
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Flexible Aggregate Nearest Neighbor Queries
and its Keyword-Aware Variant on Road

Networks
Zhongpu Chen, Bin Yao, Zhi-jie Wang, Xiaofeng Gao, Shuo Shang, Shuai Ma, and Minyi Guo, Fellow, IEEE

Abstract—Aggregate nearest neighbor (ANN) query in both the Euclidean space and road networks has been extensively studied, and
the flexible aggregate nearest neighbor (FANN) problem further generalizes ANN by introducing an extra flexibility parameter φ that
ranges in (0, 1]. In this paper, we focus on FANN on road networks, denoted as FANNR, and its keyword-aware variant, denoted as
KFANNR. To solve these problems, we propose a series of universal (i.e., suitable for both max and sum) algorithms, including a
Dijkstra-based algorithm that enumerates P instead of φ|Q|-combinations of Q, a queue-based approach that processes data points
from-near-to-far, and a framework that combines incremental Euclidean restriction (IER) and kNN. We also propose a specific exact
solution to max-FANNR and a constant-factor ratio approximate solution to sum-FANNR. These specific algorithms are easy to
implement and can achieve excellent performance in some scenarios. Besides, we further extend this problem to top-k and multiple
FANNR (resp., KFANNR) queries. We conduct a comprehensive experimental evaluation for the proposed algorithms on real datasets
to demonstrate their superior efficiency and high quality.

Index Terms—Road networks, indexing, spatial-keyword databases

F

1 INTRODUCTION

T HE aggregate nearest neighbor (ANN) query [1], [2], [3], [4],
[5], [6], [7] is a classic problem that has a large number

of applications (e.g., location-based services) in spatial databases.
Given a set Q of query points, ANN finds out a point in a set P
of data points, which has the smallest aggregate distance to all
points in Q. The aggregate function is usually either max or sum.
The ANN problem in both the Euclidean space [1], [2], [3] and
road networks [4], [5], [6], [7] has been extensively studied.

We observe that it is more desirable to take a fraction of Q
into account in many cases. More precisely, a more general query
is to allow users to specify a flexibility parameter φ ∈ (0, 1],
and the goal is to retrieve the best point from P that is the
closest to any φ |Q| points in Q. We denote this query as the
flexible aggregate nearest neighbor on road networks (FANNR).
In addition, sometimes we also need to address this query in the
context of keyword-aware road networks, where both the road
network distance and text similarity need to be considered. We call
this variant the keyword-aware flexible aggregate nearest neighbor
on road networks (KFANNR).

• Z. Chen, B. Yao (corresponding author), X. Gao and M. Guo are with
Department of Computer Science and Engineering, Shanghai Jiao
Tong University. Email: {chenzhongpu@, yaobin@cs., gao-xf@cs.,
guo-my@cs.}sjtu.edu.cn.

• Z.-J. Wang is with College of Computer Science, Chongqing University,
also with School of Data and Computer Science, Sun Yat-Sen University.
Email: cszjwang@yahoo.com.

• S. Shang is with Computer Science Program, King Abdullah University of
Science and Technology. Email: jedi.shang@gmail.com.

• S. Ma is with School of Computer Science and Engineering, Beihang
University. Email: mashuai@buaa.edu.cn.

p1 p2 p3q1

q2

q3

p7

q4

p8

7 10 2

2

p6
6

12

10
15

16

14

13

p4
p5

{"pizza", "fish", "lodging"}

{"balcony", "parking", "sushi"}

{"fish", "tea"}

{"fish", "bar", "pets"}

{"fish", "bar", "pets", "lodging"}

{"airpot", "tea"}

{"balcony", "sushi", "airport"}

{"coffee", "pets", "airport"}

{"balcony", "pets", "airport", "coffee"}

{"balcony", "coffee"}

{"tea", "wifi", "airport"}

p9

Fig. 1. A road network with textural information

Fig. 1 illustrates an example of FANN and KFANNR, where
data points P = {p1, p2, . . . , p8, p9} (colored in black) are
candidates to hold an election meeting for a company, query
points Q = {q1, q2, q3, q4} (colored in red) are shareholders with
voting rights, and the aggregate function g is sum. Each candidate
(resp., shareholder) is described by a set of keywords indicating
its featured (resp., his favorite) environment. Note that p4 and q3,
p5 and q4 are located at the same node, respectively. Some points
are located at edges. For example, q1 lies on (p2, p3). If all points
in Q are considered, this can be answered by an ANN query. The
result of this ANN query is p2 with the aggregate road distance of
52 (i.e., 10 + 14 + 12 + 16). However, if the meeting is legitimate
as long as half of members are present, we can find a venue
which minimizes the flexible aggregate distance to shareholders
for the sake of cutting down the traveling cost, and the result of
this FANNR query is p3 with the aggregate road distance of 4
(i.e., 2 + 2), and the flexible query objects are {q1, q2}. On the
other hand, in order to maximize these shareholders’ satisfactory,
it is preferred to take both the spatial and keyword information

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

into account. In order to simplify the presentation, we assume the
desirable data point must cover all keywords of “flexible” query
objects. This KFANNR query is p8 since only p8 can cover all
keywords of any 2 query points, and the flexible query objects are
{q3, q4}.

To the best of our knowledge, there is no any research on
FANNR problems before. In the literature, FANN queries [8],
[9] are first studied in the Euclidean space. Compared with the
Euclidean space, many operations on road networks are much
more expensive. The most relevant study is the ANN query on
road networks [4], [6], [7], but our study of FANNR is not a
trivial extension or adaption based on ANN query for two main
reasons. Firstly, the IER algorithm in [4] can reach the best
performance, which uses R-tree to index the data objects, but it
could be inefficient when only partial points in Q are considered;
this is mainly because the number of all possible answers can
achieve the scale of

(|Q|
φ|Q|

)
. Secondly, our comprehensive study of

FANNR enables us to answer it efficiently in different scenarios
(e.g., having an index structure or not, returning an exact answer
or not). Obviously, we can regard ANN query as a special case
of FANNR query when φ = 1. Another relevant but different
type of query is the optimal meeting point (OMP) query [5] on
road networks, but the set P in OMP query is not determined in
advance. As for the KFANNR query, which is a keyword-aware
variant of FANNR, has also never been studied. FSNNK [10]
investigates the FANN with keywords in the Euclidean space. It
is challenging to combine both spatial and textual information to
prune candidates efficiently on road networks.

In this paper, we first focus on the universal (i.e., applicable to
both max and sum) methods for the FANNR and KFANNR query
problems. In this regard, we develop three solutions. Firstly, we
design a Dijkstra-based algorithm by enumerating P instead of
φ|Q|-combinations of Q. Secondly, we successfully modify the
List algorithm [8], [9] in the context of road networks, which
processes data points from-near-to-far. Thirdly, we propose a gen-
eral algorithm framework by combining Incremental Euclidean
Restriction (IER) and kNN. These universal algorithms often
require complex index structures which usually are infeasible
for large dynamic road networks. To this end, we also inves-
tigate the specific algorithms which sacrifice some generalities
but have other merits. In brief, we develop a specific algorithm
for max-FANNR that can return an exact answer; and design a
constant-factor approximation algorithm for sum-FANNR, which
is sometimes desirable to retrieve a near-optimal answer as fast as
possible.

The main contributions of our work can be summarized as
follows:

• We firstly introduce an extra flexibility parameter to the
classic ANN problem on road networks, and formulate
FANNR and its keyword-aware variant KFANNR formally.

• We design a Dijkstra-based algorithm to answer FANNR
and KFANNR queries, which is much better than adopting
ANN as an independent module directly. After that, we
propose a queue-based algorithm. We also combine IER
with kNN, and then develop a family of algorithms based
on the general algorithm framework.

• We propose a specific Exact-max (exact max-FANNR)
algorithm for max-FANNR and APX-sum (approximate
sum-FANNR) algorithm for sum-FANNR to get the exact
and 3-approximation answer, respectively. We also prove

that the approximation ratio of APX-sum can even reach
2 if Q is the subset of P . These specific algorithms are
easy to implement and can achieve excellent performance
in some scenarios.

• We further extend FANNR and KFANNR to top-k and
multiple queries, and solve them successfully based on
our proposed methods.

The rest of this paper is organized as follows: Section 2 defines
the problem, discusses some related work, and shows an outline
of the proposed approaches. Section 3 presents universal methods,
including a Dijkstra-based algorithm, a queue-based method and a
general algorithm framework. Section 4 presents specific methods
to answer sum-FANNR and max-FANNR queries respectively.
Section 5 discusses k-FANNR (resp., k-KFANNR) andm-FANNR
(resp., m-KFANNR), which are extensions of FANNR (resp.,
KFANNR). We present the experimental results in Section 6 and
make a conclusion in Section 7.

2 PRELIMINARIES

We first present the road network and keyword related definitions
and formulate the FANNR and KFANNR problem formally. Then,
we review some related work. Finally, we present the outline of
our proposed methods. We also summarize the frequently used
symbols in Table 1.

2.1 Problem Formulation
A road network can be represented as an undirected weighted
graph, G = (V,E), where V is the set of vertices, and E is the
set of edges. If the textual information is considered, each vertex v
contains a set of keywords, denoted as v.W . Each keyword x has
a weight x.w, and it can be generated by the Language Model [11]
based on the inverted file.

We use Q to denote the set of query objects, use P to
denote the set of data objects, and use φ to denote the flexibility
parameter, where φ varies in the range of (0, 1]. For simplicity,
we assume that query and data objects are located at vertices,
i.e., P ⊂ V and Q ⊂ V . If the query (resp., data) object is on
an edge, we can use the two vertices on the edge to do FANNR
search and merge the answer sets of the two vertices to generate
the final result. If the query (resp., data) object is outside the
whole road network, we can find the closest point to it on the
road network and use the closest point to do an FANNR search.
The similar assumption is also adopted in [12]. In the following,
“point”, “object”, and “vertex” are interchangeably used if the
context is clear.

Let δ be the distance function on G, and the network distance
δ(vi, vj) between objects vi and vj is defined as the minimum
sum of weights of any path between them. The textual similarity
between vi and vj is denoted as t(vi, vj). It is the normalized sum
of the weights (of the shared keywords in vi.W and vj .W); and
is compute [10] as:

t(vi, vj) =
1

|vi.W|
∑

x∈s.W

x.w

wmax
, (1)

where wmax is the maximum keyword weight in the dataset, and
s.W = vi.W ∩ vj .W . Note that (1) other similarity measures
(e.g., Jaccard and cosine similarity) can also be used, but we do
not focus on effective measures in this paper; (2) this similarity
is not a metric since symmetry does not hold (i.e., t(vi, vj) 6=

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

t(vj , vi)). For ease of presentation and without lose of correctness,
we assume |vi| is always the cardinality of the set of query point’s
keywords. Under this assumption, t(vi, vj) == t(vj , vi).

When it comes to the distance between objects vi and vj in
terms of their spatial distance and textual similarity, the widely
used linear interpolation with normalization is adopted here:

δK(vi, vj) = α
δ(vi, vj)

MR
+ (1− α)(1− t(vi, vj)), (2)

where MR is the maximum road network distance, and α ∈ [0, 1]
is to adjust the relative importance of road network distance. Note
that other cost functions in terms of spatial distance and textual
similarity can be also adopted.

Let g be an aggregate function, which can be defined on a
single object p and a dataset S ⊂ V , and it can be any monotonic
(e.g., min) one. In this paper, it is either sum or max:

g(p, S) = g{∆(p, v1),∆(p, v2), ...,∆(p, vk)}, (3)

where k = |S|, vi ∈ S, for i = 1, 2, . . . , k. Note that ∆ can
be either δ or δK according to problem setting. Then we can
define the flexible aggregate function gφ, which is the most critical
operation for both FANNR and KFANNR query problems.

Definition 1 (Flexible Aggregate Function). The flexible aggre-
gate function gφ, is a function that takes a point p ∈ P and the
set Q as its input, and returns a pair (dp, Qpφ) as the result, i.e.,
(dp, Qpφ) = gφ(p,Q), which satisfies:Q

p
φ = argmin

Qφ⊂Q,|Qφ|=φ|Q|
g(p,Qφ),

dp = g(p,Qpφ),

where Qφ is the subset of Q with |Qφ| = φ|Q|. Given a point p,
we denote the optimal flexible subset of Q as Qpφ, and denote its
flexible aggregate distance to Q as dp.

Remark 1. We usually use gφ(p,Q) to denote the flexible aggre-
gate distance for simplicity and add “keyword-aware” ahead of
these notations if textual information is considered.

Our goal is to retrieve a point p∗ in P to minimize the flexible
aggregate distance. An FANNR (resp., KFANNR) query can be
formalized with the following definition:

Definition 2 (FANNR (resp., KFANNR) query). The input of an
FANNR (resp., KFANNR) query is a quintuple (G,P,Q, φ, g),
which returns a triple (p∗, Q∗φ, d

∗) as its answer such that:(p∗, Q∗φ) = argmin
p∈P,Qφ⊂Q,|Qφ|=φ|Q|

g(p,Qφ),

d∗ = g(p∗, Q∗φ),

where p∗ is the point in P that minimizes the flexible aggregate
distance, Q∗φ is the optimal flexible subset, and d∗ is the optimal
flexible aggregate distance.

2.2 Related Work
The Shortest Path Algorithm. The shortest path algorithm is
one of the most fundamental operations on road networks, and
it has been extensively studied during the past half century. The
Dijkstra algorithm [13] and its variants (e.g., A∗ algorithm [14])
have been widely applied in location-based services. We can use
either lower bounds (or other heuristic properties) or materializa-
tion techniques to accelerate the shortest path computation. The

TABLE 1
Frequently used notations

Symbol Definition
φ flexible parameter

gφ(·, ·) flexible aggregate function
(K)FANNR (keyword-aware) flexible aggregate query on road networks

α coefficient that adjusts the importance of spatial distance
p∗ the point in P that minimizes gφ(·, ·)
Q∗φ the subset of Q that minimizes gφ(·, ·)
d∗ the distance of minimized gφ(·, ·)

fully materialization of distances requires high storage cost, while
HiTi [15] and HEPV [16] materialize distances partially to make it
feasible for large graph. Currently, PHL [17] could be the fastest
method which decomposes a graph into the shortest paths and
stores distances from each vertex to the shortest path in its labels.

Indexing Techniques on Road Networks. Indexing tech-
niques [15], [16], [18], [19], [20] are also widely used on road
networks. The basic idea is to partition the graph into subgraphs
recursively, and precompute some shortcuts within subgraphs. It
is usually required to keep the hierarchical structure balanced for
better performance. CH [19] has a low memory overhead, and
it may have to traverse a large number of nodes when objects
are relatively dispersed in the graph. The authors in [7], [21]
transplanted Voronoi digram to the domain of road networks,
while it may cause unbalanced partitions. Lee [20] used ROAD
to index road networks in a hierarchical way, while it may not
perform well if the objects are sparse and road networks are
large. G-tree [12], [22] has a superior performance and the cost
of building index is acceptable.

kNN, ANN, and FANN in the Euclidean Space. The k-
nearest neighbor (kNN) query on road networks has been studied
for decades. Many successful approaches have been developed
to solve this problem [12], [23], [24]. Abeywickrama et al. [25]
studied different in-memory algorithms for kNN queries, and they
proved that IER has an excellent performance potential. The ANN

problem and its top-k extension in both the Euclidean space [1],
[2], [3] and road networks [4], [5] have been studied for decades.
The IER algorithm [4] can reach the best performance, which
uses R-tree to index the data objects. Li et al. [8], [9] first studied
FANN in the Euclidean space, which generalized the classical ANN

problem and offered it richer semantics. They proposed a series
of exact and approximate algorithms to address this problem.
Nevertheless, those algorithms cannot work for our problem, since
we are interested in road networks (instead of Euclidean space).

Spatial Keyword Queries. In the context of spatial and textual
domain [26], [27], [28], top-k problem and its variants have been
studied, and IR-tree [29] has been proven to be a highly efficient
method. Shi et al. [30] further investigated this problem on RDF
data. The flexible group spatial keyword query [10] considers the
textual information for FANN problem in the Euclidean space, and
it also addresses some variants such as multiple flexible subgroup
nearest neighbor with keywords.

None of existing work solves the problem of the flexible
aggregate nearest neighbor query on road networks, not to mention
its keyword-aware variant. In this paper, we will address these
two queries respectively. This paper is an extended version of our
previous study [31]. The new contributions are three-fold. (1) We
introduced the keyword-aware flexible aggregate nearest neighbor
queries on road networks (KFANNR); (2) we extended FANNR

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(resp., KFANNR) to the multiple flexible aggregate nearest neigh-
bor queries on road networks; (3) we conducted new experiments
for newly introduced queries, and more comprehensive evaluations
for FANNR which are not shown in [31].

2.3 An Outline of Proposed Methods
In this paper, we design two kinds of algorithms which are known
as the universal and specific methods, respectively. The universal
methods are able to deal with both max and sum, and the specific
methods can only solve the problem when g is either max or sum,
while they are generally superior to universal methods in terms of
both efficiency and implementation. To save space, we omit the
complexity analysis of proposed algorithms, and readers who are
interested in them can refer to our previous work [31].

Universal FANNR. As for the universal methods, a naive way
is to regard the ANN as an independent module. To be specific, we
enumerate

(|Q|
φ|Q|

)
options to determine Qpφ (as the query objects),

and then apply the ANN routine directly. However, this method
is always infeasible in practice since

(|Q|
φ|Q|

)
is often too large to

deal with. For example, the
(|Q|
φ|Q|

)
can reach 2.39 × 1037 if we

set |Q| and φ to 128 and 0.5 respectively. To this end, we design
a Dijkstra-based algorithm to compute gφ (shown in Section 3.1).
Although it also searches in an enumerative way, it is much more
efficient than the naive solution since it enumerates P (instead
of combinations of Q), which has a much less search space.
Inspired by the threshold algorithm [32], List [8], [9] is proposed
to answer FANN queries in the Euclidean space. We modify this
List (denoted as R-List), and implement it in a “switchable” way
to answer FANN queries on road networks (i.e., FANNR), as
shown in Section 3.2. The modified implementation also leads to
much more efficient solution to max-FANNR problems (shown in
Section 4.1). As presented in [25], IER has an excellent potential
when retrieving kNN. Hence, we further design a IER-kNN
framework to answer FANNR queries. Based on the general IER-
kNN framework, we can obtain a family of algorithms (shown in
Section 3.3).

Universal KFANNR. The straightforward adaption for univer-
sal KFANNR is to use the maximum textual similarity as a bound
while expanding the road path. Note that given a query point q,
we cannot determine specific distance order in terms of points
in P , so R-List is ineffective for the keyword-aware variant. In
this paper, we use an IR-tree [29] like structure for IER-kNN
framework. Different from other extensions (e.g., [10]), we do
not have to store the keywords explicitly in tree nodes, and use a
roaring bitmap to encode the textural information which can boost
the space efficiency greatly.

Specific FANNR. Although the universal methods can gener-
ally achieve good performance, they highly rely on sophisticated
indexing techniques. The construction cost of index can often
be very high especially for frequently changing road networks.
Motivate by this, we design a specific algorithm when g is max,
which can return an exact answer. We denote it as Exact-max
(shown in Section 4.1). Exact-max follows the basic data structure
of R-List, but it often outperforms other methods when it is index-
free. On the other hand, sometimes it is often desirable to obtain a
near-optimal result if the running time can be greatly reduced. To
this end, we design an APX-sum algorithm to answer sum-FANNR
queries. This algorithm can return a 3-approximation result. We
further prove that it can even return a 2-approximation result if Q
is the subset of P (shown in Section 4.2). It is worth noting that

these specific algorithms rely on the spatial properties, so they
cannot be applied for KFANNR.

3 UNIVERSAL METHODS

We firstly present a Dijkstra-based algorithm (Section 3.1), and
then present a queue-base algorithm (Section 3.2). Finally, we
show a framework which is able to generate a family of algorithms
(Section 3.3).

3.1 Dijkstra-based Algorithm
3.1.1 FANNR

The Dijkstra-based algorithm is based on the following obser-
vation. Recall how Dijkstra routine runs: at every step of its
expansion, it chooses an unvisited nearest object of the source
object to visit and updates its neighbors’ distances to the source
object. This INE (i.e., incremental network expansion) behavior
also makes sense in running gφ(p,Q). First, let p be the source
object, we call a Dijkstra-like routine on it. Then we keep the path
expanding until φ|Q| objects in Q are labeled as visited. Hence,
these φ|Q| points are exactly Qpφ. In this way, we can enumerate
points in P and return the one with the smallest flexible aggregate
distance. At a high level, the difference between the naive method
mentioned in Section 2.3 and the Dijkstra-based algorithm is that:
the former is to construct Qφ first, and then to determine the
correct p and its flexible aggregate distance; the latter is to choose
p first, and then retrieve the correct Qpφ and its flexible aggregate
distance. Clearly, the complexity of the latter strategy is much
smaller.

Intuitively, there are two ways to improve this algorithm: (1)
prune objects in P as much as possible (i.e., reduce the number
of calling gφ), or (2) improve the implementation of gφ. We will
discuss related improvement techniques later (e.g, Sections 3.2
and 3.3).

3.1.2 KFANNR

Different from FANNR, in order to prune unpromising INE or
Dijkstra expansion, we use the textual similarity as a bound while
expanding. To be specific, for a data point p, we use a max-heap
with size of φ|Q| to maintain the expanding results in terms of
road network distance and textual similarity. Suppose we have
visited at least φ|Q| query objects and query object q∗ has the
largest distance value in the max-heap. We can terminate the
expansion at qx if

α
δ(p, qx)

MR
+ (1− a)(1− tmax) ≥ δK(p, q∗). (4)

Like FANNR, the whole algorithm is to conduct a keyword-aware
expanding procedure for each point in P .

Time complexity. Since gφ has the same time cost with Dijkstra
(i.e., O(|E| + |V | log |V |)), the total time cost is O((|E| +
|V | log |V |)|P |) in the worst case.

3.2 The R-List Algorithm
The basic idea of R-List algorithm is to construct a threshold [32]
for early termination, and thus it is able to reduce the number
of calling gφ. The R-List (road networks’ List [8], [9]) is actually
queue-based. We create |Q| queues. Each queue corresponds to an
object in Q, and processes data points in a from-near-to-far way.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Although R-List shares the basic idea with List [8], [9], we
have two contributions here. Firstly, we provide the implemen-
tation details for constructing the list of queues in the context
of road networks, which are different from that in the Euclidean
space. Secondly and most importantly, the modified implementa-
tion can lead to a much more efficient solution to max-FANNR
problems. As for the implementation details as well as the time
complexity, we will discuss them together with those of Exact-
max in Section 4.1.

3.3 IER-kNN Framework

3.3.1 FANNR

In this section, we propose a powerful algorithm framework for
the FANNR query. Firstly, we adopt the Incremental Euclidean
Restriction (IER) to prune the unpromising points in P as many
as possible. Let e be an entry of an R-tree that indexes P and e.b
be its minimum bounding rectangle (MBR). We can calculate the
minimum possible distance from an entry e to a point q, denoted
as δ(e.b, q). We denote gε as the Euclidean aggregate function,
and we have

gε(p,Q) = g{δε(p, q1), δε(p, q2), . . . , δε(p, q|Q|)}. (5)

Similarly, gε(e,Q) can be defined by g{δ(e.b, qi),∀qi ∈ Q}.
Like Definition 1, we can define the flexible Euclidean aggregate
function (Euclidean FANN) by gεφ(p,Q) if replacing g(p,Qφ)
with gε(p,Qφ). Following the similar way, we also have gεφ(e,Q)
to denote the flexible Euclidean aggregate function with respect to
an MBR e.b and query points set Q. For simplicity, we also use gεφ
to denote its flexible Euclidean aggregate distance if the context is
clear. Now, we can have the following lemma:

Lemma 1. Let Q be a set of query points and e be an R-tree node
entry. For any point p indexed under e, gεφ(e,Q) cannot be larger
than gφ(p,Q).

Proof. It follows from the fact that gεφ(e,Q) ≤ gεφ(p,Q) and
gεφ(p,Q) ≤ gφ(p,Q).

Based on Lemma 1, we can solve the FANNR query using
an R-tree built on P . We show this process in Algorithm 1.
Initially, the root of the R-tree is enqueued into a priority queue
which is sorted by gεφ(e,Q) in ascending order (line 2). For each
iteration, we first check whether gεφ(e,Q) is larger than or equal
to the current best candidate result (line 5). If so, we terminate
the algorithm (line 6); otherwise, we check whether the dequeued
item is an R-tree node (line 8). If so, we push all entries under
this node into the priority queue (lines 9-10); otherwise, we run
gφ(e,Q) on it and update the result if necessary (lines 12-14).
Note that the entry ê (line 9) is a data point in P if e is a leaf
node, and it is an R-tree node if e is a non-leaf node.

A Running Example. Let us see how Algorithm 1 finds the sum-
FANNR in Fig. 1 whose φ = 50%. We illustrate this process in
Fig. 2, and remove the road segments for better visualization. In
the first round of loop, we would push (MBR1, 7), (MBR2, 1.8),
and (MBR3, 21) into H . After that, (MBR2, 1.8) will be chosen,
and we would check p3 and p6 inside MBR2. After that, we can
know p∗ = p3, d∗ = 4, and Q∗φ = {q1, q2}. We can safely
terminate the algorithm since d∗ is less than the distance value of
head in H .

Revisitation of gφ(p,Q). Now we revisit the implementation of

Algorithm 1: IER-kNN Framework
Input: G, P , Q, φ, g, R
Output: p∗, Q∗φ, d∗

1 d∗ ←∞, H ← new priority queue
2 H.enqueue(R.root, gεφ(R.root,Q))
3 while H is not empty do
4 (e, gεφ(e,Q))← H.top()
5 if gεφ(e,Q) ≥ d∗ then
6 break

7 H.dequeue()
8 if e is an R-Tree node then
9 foreach R-Tree entry ê under e do

10 H.enqueue(ê, gεφ(ê, Q))

11 else
12 (Qeφ, d

e)← gφ(e,Q)
13 if de < d∗ then
14 p∗ ← e, d∗ ← de, Q∗φ ← Qeφ

p1 p2 p3q1

q2

q3

p7

q4

p8

p6
p4

p5

1.8

8
713

MBR1 MBR2

p9
MBR3

Fig. 2. Example of Algorithm 1

gφ(p,Q). As implied in Section 3.1, given a point p, Q and φ,
the flexible aggregate function gφ(p,Q) is exactly an incremental
network expansion (INE), which is also a kNN query where p is
a query node, Q is the set of data objects, and k = φ|Q|.

Generally speaking, A∗ is believed to be superior to Dijkstra
(i.e., INE) for computing shortest distance. However, A∗ is not
necessarily better than INE when it comes to the implementation
of gφ, as showed in our experiments. This finding is also noted
by [25]. Hence, we still adopt INE as one of the implementations
of gφ. To boost efficiency of computing the shortest path distance
and kNN, we apply two state-of-the-art techniques. The first is
G-tree [12], [22], which materializes distance matrix for each
tree node. The second is the pruned highway labeling (PHL)
[17], which accelerates the shortest path distance queries by
decomposing a graph into shortest paths and storing distances
from each vertex to the shortest path in its labels. We denote the
IER-kNN framework combined with the INE algorithm as IER-
INE. Similarly, we also have IER-A∗, IER-GTree and IER-PHL
to represent the IER-kNN framework combined with A∗, G-tree
and PHL respectively.

As a remark, gφ(p,Q) itself can be also implemented with
IER and any shortest path distance algorithm when Q is indexed
under R-tree. In this way, we denote the IER-kNN method whose
gφ is implemented with IER-A∗ as IER2-A∗ (there are double IER
routines). The IER-A∗ here means the gφ method, instead of the
FANNR approach mentioned earlier. Similarly, if we replace A∗

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 2
Road network index of gφ

Algorithm Name G-tree PHL R-tree Occ
INE 7 7 7 7
A∗ 7 7 7 7

GTree 3 7 7 3
PHL 7 3 7 7

IER-A∗ 7 7 3 7
IER-GTree 3 7 3 7
IER-PHL 7 3 3 7

here with GTree (or PHL), we also have IER2-GTree (or IER2-
PHL). Note that the “GTree” in IER-GTree is the kNN algorithm
presented in [12], [22], which is based on an occurrence list (Occ)
over Q, and the “GTree” in IER2-GTree denotes the shortest
path distance algorithm based on G-Tree index. In this way, we
can have a family of algorithms based on IER-kNN. The index
techniques of different implementations for gφ are summarized in
Table 2, and they will be further studied in experiments.

3.3.2 KFANNR

Different from FANNR, we need to encode textual information
into R-tree, so we adopt a IR-tree [29] like structure to index our
data points. Since the textual similarity is generated by shared
keywords of the query point and data point, we need to compute
the weights of keywords in Q, which can be computed off-line
by the Language Model [11] based on inverted file. In order to
compute the textural similarity between a tree node entry e and a
query object q, some studies (e.g., [10]) have to store the union of
keywords in the child node entries. Yet, such a storage model could
lead to a high space overhead. One possible solution is to use a
Bloom filter to encode the keywords on each tree node. Although
a bloom filter is space-efficient, it would cause false positives.

To overcome the above drawbacks, we adopt a roaring
bitmap [33], which is characterized by its higher compressed ratio
and better performance than other popular bitmap compression
schemes. We show the cost of IR-tree with different textual
encodings in Section 6.6.2, and it demonstrates the effectiveness
of roaring bitmaps. In addition, roaring bitmaps support union and
intersection operations which are necessary when building index
and computing the textual similarity t(e, q).

Given t(e, q), the keyword-aware spatial distance between a
tree node entry e and a query object q can be defined by:

δK(e, q) = α
δ(e.b, q)

MR
+ (1− α)(1− t(e, q)), (6)

which is an extension of Equation 1. Similarly, keyword-aware
gε(e,Q) can be defined by g{δK(e, qi),∀qi ∈ Q}. Now we
can have a lemma below, which is a keyword-aware variant of
Lemma 1:

Lemma 2. Let Q be a set of query points and e be an IR-tree
node entry. For any point p indexed under e, gεφ(e,Q) cannot be
larger than gφ(p,Q).

Proof. We have t(e, q) ≥ t(p, q) since p.W ⊆ e.W . Thus,
δK(e, q) is a lower bound of δK(p, q). It is easy to know
gεφ(e,Q) ≤ gεφ(p,Q) and gεφ(p,Q) ≤ gφ(p,Q) hold true.

Therefore, we can use Algorithm 1 to answer KFANNR based
on Lemma 2, because we can prune all unpromising candidates in
the priority queue if gε(e,Q) ≥ d∗ (line 5).

Similarly, we can further boost the efficiency gφ(p,Q) here,
which is a keyword-aware kNN query [12], [22]. Note that even
though p is supposed to be a query point by definition, we shall
still regard qi ∈ Q as a query point when computing textual
similarity due to its asymmetry (recall Section 2.1).

Time complexity. In the worst case, we still have to visit each
point in P . Take the IER-GTree for an example. The worst time
of kNN search is O(|V | log |V |), so the total time complexity is
O(|P ||V | log |V |). In practice, the time cost is much smaller than
worst complexity [12].

4 SPECIFIC METHODS FOR FANNR

Although the universal algorithms for FANNR queries in Section 3
can achieve good performance, they highly depend on the sophisti-
cated indexing techniques (e.g., G-tree or PHL). In some scenarios
(e.g., maps in online games), it is difficult to build indexes for
underlying road networks, incurring these general methods inef-
fective, to some extent. To this end, in this section, we design two
specific algorithms to solve sum-FANNR and max-FANNR queries
respectively, and these specific methods can achieve excellent
performance even if the underlying road networks are index-free.

4.1 The Exact-max Algorithm

We present this method in Algorithm 2, and call it Exact-max
(exact max-FANNR), which shares the similar idea and data
structure with those of R-List. The main difference is that we add
a counter for every point in P . Initially, these counters are set to
0 (line 2). During every iteration, we get the head point with the
smallest distance (line 4), and then increase the counter associated
with the head node by one (line 5). If the counter associated with
the head node reaches φ|Q|, the head node is exactly p∗, and then
we can terminate the algorithm safely (lines 6-9). Hence, we can
run the time-consuming gφ only once (line 8). This is why Exact-
max can be efficient. Besides, this also indicates that different
implementations of gφ have little influence on Exact-max. In
other words, Exact-max can still achieve a good performance
even if we do not build a road network index over the whole
road network. This property is appealing when underlying road
networks change frequently, since we do not need to rebuild or
readjust the index any more, which is usually time-consuming as
shown in our experiments.

Algorithm 2: The Exact-max Algorithm
Input: G, P , Q, φ, δ, g
Output: p∗, Q∗φ, d∗

1 foreach p ∈ P do
2 count[p]← 0

3 while true do
4 Lmin ← the queue whose head has the smallest

distance
5 count[Lmin.top()]← count[Lmin.top()] + 1
6 if count[Lmin.top()] ≥ φ|Q| then
7 p∗ ← Lmin.top()
8 (Q∗φ, d

∗)← gφ(Lmin.top(), Q)
9 break

10 Lmin.dequeue()

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Implementation Details. Now we discuss the implementation
details of R-List and Exact-max. The list of queues is constructed
in an implicit way, otherwise it will violate the memory limit
if O(|P ||Q|) is large enough. To be specific, we set the query
objects as the multiple sources initially, and then execute Dijkstra-
like routine on them simultaneously and independently. As shown
in Algorithm 2, the queue operations are alternately performed on
different queues, which implies that we can implement this multi-
source Dijkstra procedure in a “switchable” way. All data struc-
tures associated with different queues should be well preserved
when the Dijkstra-like routine switches away, thus the interrupted
search process can be reloaded and resumed when it switches
back.

A Running Example. Let us see how Exact-max finds the max-
FANNR in Fig. 1 whose φ = 50%. The expanding paths of
{q1, q2, q3, q4} are {p3, . . . }, {p3, . . . }, {p4, . . . } and {p5, . . . }
respectively. It is obvious that the counter of p3 will be the first to
reach φ × 4 = 2. Hence the result of this max-FANNR query is
p∗ = p3, d∗ = 2 and Q∗φ = {q1, q2}.

The correctness of this algorithm is easy to validate: the nature
of Dijkstra algorithm guarantees that the closer a point to the
source is, the earlier it will be visited. When a point is the first to
be visited by exact φ|Q| sources, it means that this point is the
closest one to these φ|Q| sources. Thus Algorithm 2 can answer
max-FANNR queries correctly.

As analyzed above, both R-List and Exact-max require road
network expansions, and the order of data points in terms of road
network distance can be easily guaranteed due to the nature of
Dijkstra (or INE procedure). However, given a query object, we
cannot guarantee the order of data points in terms of both spatial
and textual distance while expanding. Therefore, both R-List and
Exact-max are ineffective for KFANNR.

Note that the basic idea of Exact-max is different from gφ
when gφ is implemented with Dijkstra or INE. The latter is to
regard P as sources and then obtain the kNN (i.e., the objects in
Q are destinations). The expansion direction of Exact-max is quite
the reverse: we regard the nodes in Q as sources and then expand
them to P (i.e., the objects in P are destinations). It is not hard to
understand that Exact-max is very efficient when P is dense and
φ|Q| is relatively small. In most real word scenarios, this is true
because |Q| is much smaller than |P |.

TABLE 3
A counter example of sum-FANNR

Source Expanding
q1 (4, p2) (12, p3) -
q2 (2, p1) (10, p2) -
q3 (11, p1) - -
q4 (14, p4) - -
q5 (15, p2) - -

It is worth noting that the idea behind Exact-max cannot be
used to answer sum-FANNR queries. Table 3 illustrates a counter
example (note that it has noting to do with the example in Fig. 1).
Suppose query points set Q is {q1, q2, q3, q4, q5} (any query point
does not belong to {p1, p2, p3, p4, p5}), and φ = 40%. Hence,
φ|Q| = 2. If we follow the idea of Algorithm 2, we would conduct
the following four steps: (1) We examine the queue of q2 first, and
visit data point p1; (2) we examine the queue of q1, and visit data
point p2; (3) we examine the queue of q2 again, and visit data point

Algorithm 3: The APX-sum Algorithm
Input: G, P , Q, φ, δ, g
Output: pα, Qαφ , dα

1 candidate← ∅
2 foreach q ∈ Q do
3 p← the nearest neighbor of q in P
4 candidate.insert(p)

5 FANNR (G, candidate, Q, φ, sum)

p2 again; (4) at this moment, the counter of p2 reaches 2, and thus
we can terminate the algorithm. In this way, we can have p∗ = p2,
d∗ = 4 + 10 = 14, and Q∗φ = {q1, q2}. However, the correct
answer is p∗ = p1, d∗ = 2 + 11 = 13, and Q∗φ = {q2, q3}.

Time complexity. Assume that gφ is implemented by Dijkstra-like
method. For R-List algorithm, every point in P will be visited in
the worst case. Thus, the time cost is O((|E|+ |V | log |V |)|P |).
In practice, the time complexity is often smaller than it due to the
lower bound. Similarly, the time cost of Exact-max is O(|E| +
|V | log |V |).

4.2 The APX-sum Algorithm

For the sum-FANNR problem on road networks, we present an
approximate approach APX-sum (approximate sum-FANNR) in
Algorithm 3. This algorithm is extremely simple, but it has a
constant approximation ratio. Instead of considering the whole P ,
we only examine those data points which are the nearest neighbors
of those query points in Q (lines 2-4). We can regard the candidate
set as P , and run the FANNR algorithm (whose g is sum). In this
way, we reduce the number of candidate data points to |Q|, which
is usually much smaller than |P |. This is why it can remarkably
improve the search efficiency. In fact, it is even possible that the
size of candidate set is smaller than |Q|, since some different
query points may have the same nearest data point neighbors. One
of the most appealing properties of APX-sum is the stability when
varying P , because it is only affected by Q generally. We can
prove that the approximation ratio dα/d∗ of this algorithm is no
more than 3.

Theorem 1. Algorithm 3 returns a 3-approximation answer to any
sum-FANNR query on road networks.

Proof: Given a sum-FANNR query, Algorithm 3 returns
an approximate answer (pα, Qαφ , d

α), and suppose that the true
optimal answer is (p∗, Q∗φ, d

∗). Let qτ be the nearest object in
Q∗φ to p∗, and pτ be the nearest object in P to qτ . We have:

δ(pτ , qτ) ≤ δ(p∗, qτ) (7)

And for any q ∈ Q∗φ, we have:

δ(p∗, qτ) ≤ δ(p∗, q) (8)

⇒ φM · δ(p∗, qτ) ≤
∑
q∈Q∗

φ

δ(p∗, q) = d∗ (9)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

It is obvious that pτ cannot be “better” than pα. If the result
of gφ(pτ , Q) is (Qτφ, d

τ), we have:

dα ≤ dτ

=
∑
q∈Qτφ

δ(pτ , q)

≤
∑
q∈Q∗

φ

δ(pτ , q)

≤
∑
q∈Q∗

φ

(δ(pτ , p∗) + δ(p∗, q)) (by Triangle Inequality)

=
∑
q∈Q∗

φ

δ(pτ , p∗) + d∗

= φM · δ(pτ , p∗) + d∗

≤ φM · (δ(pτ , qτ) + δ(qτ , p∗)) + d∗

≤ 2φM · δ(qτ , p∗) + d∗ (by Equation 7)

≤ 2d∗ + d∗ (by Equation 9)

= 3d∗

A Running Example. Let us see how APX-sum finds the sum-
FANNR in Fig. 1 whose φ = 50%. We can easily obtain the
candidates of data points {p3, p4, p5}, and APX-sum returns p∗ =
p3, d∗ = 4 and Q∗φ = {q1, q2} as the final result, which is
coincidently an exact answer.

It should be pointed out that, the approximation ratio 3 is
only a theoretical bound. As shown in our experiments, the
approximation ratio of APX-sum is far less than 3 in practice: it
never exceeds 1.2 in our experiments. Furthermore, an interesting
result can be derived from Theorem 1 when Q is the subset of P .

Theorem 2. Algorithm 3 returns a 2-approximation answer to any
sum-FANNR query if Q is a subset of P .

Proof: The proof of the bound is similar to the proof of
Theorem 1. If Q is the subset of P , then pτ is qτ itself in the
proof of Theorem 1, so δ(pτ , qτ) = 0 holds. Clearly, dα ≤ 2d∗

is true once replacing δ(pτ , qτ) with 0 in the proof of Theorem 1.

On the top of a better approximation ratio, we can easily
find that it will also avoid the cost of expanding to |Q| nearest
neighbors, and thus it is more efficient than Algorithm 3.

Time complexity. If the gφ is implemented as Dijkstra or INE,
the time cost is O((|E|+ |V | log |V |)|Q|).

5 EXTENSION TO TOP-k AND MULTIPLE FANNR
(RESP., KFANNR)
5.1 The Top-k FANNR (resp., KFANNR)
5.1.1 k-FANNR

We define the k-FANNR query, which is a further extension of
FANNR. We can regard FANNR as a special case of k-FANNR
when k is 1.

Definition 3 (k-FANNR query). The input of a k-FANNR query is
a six-tuple (G,P,Q, φ, g, k), which returns a vector X of size k
as its answer, and each element ofX is in the form of (pi, Q

i
φ, ri),

where pi ∈ P and (ri, Q
i
φ) = gφ(pi, Q), such that for any data

point p0 ∈ P \ {p1, p2, · · · , pk}, its flexible aggregate distance
to Q is greater than or equal to max{r1, r2, · · · , rk}.

Algorithm 4: IER-kNN Framework for m-FANNR

Input: G, P , Q, φlow, φhigh, g, R
Output: A vector of (p∗i , Q∗φi , d

∗
i), i ∈ [1,m]

1 d∗i , . . . , d
∗
m ←∞, H ← new priority queue

2 H.enqueue(R.root, {gεφ1
(R.root,Q), . . . gεφm(R.root,Q)})

3 while H is not empty do
4 (e, {gεφ1

(e,Q), . . . gεφm(e,Q)})← H.top()
5 H.dequeue()
6 if ∀i ∈ [1,m] : gεφi(e,Q) ≥ d∗i then
7 continue

8 if e is an R-Tree node then
9 foreach R-Tree entry ê under e do

10 H.enqueue(ê, {gεφ1
(ê, Q), . . . gεφm(ê, Q)})

11 else
12 for i = 1→ m do
13 (Qeφi , d

e
i)← gφi(e,Q)

14 if de < d∗ then
15 p∗i ← e, d∗i ← de, Q∗φi ← Qeφi

Obviously, it is unnecessary for Qpiφ to be the same, where
i = 1, 2, · · · , k. With some minor modifications, most of the
algorithms presented above can be easily adapted to answer the
k-FANNR query. Now we take the Exact-max algorithm as an
example to illustrate how to answer a k-FANNR (more extension
examples, such as R-List algorithm and IER-kNN framework, can
be found in [31]).

The Exact-max Algorithm. For the k-FANNR problem, we
should expand the paths until k different counters reach φ|Q|.
Then, we can terminate the search routine and return the k
corresponding query nodes and their flexible distances as the final
answer.

Remark 2. As for the APX-max algorithm, it is unclear how to
guarantee the approximation bound for the k-FANNR, and we
leave it as an open problem in our future work.

5.1.2 k-KFANNR

Like k-FANNR query, we can regard k-KFANNR as a special case
of k-KFANNR when k is 1, so it is trivial to define k-KFANNR
based on Definition 3. Note that only the Dijkstra-based algorithm
and IER-kNN framework are able to solve KFANNR, we now take
the IER-kNN framework as an example to show the extension.

The IER-kNN Framework. We maintain a priority queue which
is sorted by the flexible aggregate distance in ascending order.
Instead of comparing gεφ(e,Q) with the smallest flexible aggregate
distance, we compare it with the k-th smallest flexible aggregate
distance d in the priority queue. If gεφ(e,Q) is larger than or equal
to d, we can terminate the algorithm and return the priority queue
as the k-KFANNR answer.

5.2 The Multiple FANNR (resp., KFANNR)

Different from the FANNR’s top-k extension, m-FANNR means
the multiple flexible aggregate nearest neighbor queries on road
networks. This definition is mainly motivated by the consensus
query [34]. Given a positive integer m (≤ |Q|), the consensus

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

query returns objects in P that minimize the aggregate distance
for query subsets with sizes in the range [m, |Q|]. In fact, the
consensus query is a special case of our multiple FANNR because
we can specify both upper and lower bounds of the size of flexible
subset of Q while only the lower bound can be specified in the
consensus query.

Definition 4 (m-FANNR query). The input of an m-FANNR
query is a six-tuple (G,P,Q, φlow, φhigh, g), where 0 < φlow ≤
φhigh ≤ 1, which returns a vector X of size (φhigh|Q| −
φlow|Q| + 1) as its answer, and each element in X is the result
of an FANNR query whose flexibility parameter is φi, where
φi = φlow|Q|+i−1

|Q| , and i = 1, 2, · · · , φhigh|Q| − φlow|Q|+ 1.

Remark 3. It is trivial to define m-KFANNR if we add the
keyword-aware distance based on m-FANNR, and their modifica-
tions on implementation are quite similar to each other. Therefore,
we only discuss m-FANNR in the following.

A most straightforward approach to the m-FANNR query is
to run (φhigh|Q| − φlow|Q| + 1) times FANNR with different
flexibility parameters. In other words, it has to access P through
(φhigh|Q| − φlow|Q| + 1)-passes. Fortunately, with a few mod-
ifications, all proposed methods can answer it through only one-
pass over P . In the following, we use the IER-kNN framework to
illustrate it.

The IER-kNN Framework. Let m = φhigh|Q| − φlow|Q|+ 1.
We maintain an m-element vector of tuples and each tuple is in
the form of (p∗i , Q

∗
φi
, d∗i) as final results. The element of priority

queue H is in the form of (e, {gεφ1
(e,Q), . . . , gεφm(e,Q)}). Note

that it is difficult to determine the best way to sort H here. In this
paper, we adopt a heuristic sorting method. To be specific, H is
sorted by gεφm(e,Q) in ascending order. Algorithm 4 shows the
modified implementation, and it shares the similar procedure with
Algorithm 1. If for every i ∈ [1,m], gεφi(e,Q) ≥ d∗i holds true,
we can prune the entry e (lines 6-7) safely.

Note that Algorithm 4 will not add extra overhead for gεφ (line
10) because the previous gεφ in Algorithm 1 will also traverse the
Q. Similarly, the for-loop (lines 12-15) can also be achieved by
one-pass over Q (or just more expansions if gφ is incremental).

6 EXPERIMENTS

6.1 Setup

We implemented all the algorithms mentioned in this paper by
standard C++, and executed our experiments on a Linux machine
with dual 6-core Intel Xeon E5-2620 processors at 2.00 GHz
and 64 GB DDR3 RAM. All of our road network datasets come
from the real word1. Note that the original datasets have some
errors, such as unconnected components or self-loops, and we
have cleaned it up at the preprocessing stage. We show them in
Table 4, and use the NW as our default road network.

Given a road network, we focus on several key factors that
generate P , and Q, as well as key parameters that affect FANNR,
KFANNR and their extensions. The default values are in bold.
Note that for simplicity, we set φlow to 0.1 for m-FANNR (resp.,
m-KFANNR), and thus use different values to vary m, which is
bijective to a φhigh.

Parameters for P and Q.

1. http://www.dis.uniroma1.it/challenge9/download.shtml

TABLE 4
Road network datasets

Name Description # nodes # edges
DE Delaware 48,812 119,004
ME Maine 187,315 412,352
COL Colorado 435,666 1042,400
NW Northwest USA 1,089,933 2,545,844

E Eastern USA 3,598,623 8,708,058
CTR Central USA 14,081,816 33,866,826
USA Full USA 23,947,347 57,708,624

• d (the density of P): [0.0001, 0.001, 0.01, 0.1, 1.0];
• A (the coverage ratio of Q): [1%, 5%, 10%, 15%, 20%];
• M (the size of Q) [64, 128, 256, 512, 1024];
• C (the number of clusters of Q): [1, 2, 4, 6, 8].

Parameters for Queries.

• φ (the flexibility parameter): [0.1, 0.3, 0.5, 0.7, 1.0];
• α (the weight of road network distance): [0.1, 0.3, 0.5, 0.7,

1.0];
• k (the top-k parameter of k-FANNR and k-KFANNR): [1,

5, 10, 15, 20];
• m (the multiple parameter of m-FANNR and m-

KFANNR): [1, 25, 50, 75, 95].

Although all of our underlying road networks are from the real
world, we can use d, A, M and C to generate synthetic P and Q.
Besides the synthetic datasets, we also use some real-word POIs as
P and Q directly. In what follows, we summarize the generation
methods of P and Q.

• Synthetic uniform P : Parameter d reflects the ratio of
the size of P to the size of nodes in the whole graph (i.e.,
|P |/|V |). Given a density, P is generated randomly on the
road network.

• Synthetic uniform Q: Parameter A reflects aggregation
degree of the query nodes in Q. We first randomly select a
node in V as a source node (i.e., seed node), and calculate
the shortest path distances from it to all other nodes in V .
We denote the maximum one as the radius of G. Next, we
randomly choose M nodes from G, whose distances to the
seed node are no more than A × radius. We assume the
size of nodes in such region is always larger than or equal
to M , and if there is no enough objects in the region, we
simply expand outward until the size reaches M .

• Synthetic clustered Q: In some scenarios, the query
points are not uniformly distributed. Some locations, such
as schools, often occur in clusters. After we determine a
region by A on the road network, we select C central
nodes as seeds in the selected region, and choose M/C
nodes in the vicinity of each seed by expanding from it.

• Real-world POIs: We use the real-word data from [25],
which is extracted from OpenStreetMap (OSM)2. We only
show the POIs within NW since our default road network
is NW (see Table 5). We choose FF and PO POIs as our P
since their densities are equal to our default density (i.e.,
0.001). Note that there is no any type of POIs whose size
is equal to our default size (i.e., 128), and hence we select
the POIs whose sizes are near to 128. In this way, we
choose HOS and UNI POIs as our Q.

2. http://www.openstreetmap.org

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 5
Real world POIs in NW

Name Description # nodes Density
PA Parks 5,098 0.005
SC Schools 4,441 0.004
FF Fast Food 1,328 0.001
PO Post Offices 1,403 0.001

HOT Hotels 460 0.0004
HOS Hospitals 258 0.0002
UNI Universities 95 0.00009
CH Courthouses 49 0.00005

As for the keyword information of P and Q, we embed textual
descriptions extracted from OSM into POIs in Table 5, and each
description has been simplified by the bag-of-words model.

By default, both P and Q are generated uniformly. In order
to minimize the randomness, we average the results of algorithms
over 100 queries. In addition, the performances of R-tree and G-
tree are dependent on the value of fanout f . In our experiments,
we set f to 4. As for G-tree, its performance also depends on the
maximum number of points in a leaf node τ ; we set τ to 64 (DE),
128 (ME, COL), 256 (NW, E), and 512 (CTR, USA) respectively.

As verified in Section 6.6.3, the running time of sum-FANNR
(resp., sum-KFANNR) is very close to that of max-FANNR (resp.,
max-KFANNR) given the same input. Therefore, for universal
methods, we only show the results of max-FANNR and max-
KFANNR in terms of query efficiency.

10−4 10−3 10−2 10−1 100
d

10−2
10−1

100
101

102
103
104
105

ru
nn
in
g
tim

e
(s
ec
o
d)

(a) GD with differe t
 gϕ impleme tatio s

10(4 10(3 10(2 10(1 100
d

10(3

10(2

10(1

100

101

102

103

(b) IER-kNN with different
 gϕ implementations

A *

IER-A *
INE
PHL

IER-PHL
GTree

IER-GTree

Fig. 3. Efficiency of algorithms implemented by different gφ

6.2 Evaluation for Different Implementations of gφ
Recall Section 3.3, we mentioned a family of algorithms with
different implementations of gφ when discussing the IER-kNN
framework. In fact, we can also generate generalized Dijkstra-
based algorithms (denoted as GD) derived from the algorithm in
Section 3.1, since the Dijkstra here can be regarded as INE and it
can be replaced with other gφ implementations.

We vary the density of P (i.e., d), and present the experimental
results of GD and IER-kNN which are implemented by different
gφ routines. An important finding from Fig. 3(a) is that there
is a linear (or sub-linear) relationship between the running time
and density d. In addition, it can be found that GD with some
implementations (e.g., A∗, IER-A∗, and INE) could be infeasible,
if the underlying road network index is unavailable. Furthermore,
by comparing Fig. 3(a) and Fig. 3(b), it can be seen that, given
the same implementation of gφ, IER-kNN outperforms GD by 1-
3 orders of magnitude, demonstrating that IER-kNN framework is

much more efficient. It can also be seen from Fig. 3 that PHL and
IER-PHL always preform best while A∗ and IER-A∗ are the worst
among these different implementations. Since PHL (or IER-PHL)
is the most efficient implementation of gφ, we choose PHL as the
default implementation of gφ in the latter experiments.

6.3 Evaluation for Query Efficiency
6.3.1 FANNR

We vary parameters d and φ, and the experimental results of
different algorithms’ running time (excluding the construction
time of index) are shown in the following.

10−4 10−3 10−2 10−1 100
d

10−3
10−2
10−1
100
101
102
103

ru
nn
in
g
tim

e
(s
ec
on
d) GD

IER-kNN
R-List

Exact-max
APX-sum

(a) All FANNR algorithms

10−4 10−3 10−2 10−1 100
d

100

101

102

103

104

105

ru
nn

in
g
tim

e
(s
ec
on

d) GD R-List

(b) R-List and GD

Fig. 4. Efficiency when varying d

Varying d. We report the results by varying the density of P .
Fig. 4(a) shows the efficiency of all FANNR algorithms presented
in this paper. With the increase of d, IER-PHL performs best at
first, and APX-sum outperforms any other method when d is larger
than 0.01. We can validate the stability of APX-sum when varying
d, and this is because APX-sum depends much on Q instead of
P . Both APX-sum and Exact-max have the tendency that they
cost less time when d is larger. This is because the expanding
routine from Q to P is faster when the data points is denser.
The reason why Exact-max decreases first and then increases is
due to the trade-off between the expanding overhead and the
convenience brought by d. To be specific, a larger d will lead
to a higher expanding overhead in general, while it will also make
the termination condition to be fulfilled earlier.

On the other hand, we can also observe that GD performs even
better than R-List and Exact-max when d is relatively small. This
is mainly because default gφ (i.e., PHL) shadows the advantages
of R-List and Exact-max. In what follows, we will use two more
evaluations to investigate it.

To begin with, we evaluate the performance of GD and R-List
when gφ is implemented with INE. Fig. 4(b) reports the results.
We can see that R-List always outperforms GD, and the latter
cannot be finished within a reasonable time if d is larger than
10−2. There is not doubt that GD is infeasible when the road
network index is unavailable (e.g., road networks in online games
maps).

Next, we show the experimental results of Exact-max imple-
mented by different gφ routines in Table 6. We can see that differ-
ent gφ implementations have little influences on the efficiency of
Exact-max. In other words, Exact-max performs quite well even if
there is no underlying road network index. For example, if gφ is
implemented by A∗ and d = 0.0001, Exact-max outperforms GD
by 2 orders of magnitude.

Varying φ. Now we study the effect of φ, i.e., the flexibility
parameter. There is an obvious positive correlation with φ. This
is reasonable because the larger φ means that more destinations

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

1 5 10 15 20
A (%)

10−3

10−2

10−1

100

101

102

%(
nn
in

tim

e
(s
ec
on
d)

(a) Va%)in A

128 256 512 1024
M

10−3

10−2

10−1

100

101

102

(b) Va%)in M

1 2 4 6 8
C

10−3

10−2

10−1

100

101

102

(c) Va%)in C

0.1 0.3 0.5 0.7 1.0
ϕ

10−3

10−2

10−1

100

101

(d) Va%)in ϕ

A * IER-A * INE PHL IER-PHL GTree IER-GTree

Fig. 5. Efficiency of IER-kNN when varying A, M , C and φ

1 5 10 15 20
A (%)

10−3

10−2

10−1

100

101

102

ru
nn

 n
g

t m
e

(%
ec

on
d)

(a) Var) ng A

128 256 512 1024
M

10−3

10−2

10−1

100

101

102

(b) Var) ng M

1 2 4 6 8
C

10−3

10−2

10−1

100

101

(c) Var) ng C

0.1 0.3 0.5 0.7 1.0
ϕ

10−3

10−2

10−1

100

101

(d) Var) ng ϕ

GD IER-PHL R-List Exact-max APX-sum

Fig. 6. Efficiency of all FANNR algorithms when varying A, M , C and φ

TABLE 6
Efficiency of Exact-max with different gφ (second)

gφ

d 0.0001 0.001 0.01 0.1 1

A∗ 7.26 1.24 0.65 0.69 2.05
IER-A∗ 7.07 1.05 0.47 0.50 1.79

INE 6.81 0.94 0.35 0.38 1.62
PHL 7.56 1.10 0.36 0.41 1.67

IER-PHL 7.59 1.07 0.36 0.40 1.68
GTree 6.77 0.92 0.34 0.37 1.60

IER-GTree 6.78 0.93 0.34 0.38 1.64

need to be visited. For IER-kNN, we can find that A∗ benefits a lot
from R-tree when φ is relatively small as shown in Fig. 5(d). This
implies that larger φ incurs less pruning ability in terms of R-tree.
We can also find that R-List and Exact-max are more effected by
φ as shown in Fig. 6(d). In addition, the reason why GD performs
better than R-List and Exact-max can be found above.

6.3.2 KFANNR

We use use default d and M to generate P and Q from the
real word POIs in Table 5. As for the implementation of gφ, we
adopt the keyword-aware INE (mentioned in Section 3.1.2) and
PHL, respectively. Beside the GD, we evaluate another baseline
algorithm. It uses pure R-tree in IER-kNN framework, denoted
as RB (R-tree baseline), and only considers spatial information
(i.e., let textual similarity be 1) while accessing tree nodes. Note
that we denote the keyword-aware IER-kNN framework as IR
for simplicity. Hence, we have six possible combinations: GD-
INE, GD-PHL; RB-INE; RB-PHL; IR-INE, IR-PHL. We show the
results in Fig. 7.

Varying α. We report the results by varying the weight of road
networks distances (recall Equation 2). As shown in Fig. 7(a),
IR-PHL performs best among these algorithms. Note that GD-
INE and RB-INE cannot be finished within a reasonable time

0.1 0.3 0.5 0.7 1.0
α

10−1

100

101

102

103

104

ru
nn

in
g

 im
e

(s
ec

on
d) GD-INE

GD-PHL
RB-INE

RB-PHL
IR-INE
IR-PHL

(a) Varying α

0.1 0.3 0.5 0.7 1.0
ϕ

10−1

100

101

102

103

104

ru
nn

in
g

 im
e

(s
ec

on
d) GD-PHL

RB-PHL
IR-INE
IR-PHL

(b) Varying φ

Fig. 7. Efficiency of KFANNR when varying α and φ

(generally, they take more than one hour), and only IR-INE is
feasible for any α without PHL index. We can also verify that R-
tree has a quite poor pruning ability if α 6= 1. With the increase of
α, the weight of road network distance gains more importance, so
the running time of GD-INE and RB-INE drops accordingly. On
the other hand, we can find that any PHL version is insensitive to
α. When α = 1.0, the running time of IR-PHL (IR-INE) equals to
that of RB-PHL (RB-INE), and this is because IR-tree and R-tree
have the same pruning ability if only the spatial information is
considered.

Varying φ. Since GD-INE and RB-INE cannot return the answer
within a reasonable time (given the default α = 0.5), we do
not display them in Fig. 7(b). Like varying α, IR-INE is only
feasible algorithm which can deal with any φ without PHL index.
We can also find that R-tree would degenerate into baseline due
to its ineffective pruning ability for textual information. With the
increase of φ, the running time of GD-PHL, RB-PHL and IR-PHL
is stable but has a slight increase. It is not surprising that IR-INE
has an apparent increase since larger φ means more expansions.

6.3.3 Top-k and Multiple FANNR

Due to the space constraint, we only show the results of k-FANNR
and m-FANNR here.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

10−4 10−3 10−2 10−1 100
d

1.000

1.004

1.008

1.012

1.016

ap
pr
ox

im
at
io
n
ra
tio

(a) Varying d

1 5 10 15 20
A (%)

1.000

1.002

1.004

1.006

ap
pr
ox

im
at
io
n
ra
tio

(b) Varying A

128256 512 1024
M

1.000

1.004

1.008

1.012

ap
pr
ox

im
at
io
n
ra
tio

(c) Varying M

1 2 4 6 8
C

1.00

1.01

1.02

1.03

1.04

1.05

ap
pr
ox

im
at
io
n
ra
tio

(d) Varying C

0.1 0.3 0.5 0.7 1.0
ϕ

1.0000

1.0005

1.0010

1.0015

1.0020

ap
pr
ox

im
at
io
n
ra
tio

(e) Varying φ

Fig. 8. Approximation quality of APX-sum

1 5 10 15 20
k

10−3

10−2

10−1

100

101

102

ru
nn

in
g
tim

e
(s
ec
on

d) GD
R-List

IER-kNN
Exact-max

(a) Varying k

1 25 50 75 90
m

0
50

100
150
200
250
300

ru
nn

in
g
tim

e
(m

illi
se

co
nd

)
BM IER-kNN

(b) Varying m

Fig. 9. Efficiency of k-FANNR and m-FANNR

k-FANNR. Fig. 9(a) shows the results. It is obvious that the query
time will increase when k grows except for the GD algorithm.
The stability of GD is owned to the fact that it mainly depends
on P and the choice of gφ’s implementation, while other factors
rarely have influence on it. In addition, similar to Fig. 4(b), this
figure also shows us that GD is even better than R-List and Exact-
max. The underlying reason is the same as to that mentioned in
Section 6.3.1.

m-FANNR. The experimental results are shown in Fig. 9(b). The
baseline algorithm is the m times FANNR queries, and we denote
it as BM. Note that IER-kNN here means the implementation of
Algorithm 4. It is obvious that BM is nearly linear proportional
to m since it requires m-passes over P . In contrast, we can find
that IER-kNN is quite stable and this is because the advantage of
one-pass over P can boost the query efficiency.

6.4 Approximation Quality of APX-sum
Fig. 8 reports the approximation quality of APX-sum algorithm.
It can be seen that the approximation ratio of APX-sum is always
less than 1.2 in all experimental cases (i.e., vary d, A, M , C
and φ). The y-error in error bars is the standard deviation. Given
its excellent approximate quality and other features (e.g., efficient
even if index-free), APX-sum is a promising algorithm when an
approximate answer is acceptable or it is difficult to build a road
network index.

6.5 Real World Data of FANNR

Query Efficiency. As shown in Fig. 10(a), the performance of
different FANNR methods on real world POIs has the similar
characteristics with the evaluation using synthetic data. For ex-
ample, IER-kNN performs best among all these methods, and GD
is even better than R-List and Exact-max. The reasons for these
phenomena are consistent to that for synthetic data.

Approximation Quality of APX-sum. Fig. 10(b) reports the
results. We can find that the APX-sum also has a very good

approximation quality on the real world POIs. The approximation
ratio is always less than 1.1 for all cases. This further demonstrates
the effectiveness of our APX-sum algorithm.

FF/HOS FF/UNI PO/HOS PO/UNI
POI data (P/Q)

10 3

10 2

10 1

100

101

102

ru
nn

in
g

tim
e

(s
ec

on
d) GD

IER-kNN
R-List

Exact-max
APX-sum

(a) Efficiency

Approximation ratio

FF/HOS 1.003

FF/UNI 1.0

PO/HOS 1.004

PO/UNI 1.076

(b) Approximation quality

Fig. 10. Evaluation of FANNR on real world data

6.6 Other Results
6.6.1 Query Efficiency When Varying A, M , C

Varying A. Now we study the efficiency with different coverage
ratios of Q. We show the results in Fig. 5(a) and Fig. 6(a). Clearly,
APX-sum is stable when we vary A. This validates that APX-sum
has little dependence on Q’s sparsity. As for R-List and Exact-
max algorithms, their performances are bad if Q is sparse. This is
because a sparer Q often leads to a slower expanding from Q to
P . We can also find that the GD algorithm is stable for different
coverage ratios. This is not surprising, as the GD method depends
much on P . Finally, R-List and Exact-max are not better than GD
here, and this is also verified by Fig. 4(a) when d = 0.001.

Varying M . We study the efficiency when varying M (i.e., the
size of Q). The results are shown in Fig. 5(b) and Fig. 6(b). We
can clearly find that APX-sum increases with the increase of M ,
and this further verifies that APX-sum depends much on the size
of Q. As for IER-kNN methods shown in Fig. 5(b), they have the
tendency that the larger M leads to the worse efficiency. Note that
the running time decreases first (from M = 64 to M = 256) for
most IER-kNN methods. This is due to the trade-off between M
and the sparsity of Q. To be specific, given a coverage ratio of Q,
the smaller M incurs a larger sparsity.

Varying C . We evaluate the effect of C (i.e., the size of clusters).
Clearly, the larger C leads to the worse performance in general,
and this tendency is more obvious for “expanding-based” methods
in Fig. 5(c). When C is larger enough, the performance will be
stable and the running time will approximate to the value when
Q is generated uniformly. For example, the running time of IER-
A∗ is 2.16 seconds if Q is generated uniformly, while the cost is
2.37 seconds when C = 8. In addition, as shown in Fig. 6(c),
R-List and Exact-max are more affected by C due to their similar
mechanisms.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

6.6.2 Index Cost
Here we measure the construction time and size of the road
networks’ index structures used in our algorithms. The different
index techniques have been presented in Table 2.

G-tree and PHL. Fig. 11 shows the index size and the construc-
tion time of G-tree and PHL for different datasets. Generally, G-
tree costs less storage than PHL. Note that PHL can only build
indexes for the first 5 datasets, before exceeding the memory
capacity. This experimental result indicates that for these two in-
dexes, G-tree could be much suitable for very large road networks
(e.g. USA), since PHL fails to build index for CTR and USA
in a single commodity machine. One can conclude that, as for
choosing between G-tree and PHL to build a road network index,
the major considerations are the running efficiency and memory
capacity rather than the index construction time. This finding is
essentially consistent to that in [25].

DE ME COL NW E CTR USA
dataset

100

101

102

103

104

in
de

x
siz

e
(M

B)

G-tree PHL

(a) Index size of G

DE ME COL NW E CTR USA
dataset

100

101

102

103

104

105

tim
e
(s
ec
on
d)

G-tree PHL

(b) Construction time of G

Fig. 11. Index cost of different road networks

Different Keyword Encodings. We use the string set itself and
the roaring bitmap to encode the textual information, and denote
them as String and Bitmap respectively. The comparison results
are shown in Fig. 12. Firstly, we can find both the index size and
the construction time are proportional to the dataset size. Secondly,
it is not surprising that Bitmap costs less space than String in terms
of index size. Finally, Bitmap is also superior to String in terms of
construction time, and this is because the union operation in the
former is more efficient than that in the latter, when constructing
the corresponding index.

210 211 212 213 214

size

0

1000

2000

3000

4000

5000

in
de

x
siz

e
(K
B)

Bitmap
String

(a) Index size

210 211 212 213 214

size

0
50

100
150
200
250
300
350

tim
e
(m

illi
se

co
nd

) Bitmap
String

(b) Construction time

Fig. 12. IR-tree cost w.r.t different textual encodings

6.6.3 Evaluation for Different Aggregate Functions

TABLE 7
Running time of FANNR (second)

max-FANNR 3 7 4 6 4 4 20 23 5 5
sum-FANNR 3 7 3 7 5 5 22 25 6 5

TABLE 8
Running time of KFANNR (second)

max-KFANNR 0.31 0.29 0.28 0.3 0.31 0.29 0.31 0.3 0.29 0.29
sum-KFANNR 0.25 0.27 0.18 0.21 0.27 0.31 0.21 0.23 0.28 0.29

As noted in Section 6.1, given d, A, M , C , φ and α, as for
universal methods, we only report results for g = max. Instead,
in Table 7, given the default inputs, we display the first 10 raw
running time records of IER-kNN for FANNR. Similarly, we
also show the first 10 raw running time records of IER-kNN for
KFANNR in Table 8. It can be seen from these two evaluations
(i.e., Tables 7 and 8) that there is a trivial difference between
the corresponding results. This essentially implies that different
aggregate functions (i.e., g) have little influences on running time.

7 CONCLUSION

In this paper, we studied an interesting problem of flexible aggre-
gate nearest neighbor queries on road networks (FANNR) and its
keyword-aware variant (KFANNR). We proposed a series of uni-
versal methods to solve this problem, including a Dijkstra-based
algorithm, R-List and IER-kNN algorithm framework. Combined
with the state-of-the-art shortest path and keyword encoding
techniques, the proposed algorithms can achieve excellent per-
formance. On the other hand, our specific approaches for FANNR
(Exact-max and APX-sum) sacrifice some generalities, but they are
easier to implement and much more efficient than those universal
approaches especially when the road networks are index-free.
Also, we successfully adapted most of the proposed algorithms
to answer the extended k-FANNR (k-KFANNR) and m-FANNR
(m-KFANNR) queries. Finally, we conducted a comprehensive
experiments, validating the efficiency and effectiveness of our
proposed approaches.

ACKNOWLEDGMENTS

This work (Bin Yao) was supported by the NSFC (U1636210,
61729202, 61922054, 61872235, 61832017), and The Na-
tional Key Research and Development Program of China
(2018YFC1504504). Ma was supported in part by the NSFC
(61925203, 61421003) and Beijing Advanced Innovation Center
for Big Data and Brain Computing. Gao was supported by NSFC
(61872238) and the Shanghai Science and Technology Fund
(17510740200). This work was also supported by the NSFC
(U1811264, 61972425, 61772570), Pearl River S&T Nova Pro-
gram of Guangzhou (201806010056), and Guangdong NSF for
Distinguished Young Scholar (2018B030306025).

REFERENCES

[1] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest
neighbor queries,” in ICDE. IEEE, 2004, pp. 301–312.

[2] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest
neighbor queries in spatial databases,” ACM TODS, vol. 30, no. 2, pp.
529–576, 2005.

[3] F. Li, B. Yao, and P. Kumar, “Group enclosing queries,” IEEE TKDE,
vol. 23, no. 10, pp. 1526–1540, 2011.

[4] M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor
queries in road networks,” IEEE TKDE, vol. 17, no. 6, pp. 820–833,
2005.

[5] D. Yan, Z. Zhao, and W. Ng, “Efficient algorithms for finding optimal
meeting point on road networks,” PVLDB, vol. 4, no. 11, 2011.

[6] M. Safar, “Group k-nearest neighbors queries in spatial network
databases,” JGS, vol. 10, no. 4, pp. 407–416, 2008.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[7] L. Zhu, Y. Jing, W. Sun, D. Mao, and P. Liu, “Voronoi-based aggregate
nearest neighbor query processing in road networks,” in SIGSPATIAL.
ACM, 2010, pp. 518–521.

[8] Y. Li, F. Li, K. Yi, B. Yao, and M. Wang, “Flexible aggregate similarity
search,” in SIGMOD. ACM, 2011, pp. 1009–1020.

[9] F. Li, K. Yi, Y. Tao, B. Yao, Y. Li, D. Xie, and M. Wang, “Exact and
approximate flexible aggregate similarity search,” VLDBJ, vol. 25, no. 3,
pp. 317–338, 2016.

[10] S. Ahmad, R. Kamal, M. E. Ali, J. Qi, P. Scheuermann, and E. Tanin,
“The flexible group spatial keyword query,” in Australasian Database
Conference. Springer, 2017, pp. 3–16.

[11] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” in SIGIR. ACM, 1998, pp. 275–281.

[12] R. Zhong, G. Li, K.-L. Tan, and L. Zhou, “G-tree: An efficient index for
knn search on road networks,” in CIKM. ACM, 2013, pp. 39–48.

[13] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[14] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100–107, 1968.

[15] N. Jing, Y.-W. Huang, and E. A. Rundensteiner, “Hierarchical encoded
path views for path query processing: An optimal model and its perfor-
mance evaluation,” IEEE TKDE, vol. 10, no. 3, pp. 409–432, 1998.

[16] S. Jung and S. Pramanik, “An efficient path computation model for
hierarchically structured topographical road maps,” IEEE TKDE, vol. 14,
no. 5, pp. 1029–1046, 2002.

[17] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata, “Fast shortest-
path distance queries on road networks by pruned highway labeling,” in
ALENEX. SIAM, 2014, pp. 147–154.

[18] H. Bast, S. Funke, and D. Matijević, “Transit: ultrafast shortest-path
queries with linear-time preprocessing,” in 9th DIMACS Implementation
Challenge—Shortest Path, 2006.

[19] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,” in
Experimental Algorithms. Springer, 2008, pp. 319–333.

[20] K. C. Lee, W.-C. Lee, B. Zheng, and Y. Tian, “Road: A new spatial
object search framework for road networks,” IEEE TKDE, vol. 24, no. 3,
pp. 547–560, 2012.

[21] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in VLDB, 2004, pp. 840–851.

[22] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong, “G-tree: An efficient and
scalable index for spatial search on road networks,” IEEE TKDE, vol. 27,
no. 8, pp. 2175–2189, 2015.

[23] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
ACM TODS, vol. 24, no. 2, pp. 265–318, 1999.

[24] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in SIGMOD record, vol. 24, no. 2. ACM, 1995, pp. 71–79.

[25] T. Abeywickrama, M. A. Cheema, and D. Taniar, “K-nearest neighbors
on road networks: a journey in experimentation and in-memory imple-
mentation,” PVLDB, vol. 9, no. 6, pp. 492–503, 2016.

[26] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-k nearest
keyword search on large graphs,” PVLDB, vol. 6, no. 10, pp. 901–912,
2013.

[27] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering the
m-closest keywords query,” in SIGMOD. ACM, 2015, pp. 405–418.

[28] D.-W. Choi, J. Pei, and X. Lin, “Finding the minimum spatial keyword
cover,” in ICDE. IEEE, 2016, pp. 685–696.

[29] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp. 337–348, 2009.

[30] J. Shi, D. Wu, and N. Mamoulis, “Top-k relevant semantic place retrieval
on spatial rdf data,” in SIGMOD. ACM, 2016, pp. 1977–1990.

[31] B. Yao, Z. Chen, X. Gao, S. Shang, S. Ma, and M. Guo, “Flexible
aggregate nearest neighbor queries in road networks,” in ICDE. IEEE,
2018, pp. 761–772.

[32] N. Bruno and H. Wang, “The threshold algorithm: From middleware
systems to the relational engine,” IEEE TKDE, vol. 19, no. 4, pp. 523–
537, 2007.

[33] D. Xie, F. Li, and J. M. Phillips, “Distributed trajectory similarity search,”
PVLDB, vol. 10, no. 11, pp. 1478–1489, 2017.

[34] M. E. Ali, E. Tanin, P. Scheuermann, S. Nutanong, and L. Kulik, “Spatial
consensus queries in a collaborative environment,” TSAS, vol. 2, no. 1,
p. 3, 2016.

Zhongpu Chen is currently a PhD candidate in
Department of Computer Science and Engineer-
ing at Shanghai Jiao Tong University, China. His
research interests include distributed analytics
systems, big data, spatial databases, and index-
ing techniques for multi-dimensional data.

Bin Yao is an associate professor in Department
of Computer Science and Engineering at Shang-
hai Jiao Tong University. He obtained his PhD in
computer science from the Department of Com-
puter Science at Florida State University in 2011.
His research interests include management and
indexing of large databases, query processing
in spatial and multimedia databases, string and
keyword search, and scalable data analytics.

Zhi-Jie Wang received the PhD degree in com-
puter science from Shanghai Jiao Tong Uni-
versity, and did a postdoc at The Hong Kong
Polytechnic University. He is currently an Asso-
ciate Professor at the College of Computer Sci-
ence, Chongqing University (CQU). Before join-
ing CQU, he was a Research Associate Profes-
sor at the Sun Yat-Sen University. His research
interests include big data, artificial intelligence,
data mining, and distributed systems. He is a
member of CCF, IEEE, and ACM.

Xiaofeng Gao is an associate professor of Com-
puter Science and Engineering, Shanghai Jiao
Tong University. She received the PhD degree
from the University of Texas at Dallas, USA, in
2010. Her research areas are data engineering,
database management, wireless network, and
optimization algorithms.

Shuo Shang is a research scientist at Extreme
Computing Research Center, King Abdullah Uni-
versity of Science and Technology. He obtained
his Ph.D. from The University of Queensland in
2012. His research interests include big data
management, spatial-temporal databases, ur-
ban computing, spatial trajectory computing, and
location based services.

Shuai Ma is a professor at School of Computer
Science and Engineering, Beihang University.
He obtained his PhD degree from Peking Uni-
versity in 2004 and The University of Edinburgh
in 2010. His research interests include database
theory and systems, graph and social data anal-
ysis, and data cleaning.

Minyi Guo is a Zhiyuan Chair Professor at
Shanghai Jiao Tong University. He received the
PhD degree in information science from Uni-
versity of Tsukuba in 1998. His research inter-
ests include parallel and distributed processing,
parallelizing compilers, cloud computing, perva-
sive computing; software engineering, embed-
ded systems, green computing, and wireless
sensor networks.

