY ANALYSIS OF THE HADAMARD PRODUCT

can be vertically executed in a distributed mode, and the result
remains in the TT format. The graphical representation is
depicted in Fig. 8.

2) Complexity Analysis for STT Hadamard Product: With-
out loss of generality, suppose that I = max{In} and r =
max{rn, sn} (n = 1, . . . , N).

According to the computational rule in Table I and the repre-
sentation in Fig. 8, we can obtain the computation complexity
of the STT Hamamard product as T comp

ST T = O(Ir4). Besides,
the communication complexity should also be considered
in the distributed implementation. The communication time
is mainly composed of establishing a new connection and
transmitting data [30]. Therefore, the communication time is
represented as

T comm = T conn + Ndatatdata (7)

where T conn is the connection time, Ndata denotes the volume
of transmission data, and tdata represents the transmission time
of every data word. The communication complexity of the STT
Hadamard product is T comm

ST T = T conn + (Ir2)tdata = O(Ir2).
Therefore, the total time complexity of STT Hadamard product
can be calculated as follows:

TST T = T comp
ST T +T comm

ST T = O(Ir4 + Ir2) = O(Ir4). (8)

Besides, the total time complexity of the serial TT-based
Hadamard product is TST T = O(N Ir4). The total time com-
plexity of the original Hadamard product is TOri = O(I N ).
Furthermore, the space complexities of scalable TT-based,
serial TT-based, and the original Hadamard products can be
represented as O(Ir4), O(N Ir4), and O(2I N ), respectively.

Finally, we summarize the complexity and illustrate them
in Table II. It can be inferred that the STT approach can
remarkably reduce both time and space complexity. Similarly,
the complexity of other STT-TCs for vertical distributed
scheme can also be analyzed according to their TT-based
computational rules.

B. STT-TCs in Horizontal Parallel Scheme

The horizontal parallel scheme is suitable for some STT
continuous contractions, such as exacting a scalar, fiber, slice,
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Fig. 9. Implementation of TT-based extracting scalar in the horizontal parallel
scheme.

subtensor, and tensor reconstruction, as well as multilinear
contraction, inner product, Frobenius norm, and so on. In the
following, we take extracting an original tensor’s scalar from
its TT format as a typical example to illustrate the horizontal
parallel scheme.

1) STT Extracting Scalar: Extracting scalar is to compute
a specific value of the original tensor based on its TT format
when all indexes are fixed. Similarly, we can calculate a
fiber (or slice or subtensor) if we fix all but one index
(or two or some indexes). Especially, the original tensor can
be reconstructed if no index is fixed. These computations
can be horizontally implemented in parallel by exploiting the
binary or bidirectional parallel modes. Suppose the TT format
of tensor A is described in (3), Fig. 9 depicts the graphical
representation of STT extracting scalar.

2) Complexity Analysis for STT Extracting Scalar: Without
loss of generality, suppose I = max{In}, r = max{rn}
(n = 1, . . . , N).

If we implement the TT-based extracting scalar by exploit-
ing binary parallel mode, then �log2 N� layers of contractions
should be executed. The computation complexity in each
layer is O(r3), but it reduces to O(r2) and O(r) in the
last two layers. Thus, the total computation complexity is
T Comp

Bin = (�log2 N�−2)r3 +r2+r = O(�log2 N�r3). Besides,
according to (7) and Figs. 7 and 9, we can calculate the total
communication complexity as T comm

Bin = T conn + ((�log2 N� −
2)r2 + 2r)tdata = O(�log2 N�r2). Therefore, the total time
complexity of TT-based extracting scalar when exploiting the
binary parallel mode is

TBin = T comp
Bin + T comm

Bin

= O(�log2 N�r3 + �log2 N�r2) = O(�log2 N�r3). (9)

If we implement the TT-based extracting scalar by adopting
bidirectional parallel mode, then �N/2� contractions should be
executed from both ends. The computation complexity at each
time is O(r2), but it reduces to O(r) at the last time. Thus,
the total computation complexity is T comp

Bid = (�N/2�−1)r2 +
r = O(�N/2�r2). Besides, the total communication complex-
ity can be calculated as T comm

Bid = T conn + (�N/2�r)tdata =
O(�N/2�r). Therefore, the total time complexity of TT-based
extracting scalar when adopting bidirectional parallel mode is

TBid = T comp
Bid + T comm

Bid

= O(�N/2�r2 + �N/2�r) = O(�N/2�r2). (10)

If we implement the TT-based extracting scalar by adopting
serial mode, then N − 1 contractions should be executed.
The computation complexity at each time is O(r2), but it is
reduced to O(r) at the last time. Thus, the total computation

TABLE III

COMPLEXITY ANALYSIS OF TT-BASED EXTRACTING SCALAR

complexity is T comp
Ser = (N − 2)r2 + r = O(Nr2). Besides,

the total communication complexity is T comm
Ser = T conn+((N−

1)r)tdata = O(Nr). Therefore, the total time complexity of
TT-based extracting scalar when adopting serial mode is

TSer = T comp
Ser + T comm

Ser = O(Nr2 + Nr) = O(Nr2). (11)

Furthermore, the space complexities of the TT-based
extracting scalar by exploiting the binary parallel, bidirectional
parallel, and serial modes are O(2r2), O(r2 + r), and O(r2 +
r), respectively. Finally, we summarize these complexities and
illustrate them in Table III.

According to the above-mentioned analysis, it is easy to
infer that TBid < TSer . However, the relation between TBin

and TBid needs to be further discussed. We can see from
Table III that the communication time is significantly less than
the computation time. Thus, we just need to compare their
computation complexity. Let T comp

Bin < T comp
Bid , i.e., (�log2 N�−

2)r3 + r2 + r < (�N/2� − 1)r2 + r , we can obtain r <
(�N/2� − 2)/(�log2 N� − 2). Therefore, it can be inferred the
following.

1) TBin ≤ TBid if r ≤ (�N/2� − 2)/(�log2 N� − 2).
2) TBin > TBid if r > (�N/2� − 2)/(�log2 N� − 2).

Similarly, the complexity of other horizontal STT contrac-
tions (e.g., fiber, slice, subtensor, and tensor reconstruction)
can be also analyzed in the same manner.

C. STT-TCs in Hybrid Scalable and Intra-TTcore
Parallel Schemes

The hybrid scalable scheme is suitable for some complex
STT tensor operations, such as the inner product and the
Frobenius norm. In this section, we take STT inner product
as a typical example to illustrate the hybrid scalable scheme.
From the aforementioned discussion in Section IV-C, if the
dimensionality is huge, the intra-TTcore parallel model can
be exploited to further improve the computation efficiency.
Therefore, intra-TTcore parallelism is analyzed together.

1) STT Inner Product: Given tensors A and B with their TT
formats illustrated in (3) and (4), according to the TT-based
computational rule for inner product W = A · B in Table I,
W = T1T2 · · · TN , where Tk = �Ik

ik =1 Ak(ik) ⊗ Bk(ik), k =
1, 2 . . . , N , we can find that the implementation of STT inner
product belongs to the hybrid scalable scheme and includes
three steps, which is depicted in Fig. 10(a). First, we perform
N pairs of Kronecker products in the vertical distributed
scheme, which is illustrated in detail in Section V-A. Second,
we perform the summation for each TT core along the order
located by In , which can also be executed in the vertical dis-
tributed scheme. Third, we perform the multilinear contraction
and obtain the final result in the horizontal parallel scheme,
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Fig. 10. Implementation of TT-based inner product in the hybrid scal-
able and intra-TTcore parallel schemes. (a) Inter-TTcore scalable model.
(b) Intra-TTcore parallel model.

and the detailed implementation can be found in Section V-B.
Furthermore, in the first and second steps, the intra-TTcore
parallel model can be exploited to the computation for each
pair of TT cores if the dimensionality is huge, which is
depicted in Fig. 10(b).

2) Complexity Analysis for STT Inner Product: Without
loss of generality, suppose that I = max{In} and r =
max{rn, sn} (n = 1, . . . , N). From Fig. 10, we can see that
there are three steps in the STT inner product. In the first
and second steps, both the Kronecker product and summation
for each pair of TT cores can be executed in the vertical
distributed scheme. For each pair of TT cores, the computation
time complexity of both the Kronecker product and summation
are O(Ir4). According to the discussion in Section V-A2,
the time complexity can be obtained based on (8), i.e.,
T (1,2)

ST T = O(Ir4). If each dimensionality (i.e., In) is divided
to P slices, then the time complexity in intra-TTcore parallel
is T (1,2)

I ntraST T = O((I/P)r4). In the third step, the mul-
tilinear contraction can be executed in the horizontal par-
allel scheme. According to the analysis in Section V-B2,
if we select the binary parallel mode, the time complexity
can be obtained based on (9), i.e., T (3)

Bin = O(�log2 N�r6).
Note that the dimensionality of each matrix in the third
step is r2. If the bidirectional parallel is exploited, we can
obtain the time complexity based on (10), i.e., T (3)

Bid =
O(�N/2�r4). Finally, we can obtain the total time complex-
ity of STT inner product and illustrate them in Table IV.
Besides, the communication complexity and space complex-
ity can be similarly calculated according to the complexity
analysis in Sections V-A2 and V-B2, which are illustrated
in Table IV.

VI. TT-BASED BIG DATA PROCESSING FRAMEWORK

UNDER EDGE/FOG ENVIRONMENTS

Based on the proposed STT-TCs, we can convert the
complex tensor operations to clusters of simple TTcore-
based operations to adapt to edge/fog devices and per-
form them in a distributed or parallel manner. Therefore,
we present a TT-based big data processing framework,
which is depicted in Fig. 11, to realize data representa-
tion, decomposition, storage, computation, and analysis under

TABLE IV

COMPLEXITY ANALYSIS OF INNER PRODUCT

Fig. 11. TT-based big data processing framework under edge/fog computing
environments.

edge/fog computing environments. The hierarchical frame-
work is composed of three planes, i.e., data collection and
representation, data decomposition and computation, and data
analysis and application planes. The respective responsibil-
ity and function of each plane will be elaborated from a
bottom–up view.

A. Data Collection and Representation

Data collection and representation plane is to collect the
generated data and represent them in an efficient and compact
way. Multisource and heterogeneous cyber–physical–social
data are derived from ubiquitous IoTs or social mobile devices
in various local CPSSs. To represent and analyze these data,
the tensor is considered as an efficient tool because of its excel-
lent characteristics in high-dimensional correlation analysis
and low-rank approximation. According to the previous work
of our team in [12], we can represent structured, semistruc-
tured, and unstructured data with different types (e.g., text,
image, audio, and video) to different tensors.
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B. Data Decomposition and Computation

These collected raw data generally contain a mass of noisy
and redundant data; directly handling them shall take up
tremendous storage space and consume tremendous computa-
tional resource and bandwidth. Therefore, we can first remove
some dirty data and preserve core data containing prominent
features (i.e., TT cores) by performing TT decomposition in
the edge/fog plane. These decomposed results become smaller
in size and higher in quality, which is conducive to efficient
storage, computation, and communication. Moreover, cyber–
physical–social big data are generally updated in a stream-
ing way, and we can exploit the incremental decomposition
method proposed in our previous work to reduce the decompo-
sition time and further satisfy the edge/fog environments [29].

TT can decompose a high-order tensor into a sequence
of low-order (typically second- or third-order) core tensors.
These decomposed small TT cores can be stored in edge/fog
devices or clouds in a distributed manner. Besides, based
on the aforementioned STT-PCs in Section V, most tensor
computations can be directly implemented based on TT cores
in a scalable manner. These simple operations can be executed
on lightweight edge/fog devices. Therefore, the proposed
TT-based processing approach can be applied in many signif-
icant scenarios, for instance, when there are some relatively
small-scale tensor-based computational tasks with quick feed-
back requirement in edge/fog planes, or when the computing
resources on the cloud are not available, or when the total
overheads (e.g., price, delay, and networking) on the cloud
are very large.

C. Data Analysis and Application

After providing these TT-based tensor operations, some
tensor-based big data analysis approaches can be implemented
in the TT format, such as multivariate prediction, multidimen-
sional correlation analysis, and multidimensional clustering
algorithms. These tensor-based analysis approaches consider
the integration and multidimensional correlation of heteroge-
neous data derived from diverse spaces, and the analysis results
are commonly more accurate and targeted. They are beneficial
for providing excellent services, such as personalized recom-
mendation in smart education, proactive health-care services in
smart monitor systems, and accurate traffic prediction in smart
transport systems. These accurate services shall promote our
daily lifestyle and improve our quality of life.

Therefore, through the proposed TT-based processing
approach, we can fully make use of the performance of
edge/fog devices and flexibly select more feasible comput-
ing solutions under edge-fog-cloud computing environments
according to practical requirements. How to select the comput-
ing paradigms and allocate computational tasks to coordinately
complete the data analysis can be further explored in our next
work.

VII. EXPERIMENTS

To verify the efficiency of various STT-TCs in STT-CA,
a series of experiments are conducted using different kinds of
data sets. Furthermore, the comparisons of execution time and

TABLE V

TT RANKS UNDER VARIOUS TRAFFIC SLICE INTERVALS

serial–parallel ratio for different computation approaches are
performed.

A. Experimental Design

We implement these experiments by exploiting the Java
Toolkit AKKA and Python’s NumPy package. All experiments
are executed on an educational cloud platform, and we sim-
ulate one fog device configured an Intel’s 16-core processor
with 2.4 GHz and five edge devices configured an Intel’s 8-
core processor with 2 GHz. During the experiments, we adopt
two kinds of data sets: random data sets and real-world CPSS
data sets. The random data are generated according to different
setting parameters, e.g., tensor’s order, dimensionality, and TT
ranks. The real-world CPSS data are derived from the public
traffic system in Guangzhou, China. It contains eight million
bus card records generated by two million users and four bus
lines from August 1, 2014 to December 31, 20141. For this
data set, we first remove incomplete bus card records from the
data set. Then, we integrate the remaining records (bus lines,
card types, traffic, time, and so on) and other data (weather,
temperature, and so on) to a fusion data. Afterward, we further
analyze the characteristics of data, such as value range, mean,
and variance.

Finally, we select the data in August 2014 as our experi-
mental data set. After determining bus line, card type, month,
weather, temperature, hour, passenger traffic, and week as
eight attributes, we construct an eighth-order tensor with
dimensions (2, 3, 12, 6, 10, 24, cnt_slice, 7), where cnt_slice
represents the number of passenger traffic slices. In the data
set, the maximum passenger traffic is 1200, and the pas-
senger traffic is further divided into 40, 60, 80, 100, and
120 slices according to various traffic slice intervals, respec-
tively. Since TT ranks also affect the computational efficiency
of the TT-based tensor operations, we give the TT ranks
after implementing TT decomposition (prescribed accuracy
eps = 0.01 [29]) for different tensors under different traffic
slice intervals, which are shown in Table V. Besides, we give
the comparisons of entry number between the original tensor
and decomposed TT cores, which is depicted in Table VI. We
can see that the number of entries in decomposed TT cores is
about 0.2% of that in the original tensor. The compression is
helpful to efficient storage, computation, and communication.

In the experiments, the ratio of serial to scalable TT-based
execution time is used to verify the computation efficiency,
which is called the serial–parallel ratio. It differs slightly from
the improvement factor in traditional parallel operations. The

1https://tianchi.aliyun.com/competition/information.htm?spm5̄176.100067.
5678.2.IsTw3H&raceId2̄31514
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TABLE VI

COMPARISONS OF ENTRY NUMBER BETWEEN THE ORIGINAL
TENSOR AND DECOMPOSED TT CORES

Fig. 12. (a) Serial–parallel ratio comparisons of the TT-based Hadamard
product in vertical distributed scheme on random data sets. (b) Execution time
comparisons of the TT-based Hadamard product between serial and vertical
distributed schemes on real-world data set.

traditional parallel tasks are mainly focused on data blocks,
while the parallel tasks proposed in this article put an emphasis
on TT cores. Note that the execution time of original tensor
operations cannot be compared in the experiments. This is
because the execution time of original tensor operations is
exponential with tensor’s order. We can easily see from the
complexity analysis in Section V that STT approaches have
overwhelming superiority.

B. Evaluations

1) Comparisons of Execution Time for the TT-Based
Hadamard Product in Vertical Distributed Scheme: To validate
the efficiency of the TT-based Hadamard product operation
in the vertical distributed scheme, we performed two sets of
experiments. One is implemented using random data, and the
other is conducted based on real-world data. In the random
data experiments, we preset different orders of tensor and
different TT ranks for comparisons. The range of tensor’s
order is set from the second order to the tenth order, and the
dimensionality of each order is set to 200. Meanwhile, the TT
ranks in the Hadamard product operation are set to 35, 40,
45, and 50, respectively. For the real-world data experiment,
the number of orders and dimensions of the tensor can be
referred to Section VII-A.

Fig. 12(a) depicts the serial–parallel ratio of the TT-based
Hadamard product on two random data sets. It shows that
the more TT cores participating in the TT-based Hadamard
product, the greater the serial–parallel ratio. Thus, for higher
order data, the advantages of vertical distributed computation
shall be more prominent. Besides, we can see from Fig. 12(a)
that the serial–parallel ratio of the TT-based Hadamard product
in the vertical distributed scheme is almost linearly related
to the growth of the TTcore number. In the real-world data
experiment, Fig. 12(b) shows that the differences in the

Fig. 13. (a) Comparisons of execution time among serial, binary parallel,
and bidirectional parallel modes on the first group of random data sets.
(b) Serial–parallel ratio comparisons of horizontal parallel scheme with
various TT ranks on the second group of random data sets.

execution time between serial scheme and parallel scheme
are not so obvious as that of the random data experiment.
This is because in the tensor constructed by real-world data
set, only three middle TT cores have large amounts of data.
Therefore, the advantage of vertical distributed mode may not
be used fully. However, it should be noticed that the distrib-
uted execution time is always less than the serial execution
time. Moreover, both the serial execution time and distributed
execution time increase as we increase the dimensionality of
traffic order, but the increment of serial execution time is larger
than the distributed execution time.

2) Comparisons of Execution Time for TT-Based Extract-
ing Scalar in Horizontal Parallel Scheme: To verify the
computational efficiency of implementing TT-based extracting
scalar by binary parallel and bidirectional parallel modes,
we conduct comparative experiments on serial mode and these
two parallel modes. As before, we performed the experiments
using random data sets and real-world CPSS data set.

When using random data, we conduct two groups of exper-
iments. In the first group of experiments, the TT ranks are
set to 10, and the order of TT is set to a range from 10 to
120 with 10 as the interval. As illustrated in Fig. 13(a),
the execution time of two parallel modes are both less
than the serial mode. Moreover, when the order is higher
(i.e., 70 or more), the execution time of binary parallel mode
is less than the bidirectional parallel mode. Otherwise, less
execution time is needed for the bidirectional parallel mode.
This observation is consistent with the complexity analysis in
Section V-B2. In the second group of experiments, the number
of TT cores varies from 4 to 12, and the TT ranks are
ranging from 300 to 450. Then, we conduct experiments
to witness the serial–parallel ratio of the horizontal parallel
scheme under various conditions. According to the experi-
mental results shown in Fig. 13(b), the serial–parallel ratio
is ranging from 1 to 2 since there are less TT cores. However,
the serial–parallel ratio will increase with the increment of
TTcore number.

Besides, we also conduct TT-based extracting scalar exper-
iments using real-world CPSS data set. Fig. 14 shows that the
execution time of the bidirectional parallel mode is slightly
less than the binary parallel mode, and the execution time of
serial mode is the longest among the three modes. According
to the complexity analysis in Table III, it can be inferred
that the superiority of parallel modes is determined by the

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on December 17,2021 at 16:22:50 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: STT-TCs FOR CYBER–PHYSICAL–SOCIAL BIG DATA 883

Fig. 14. Comparisons of execution time among serial, binary parallel, and
bidirectional parallel modes on real-world data set.

(a) (b)

Fig. 15. (a) Serial–parallel ratio comparisons of hybrid scalable scheme with
various TT ranks on the first group of random data sets. (b) Serial–parallel
ratio comparisons of intra-TTcore parallel model with various TT ranks on
the second group of random data sets.

tensor’s order and TT ranks. Therefore, if the number of
tensor’s order is not too large, the parallel efficiency may
not be fully utilized. However, if the tensor’s dimensionality
is large, we can exploit the intra-TTcore parallel scheme to
further improve the computation efficiency.

3) Comparisons of Execution Time for TT-Based Inner
Product in Hybrid Scalable and Intra-TTcore Parallel
Schemes: To verify the efficiency of hybrid scalable and
intra-TTcore parallel schemes, we performed TT-based inner
product experiments with random data sets and real-world
data set to obtain the serial–parallel ratio. In random data
experiments, two groups of data were randomly generated.
For the first group of experiments using the hybrid scalable
scheme, we set the number of TT cores to a range from 2 to 10,
and the TT ranks are set to 35, 40, 45, and 50, respectively. For
the second group of experiments using the Intra-TTcore paral-
lel model, the number of TT cores is fixed at five. A two-layer
parallel architecture is adopted for TT cores whose dimension-
ality is greater than 200. Then, we can observe the influence of
intra-TTcore parallel model on parallel efficiency by changing
the intra-TTcore slave number. Besides, the data settings of
real-world data set are shown in Section VII-A.

Fig. 15(a) illustrates the serial–parallel ratio of TT-based
inner product operation in the hybrid scalable scheme. We can
see that the serial–parallel ratio will increase as the number
of TT cores increases. When the number of TT cores is 5,
the serial–parallel ratio is about 1–3. For TT cores with
large dimensionality (i.e., In), the TT cores are partitioned
to multiple slices along the order located by In . Here, new
slave nodes are employed for the intra-TTcore parallel model
to further improve parallel efficiency. Fig. 15(b) depicts the

Fig. 16. Comparisons of execution time among serial, inter-TTcore parallel,
and intra-TTcore parallel models on real-world data set.

experimental results in intra-TTcore parallel model. After
joining the intra-TTcore parallel operations, the serial–parallel
ratio will continue to increase as the number of slaves in
the two-layer parallel architecture increases, which can reach
to a maximum ratio of 9. However, the serial–parallel ratio
will not always increase as the number of employed slaves
continues to increase. Because more slaves in the intra-TTcore
parallel model also bring additional communication overhead.
Therefore, in the intra-TTcore parallel model, we should select
appropriate number of slaves to perform intra-TTcore parallel
operations.

In the eighth-order tensor constructed from real-world data
set, the dimensionality of traffic order is relatively large.
The parallel operations on the traffic order are performed
in the intra-TTcore parallel experiment, and we employ two
slaves to perform the intra-TTcore parallel operations. Fig. 16
shows that if the dimensionality of the traffic order is less
than 80, there is no advantage when adopting the intra-TTcore
parallel mode. However, when the dimensionality of the traffic
order is greater than 80, the intra-TTcore parallel mode under
two-layer parallel architecture can further improve the compu-
tational efficiency. The experimental result can be explained
as follows. When the dimensionality of the traffic order is
large, the intra-TTcore parallel mode can be used to reduce the
computation burden of single TTcore, thereby improving the
computational efficiency. However, when the dimensionality
In of TTcore is small, the intra-TTcore parallel task can
be completed fast enough by a single slave, so there is no
need to apply the intra-TTcore parallel mode. Moreover, due
to the communication overhead, the execution time of the
intra-TTcore parallel mode becomes even longer.

From the extensive experimental results, we can see that
the proposed STT-TCs approach can significantly improve the
computation efficiency, which is conducive to tensor-based
data analysis under edge/fog computing environments. In fact,
the general STT-TCs approach can also be extended to the
cloud to improve the efficiency of tensor-based data analysis.

VIII. CONCLUSION

To alleviate the dilemma caused by the curse of dimension-
ality in tensor-based analysis approaches for cyber–physical–
social big data, this article focuses on proposing a set of
TT-based tensor operations with their scalable computations
and presenting a novel TT-based processing framework for
cyber–physical–social big data under edge/fog computing
environments. In this article, we first summarize a set of
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TT-based computation approaches to implement most tensor
operations directly based on decomposed TT cores and then
propose an STT-CA, including inter-TTcore and intra-TTcore
parallel models. Furthermore, we put forward a series of
STT-TCs and propose a novel TT-based big data processing
framework under edge/fog computing environments. Extensive
experimental results based on both random and real-world data
sets demonstrate that the proposed STT-TCs can significantly
improve computation efficiency and reduce the storage space.

In the future, we shall further study the tensor-by-tensor
operation in the TT format. Furthermore, we shall implement
some tensor-based analysis approaches directly based on the
TT format and analyze the superiority of TT-based approaches
in computation time, storage, and analysis results.
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