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Abstract—In recent years, spatial-keyword queries have attracted much attention with the fast development of location-based
services. However, current spatial-keyword techniques are disk-based, which cannot fulfill the requirements of high throughput and low
response time. With the surging data size, people tend to process data in distributed in-memory environments to achieve low latency.
In this paper, we present the distributed solution, i.e., Skia (Spatial-Keyword In-memory Analytics), to provide a scalable backend for
spatial-textual analytics. Skia introduces a two-level index framework for big spatial-textual data including: (1) efficient and scalable
global index, which prunes the candidate partitions a lot while achieving small space budget; and (2) four novel local indexes, that
further support low latency services for exact and approximate spatial-keyword queries. Skia can support common spatial-keyword
queries via traditional SQL programming interfaces. The experiments conducted on large-scale real datasets have demonstrated the
promising performance of the proposed indexes and our distributed solution.
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1 INTRODUCTION

W ITH the fast development of mobile phones and the
location-based services (LBS), a tremendous amount of

spatial-textual data has been generated, which is essentially a
set of geo-tagged text segments. Moreover, there are increasing
occasions, e.g., finding nearby places with specific keywords,
where we need to perform analytics on spatial-textual data in
both spatial and textual dimensions [1]. The requirement of such
analytics has derived various spatial-keyword queries. Generally, a
spatial-keyword query consists of a spatial predicate and complex
keyword predicates, whose goal is to find places near to the
location with similar text descriptions. Particularly, we aim to
solve four types of spatial-keyword queries that are receiving
particular attention [2], and the detailed examples are given below.

• Exact Boolean range query: Retrieve the places whose
text descriptions exactly contain the keywords “relish” and
“coffee” and whose positions are within 5km of the query
position.

• Exact Boolean kNN query: Retrieve k places nearest to
the query position whose text descriptions exactly contain
the keywords “relish” and “coffee”.

• Approximate Boolean range query: Retrieve the places
whose text descriptions contain keywords similar to “rel-
ish” and “cake” (e.g., “rakish” and “bake”) and whose
positions are within 5km of the query position.

• Approximate Boolean kNN query: Retrieve k places
nearest to the query position whose text descriptions
contain keywords similar to “relish” and “cake”.
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Note that, following prior works [3, 4], we use the edit
distance to measure string similarity in this paper.

As we know, traditional databases and spatial-textual analytics
systems are built on disk, which makes them difficult to achieve
low latency [5]. Besides, they are not able to provide high through-
put when scaling to large spatial-textual data set, since they have
been implemented in centralized environments [5]. Confronted
with the surging data and the efficient retrieval requirement, it
is natural for us to explore distributed in-memory techniques
to achieve these features (i.e., low latency, high throughput and
scalability). Furthermore, people tend to write SQL statements
to do data analytics [5, 6], and thus it is meaningful to support
spatial-keyword queries through SQL interfaces.

Spark SQL [6] is such an engine, which extends Spark (a fast
distributed in-memory computing engine) to enable us to query
structured data inside Spark programs. It also provides uniform
data access, which allows users to connect to any data source in
the same way. Recently, Xie et al. [5] presented the Simba system
which extends Spark SQL to provide in-memory spatial analytics.
However, none of existing distributed in-memory engines, e.g.,
Spark, Spark SQL and Simba, can provide native support for
spatial-keyword queries. This way, for general purpose computing
engines like Spark SQL, users have to rely on user defined
functions to process such queries, which lacks in the underlying
index optimization. Compared to the above method (i.e., using
user defined functions), a better solution could be first to filter
spatial results using Simba [1, 7], and then verify the textual
predicates on the results of spatial filtering. However, using this
solution ignores the possible pruning power of string predicates,
and thus suffers from unnecessary node visits and computing cost.

Inspired by these observations, we design and implement the
Skia (Spatial-keyword in-memory analytics) system. Skia em-
ploys a two-level index framework to efficiently process common
spatial-keyword queries. Specifically, we propose novel global in-
dexes (i.e., the BFR-Tree and GR-Tree, which are short for Bloom
filter-R-Tree and Grams-R-Tree) for big spatial-textual data. The
proposed two global indexes are both probabilistic structures for
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performing first-step filtering. They can greatly reduce the number
of candidate partitions while consuming small space budget.
Besides, we present four novel local indexes to further reduce the
query latency. The proposed BFIR-Tree combines Bloom filters
[8] with spatial index structure (e.g., R-Tree) to support spatial-
keyword queries. It aims to avoid performing exact keyword
matching in every level of the R-Tree. We further present the dy-
namic CBFIR-Tree, which enables incremental maintenance while
inheriting the powerful merit of BFIR-Tree. Moreover, previous
work did not leverage the pruning ability of infrequent keywords.
We found that infrequent keywords can greatly reduce the search
space for queries with multiple keywords, which is very common
in real-life scenarios. On top of this, we further propose the S2I-
V index structure. As is concluded by [1], textual data analysis
actually dominates spatial in most scenarios. Specifically, textual-
first indexes have showed better performance in past work [1, 2].
This insight motivates us to propose the Bed-first-Tree, which is a
textual-first index structure. Compared with previous textual-first
structures, the Bed-first-Tree is based on tightly combined scheme,
i.e, wielding the pruning ability of spatial filters and textual filters
together. Experimental results based on large-scale datasets show
that the Bed-first-Tree achieves better performance than state-
of-the-art solutions. Notice that the Bed-first-Tree can be easily
implemented based on existing B+-trees [9], which are supported
by almost all modern database systems [10]. Last but not least,
we extend Spark SQL to provide convenient SQL programming
interfaces for data analytics. Specifically, we first extend the Spark
SQL to provide new keywords (including keywords for new index
types, new predicates) for the spatial-keyword queries. We also
add new parsing rules to the Spark SQL parser so that the SQL
statements for spatial-keyword queries can be recognized and we
finally implement the execution logic to finish the execution of
these queries.

In a nutshell, our main contributions are as follows:

• We introduce four index structures, i.e., the BFIR-Tree,
CBFIR-Tree, S2I-V and Bed-first-Tree to answer four
types of spatial-keyword queries, which serve as the local
indexes in our framework mentioned below (Section 4).

• We propose the two-level index framework for spatial-
keyword queries in distributed platforms, in which the
global index structure and the four local index structures
are seamlessly integrated (Section 5).

• Based on Spark, we provide the distributed solution, which
are highly scalable, and achieve high throughput with low
latency at the same time (Section 5).

• We extend Spark SQL to provide convenient SQL pro-
gramming interfaces to perform the complex tasks with
just a few lines of SQL statements (Section 6).

• We conduct experiments on large-scale datasets to demon-
strate the superior performance of our solution (Section
7).

In the next section, we review previous related works, followed by
introducing some preliminaries (Section 3).

2 RELATED WORK
Exact spatial-keyword query: Processing exact spatial-keyword
queries has been extensively studied in recent years. Zhou et al.
[11] extended the study of keyword search to spatial databases.
They proposed two hybrid geo-textual indexes, i.e., the Inverted

file-R∗-Tree structure and R∗-Tree-Inverted file structure. Felipe et
al. [12] proposed the IR2-Tree for efficient exact spatial-keyword
queries. It integrates signature file into each node of the R-
Tree [13]. Cong et al. [14] proposed the IR-Tree that combines
spatial and inverted indexes tightly. They also use an R-Tree and
augment each node of the R-Tree with an inverted file, which
summarizes the text content of the corresponding subtree. In
addition, Rocha-Junior et al. [15] suggested an S2I index structure
which treats items differently according to their frequency. In
S2I, frequent objects are organized into an aggregated R-Tree
whereas infrequent ones are indexed by inverted lists. Different
from the works mentioned above, our work integrates the more
efficient Bloom filters into R-Tree, which has not been explored
yet. Furthermore, we address the incremental maintenance by
leveraging the dynamic Bloom filter. Last but not least, we also
explore how to group multiple query keywords during searching.

Approximate keyword search: Given a string set and a
query string, approximate keyword search tries to discover strings
similar to the query string with respect to a given distance metric.
Dozens of string similarity metrics have been proposed. Edit
distance is one of the representative metrics and has been studied
for decades [3, 4]. In this paper, we also use the edit distance to
measure string similarity. There are two types of typical methods
to solve the approximate keyword search problem: (1) the inverted
list based method [16–19], and (2) the Bed-Tree based method
[10]. The first method constructs the inverted index for n-grams
of strings, thereby one can retrieve similar candidates for the query
string and verify them later. The second method is an all-purpose
edit distance based index scheme that inherits the standard B+-
Tree structure [9]. The main idea behind Bed-Tree is to index
strings with the B+-Tree, by mapping the string domain to integer
domain. Notice that, although these works are related to ours,
they are obviously different from ours, since we are interested
in (approximate) spatial-keyword search, instead of approximate
keyword search.

Approximate spatial-keyword query: Yao et al. [7] explored
approximate spatial-keyword queries by proposing the MHR-Tree.
The MHR-Tree leverages the min-wise signatures to measure the
set resemblance of n-grams instead of storing huge amounts of n-
grams explicitly, and thus reduces a lot of space cost. Nevertheless,
it may lead to false negatives, since it is a probabilistic data struc-
ture. Alsubaiee et al. [20] suggested the LBAK-Tree to retrieve
all right answers, which has a 100% recall rate. The LBAK-Tree
augments a specific level of R-Tree nodes with approximate string
indexes, in order to get the similar candidates of the query string.
In particular, if the corresponding sub-node contains none of the
candidates (during query processing), then it is excluded. Different
from the above two structures which are extended from spatial-
based indexes, this paper proposes the Bed-first-Tree, which is
extended from the textual-based index (i.e., the Bed-Tree) to
leverages the merit of Bed-Tree.

Distributed analytics engines: Distributed in-memory com-
puting nowadays is becoming more and more popular. Apache
Spark [21] is such a fast and general engine for large-scale data
processing, based on in-memory computing. Compared to Hadoop
which is disk-oriented and batch processing, Spark can offer low
query latency and high throughput owing to distributed memory
storage and computing. These features are crucial to achieve an
interactive query style. Recently, Xie et al. [5] extended Spark
and proposed the distributed in-memory spatial analytics engine
named Simba. Simba implements a set of spatial operations (circle
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range, kNN, distance join and so on) for analyzing large spatial
data. They have experimentally proved the superior performance
of Simba, compared against other engines like SpatialHadoop
[22], SpatialSpark [23]. [24] explored distributed query processing
on multi-dimensional data with keywords, which focused on top-k
queries and thus is different from our work.

3 PRELIMINARIES

In this section, we first present the problem formulation, and
then introduce the Bloom filters, which will be employed in our
solution. For ease of reference, the frequently used notations are
summarized in Table 1.

3.1 Problem Formulation

Formally, a geo-textual datasetD contains |D| geo-textual objects.
Each object oi consists of a point ρi in the Euclidean space and a
set of strings γi. Hence, a datasetD with n points can be described
as: {(ρ1, γ1), . . . , (ρn, γn)}.

A spatial-keyword query Q consists of a spatial filter Qs and
a textual filter Qt. As for Qs, we focus on the classical circle
range query and k nearest neighbors (kNN) query. Generally, a
circle range query is defined by a pair (τ, r), in which τ is the
query point and r is the radius. A kNN query can be defined by
a pair (τ, k), where k denotes the number of nearest neighbors to
return. A textual predicate Qt can have two cases. In the case of
exact spatial-keyword queries, Qt can be simply defined as a set
of strings. Correspondingly, we can use {(s1, d1), . . . , (sn, dn)}
to describe Qt when it comes to approximate spatial-keyword
queries, where si is a query term and di is the associated edit
distance threshold; here i ∈ [1, n] and di ∈ [0, |si|].

We mainly explore four kinds of spatial-keyword queries
according to types of spatial predicates and textual predicates.
They are formally defined below.

DEFINITION 1. Exact Boolean Range Query (eBRQ): Let
dist(ρ, τ) be the Euclidean distance between points ρ and τ , an
eBRQ Q = {Qs = (τ, r), Qt} retrieves all points (denoted as
θ) in D such that,

θ = {oi ∈ D | dist(ρi, τ) ≤ r ∧Qt ⊆ γi}.

In simple terms, the eBRQ retrieves points whose text content
contains all keywords in Qt within the query region.

DEFINITION 2. Exact Boolean kNN Query (eBKQ): An
eBKQ Q = {Qs = (τ, k), Qt} retrieves a subset of points θ =
{oi ∈ D | ∀oj ∈ D − θ,Qt 6⊆ γj ∨ dist(ρj , τ) ≥ dist(ρi, τ)}
and, |θ| = k.

An eBKQ tries to retrieve k nearest neighbors of the given
point τ whose text content covers Qt.

DEFINITION 3. Approximate Boolean Range Query (a-
BRQ): Given an aBRQ Q = {Qs = (τ, r), Qt =
{(s1, d1), . . . , (sn, dn)}}, the result of Q is formulated as:
θ = {oi ∈ D | dist(ρi, τ) ≤ r ∧ (∀sl, dl ∈ Qt,∃s ∈
γi, edit(s, sl) ≤ dl)}.

In other words, an aBRQ tries to retrieve points that have
similar matching strings for every query string.

DEFINITION 4. Approximate Boolean kNN Query (a-BKQ):
An aBKQ Q = {Qs = (τ, k), Qt = {(s1, d1), . . . , (sn, dn)}}

TABLE 1: Frequently used notations

Notation Description
D geo-textual dataset
oi i-th geo-textual object of D
ρi Euclidean coordinate of oi
γi the set of keywords of oi
Q spatial-keyword query
Qs spatial predicate of Q
Qt textual predicate of Q
(τ, r) query center and corresponding query radius
k number of objects to return in eBKQ or aBKQ query
(si, di) i-th query word and corresponding edit distance threshold
dist(ρ, τ) Euclidean distance between points ρ and τ
edit(si, sj) edit distance between string si and sj
θ retrieved geo-textual objects of each query

can be concluded as: θ = {oi ∈ D | ∀oj ∈ D − θ, (∃sl, dl ∈
Qt,∀s ∈ γi, edit(s, sl) > dl)∨ dist(ρj , τ) ≥ dist(ρi, τ)} and,
|θ| = k.

The aBKQ will retrieve k nearest neighbors from the query
point τ whose text description contains similar words to each of
the query words {s1, s2, . . . , sn}.

3.2 The Bloom filters
A Bloom filter represents a set S of m elements from a universe U
by using an array of n bits (denoted as {B[1], . . . ,B[n]}), which
are initially set to 0 [8]. The Bloom filter utilizes a group H of
κ independent hash functions {h1, . . . , hκ}, which independently
maps each element in U to a random number v ∈ [1, n]. It sets the
bits B[hi(x)] to 1 for each element x ∈ S , where i ∈ [1, κ]. To
determine if an element y ∈ U exists in S , it examines whether
all the corresponding bits B[hi(y)] (i ∈ [1, κ]) are set to 1. If so,
there is a high possibility that y exists in S; otherwise, y definitely
does not exist in S .

4 SPATIAL-KEYWORD SEARCH ALGO-
RITHMS
In this section, we first introduce the static BFIR-Tree and dy-
namic CBFIR-Tree, to support exact spatial-keyword queries in
a memory-based computing environment. Then, the textual-first
S2I-V structure is introduced to further improve the performance.
Finally, we present another textual-first structure for processing
approximate spatial-keyword queries.

4.1 The BFIR-Tree
IR-Tree is a general and efficient structure for exact spatial-
keyword queries [14]. Intuitively, it maintains an inverted file for
every node in the R-Tree, and maps keywords to the corresponding
child nodes. This way, one can leverage the inverted files to filter
irrelevant child nodes and thus reduce time cost. Nonetheless, two
important observations motivate us to develop more competitive
structures: Observation 1 — The IR-Tree uses inverted files in
every level of R-Tree and thus every keyword will be stored mul-
tiple times, which incurs huge space cost; Observation 2 — The
IR-Tree performs exact textual matches in every level of R-Tree,
which is unnecessary actually. Inspired the above observations,
we present a new index structure called BFIR-Tree (Bloom Filter-
IR-Tree). Our structure inherits the merit of the IR-Tree, while
integrating the Bloom filters. It achieves high efficiency in both
time and space.
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Structure: The BFIR-Tree is somewhat similar to R-tree, yet it
has two types of nodes: (1) B-Node is a non-leaf R-Tree node and
maintains a Bloom filter index, which abstracts the corresponding
textual information in the sub-nodes. If this node passes the spatial
predicate, we use the Bloom filter to approximately check whether
this node contains the query keywords. Notice that, if one of the
query keywords is not found, the node and its corresponding sub-
trees will not be searched further. (2) I-Node is a leaf R-Tree node
which stores an inverted list mapping each keyword to the spatial-
keyword objects. Based on inverted lists, we can validate whether
the object satisfies the textual predicates, and then get final results
by computing the distance to the query point (for each passed
record in the I-Node).

Note that, the B-Nodes may introduce false positives, as the
Bloom filter is a probabilistic data structure. However, because
of its low error rate when configured well, its negative effect can
be almost neglected. In addition, multiple keywords can further
reduce the false positive probability of the BFIR-Tree. To explain,
assume the Bloom filter has indexed n elements, using k hash
functions and m bits. Let s denote the number of query keywords,
then the false positive probability can be computed as

Prfalse−positive = (1− (1− 1

m
)nk)ks ≈ (1− e

−kn
m )ks.

As an example, when m
n = 10 and k = 7, the false positive

probability is just only (0.008)s. Remark that, the I-Nodes can
guarantee the correctness of the BFIR-Tree, which means that it
has a 100% recall rate.

Construction of the BFIR-Tree: Similar to the construction
of R-Tree, we build the BFIR-Tree by applying a bottom-up
fashion until the root node is established. For a leaf node u, let
the set of points contained in u be up. We can build the invert
file for u by mapping each term t to a list of objects containing t.
Meanwhile, we collect the vocabulary of u to construct the parent
node’s Bloom filter. In contrast, for a non-leaf node p, let its child
entries be {c1, . . . , cf}, where f is the fan-out of the R-Tree and
i ∈ [1, f ]. We merge the vocabulary of each entry ci and get the
vocabulary of node p. Then, we insert each item into an initialized
Bloom filter (we will further introduce the setup of the Bloom filter
in Section 7.1). Notice that here we do not compute the union of
the children’s Bloom filters, due to following considerations: (1)
using the union style incurs more collisions for a unique bit in
the Bloom filter, and thus leads to a high error rate in high level
nodes; and (2) it needs to configure a fixed length for the Bloom
filter in each level, despite of the total size of terms.

Query algorithms via the BFIR-Tree: Consider an eBRQ
Q = {Qs = (τ, ε), Qt}, here Qt is a set of keywords. At a B-
Node, the algorithm first checks whether this node satisfies Qs,
namely the spatial condition. If it is in the query region, then for
each word in Qt, we check whether it is in the node’s Bloom
filter. A node is pruned if one of the query terms does not exist.
Otherwise, we propagate the query Q downward recursively. In
the propagation, if it finally reaches a I-Node, we map each term
to its corresponding objects list and then compute the intersection
result of these lists to get survivals.

To answer eBKQ, it can be achieved by revising R-tree
based kNN algorithm. Simply speaking, we also maintain a
priority queue, which orders objects by their distances to the query
location. Yet, we only add the objects passing textual predicates
into the queue now. Also, we dequeue the objects until we finally
get k results, or the queue becomes empty.

Note that, the BFIR-Tree avoids performing exact textual
matches each time when we visit the nodes of R-Tree. Essentially,
it prunes dissimilar child nodes first and verify the survived
candidates using exact matching, and thus is fast enough. In
addition, it avoids storing redundant textual information, and thus
reduces a lot of space cost.

4.2 The CBFIR-Tree
The BFIR-Tree developed above is space efficient and fast enough,
yet it is a static structure, as the Bloom filter cannot handle
deletions at all. The main reason is that, we cannot set the bits
from 1 to 0 straightforwardly (as these bits may also be hashed to
by other elements). To address this dilemma, we propose using the
counting Bloom filter (CBF) [8]. Compared with the traditional
Bloom filter, a major difference is that, the CBF uses a small
counter, instead of a single bit for each entry, which enables
dynamic maintenance. With the above concepts in mind, we
develop the CBFIR-Tree (known as CBF-based IR-Tree), which
can be viewed as a dynamic version of the BFIR Tree. The CBFIR
Tree is similar to the BFIR Tree, yet it augments a count filter,
which allows us to efficiently handle updates while reserving the
advantages of BFIR-Tree. Besides, to support the maintenance
algorithm of the CBFIR-Tree efficiently, we use the same size of
counting Bloom filters and the same hash functions in each level
of the CBFIR-Tree.

Compared to BFIR-Tree, the CBFIR-Tree only brings small
extra space cost. To explain, assume there are n elements inserted,
k hash functions and m counters used, the probability that any
counter is bigger or equal to j is:

Pr(max(c) ≥ j) ≤ m(
e ln 2

j
)j .

As for j = 16 (i.e., a 4-bits counter), we have

Pr(max(c) ≥ 16) ≤ 1.37× 10−15 ×m.

In this case, 4 bits are really enough as the probability of overflow
is tiny. Due to the resemblance between the CBFIR-Tree and
BFIR-Tree, we only cover the maintenance algorithm for saving
space.

Incremental maintenance algorithms: Given the object o =
(ρ, γ), we first find the leaf node l to be inserted by following the
ChooseLeaf algorithm of R-Tree [13]. There are two cases then:

• If l has room to insert the new object, i.e., no node-splits
happen, then we directly insert o into l and propagate the
keywords set γ bottom-up. In the propagation, for a leaf
node, we rebuild its inverted file by adding mappings from
each keyword in γ to the new entry. For non-leaf nodes,
we simply insert each item in γ into the corresponding
count Bloom filter.

• If node-split happens in the leaf node, We will recalculate
the inverted list for the two new nodes. Besides, there will
be a new entry added in the parent node P of these two
nodes. If the parent node P does not need to be split, we
simply insert each item in γ into the corresponding count
Bloom filter and propagate γ bottom-up. Otherwise, we
will split the node P into P1 and P2. The CBF of P1 and
P2 can be easily reconstructed from the inverted lists of
their child nodes. If the parent node of P (or nodes in the
higher level) needs to be split, we can quickly reconstruct
the counting Bloom filters by combining the their child
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…
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Fig. 1: The workflow of S2I-V when one frequent text item is
found; or otherwise, all terms are frequent

nodes’ CBFs. Notice that, we have used the same size of
CBFs, so the parent node’s CBF can be constructed by
adding each counter of the child nodes’ CBFs.

4.3 The S2I-V
It is easy to find that the above two structures are both spatial-first
ones. Besides their superiorities, they also bear some limitations
(explained later). The following facts motivate us to investigate
the textual-first structure: (1) textual data analysis actually dom-
inates spatial in most scenarios [1]; and (2) spatial-first structures
leverage string matching to prune irrelevant nodes, which may
be inefficient when encountering frequent text items (hereafter,
frequent items for short), since we have to access many nodes
(notice that a frequent item is usually owned by many nodes).
Specifically, we propose a new textual first structure here, named
S2I-V (Spatial Inverted Index Variant).

Our S2I-V structure inherits the merits of S2I [15], e.g., differ-
entiating terms with different frequency. Meanwhile, it develops
two important ideas: (1) it combines the pruning power of multiple
keywords, especially the infrequent keyword, that enables us to
search in a small candidate set; and (2) it maps frequent items to
a BFIR-Tree which is very memory efficient, thereby it costs a lot
less than the S2I structure.

Concretely, the S2I-V maps frequent items to a BFIR-Tree,
and infrequent items to an R-Tree (notice that the frequency
threshold is set manually). The S2I-V maintains a Bloom filter to
determine whether a keyword is frequent. Figure 1 vividly shows
the workflow of S2I-V. For instance, consider an eBRQ query
Q = {Qs = (τ, ε), Qt}, we first try to find an infrequent item in
Qt using the Bloom filter, and then use the corresponding R-Tree
to process the new query Qnew = {Qs = (τ, ε), Qremaining}.
As the infrequent item is owned by only a few objects, the
new query can be processed quickly. Notice that the workflow
for eBKQ is similar. As for the space cost of S2I-V structure,
although each infrequent keyword is mapped to its own R-Tree, it
is owned by limited number of spatial-textual objects and totally
the space cost of spatial part is not very huge. Next, we address
how to process single and multiple keywords queries respectively.

Single keyword query: For a single keyword µ, we directly
map µ to the corresponding R-Tree (if µ is infrequent) or BFIR-
Tree. Notice that, we here only use the spatial part. Then, we use
the circle range algorithm and kNN algorithm (performed on the
R-Tree) to get results.

Multiple keywords query: For multiple keywords Qt =
{µ1, . . . , µn}, we first find an infrequent item µi. If found, we
can process the new query in the corresponding R-Tree of µi.

cabinet

beyond canteen decorate

affair affect beyond cabinet canteen decorate decrease

R-tree List R-tree List List R-tree R-tree

MBR

Fig. 2: The Bed-first-Tree (dictionary order)

Specifically, for an eBRQ query Q, we first use the spatial con-
dition Qs to get candidates, and then verify the objects containing
the remaining keywords. Regarding the eBKQ query, we use a
priority queue ordered by distances to get the k results, which
contain the query keywords. Otherwise (i.e., if not found), we
get the corresponding BFIR-Tree for the first term and use it to
process the new query.

4.4 The Bed-first-Tree

The state-of-the-art solutions to approximate spatial-keyword
queries are all spatial-based structures. We observe that, textual
data clearly dominates spatial data in most cases [1, 2], where
textual-based indexes show better performance. Motivated by this,
we develop a new index structure, known as the Bed-first-Tree. To
understand our structure, it is necessary to give a brief introduction
on the Bed-Tree, since our structure inherits some features of Bed-
Tree.

The Bed-Tree is a general index structure for string processing
on edit distance metric, which is based on B+-Tree [10]. Com-
pared with previous techniques like coupling n-grams with in-
verted lists, Bed-Tree can support incremental updates efficiently.
Besides, previous methods store strings redundantly, and thus
leads to high space cost. Specifically, previous solution is based
on the n-grams technique, which will transform one keyword into
several n-grams and then map each n-gram to the keyword and the
record containing this keyword. So apparently, the replication of
this solution is very big. In contrast, the Bed-Tree is more memory
efficient, since it stores each keyword only once.

To index strings with the B+-Tree, the Bed-Tree applies spe-
cific transformations, mapping the string domain to integer space.
The mapping function φ first decides the string order efficiently,
which enables us to organize strings with the B+-Tree efficiently,
e.g., handling update operations such as “insert”, “delete” and etc.
Moreover, the following property enables the B+-Tree to support
approximate keyword search.

PROPERTY 1. A string order φ is lower bounding if it efficiently
returns the minimal edit distance between string q and any sl ∈
[si, sj ].

Bed-Tree stores the minimal and maximal strings smin and
smax, which represent the boundaries of any string in the Bed-Tree
with respect to the string order φ. Assuming that the strings in the
root node η are denoted as {s1, . . . , sk}, it can prune each string
interval in {(smin, s1), (s1, s2), . . . , (sk−1 , sk), (sk, smax )}
by computing its minimal edit distance to the query keyword. For
a survived string interval, it visits the corresponding child node
and recursively traverse down the tree until reaching leaf nodes.
In this case, it explicitly computes the edit distances between the
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Algorithm 1: aBRQuery

Input : A query Q = {Qs, Qt} where Qt = {(s1, h1),
. . . , (sn, hn)}; A Bed-first-Tree root node r;

Output: A set of satisfied records;
1 foreach (si, hi) in Qt do
2 Ri = RangeQuery(Qs, si, hi, r);

3 return intersection result among {R1, R2, . . . , Rn};

query keyword and strings in the leaf node, in order to verify the
candidates.

The main idea behind the Bed-first-Tree is to incorporate the
pruning power of spatial filters into the Bed-Tree (notice that the
Bed-Tree is based on B+-Tree, in which data items are all stored
in the leaf nodes). Specifically, we map the frequent term to an R-
Tree to organize spatial-textual objects containing this keyword,
and infrequent one to a posting list (i.e., the list of records
containing this keyword). During construction, for the objects in
leaf nodes, we compute the minimum bounding rectangle (MBR)
to represent their space region. Regarding a non-leaf node η, we
group the MBRs from its children into a larger MBR. As Figure
2 shows, the Bed-first-Tree is a hybrid index structure which
tightly combines spatial proximity and string matching. This way,
the Bed-first-Tree can avoid many unnecessary string matchings
which further saves the cost, compared against existing textual-
based structures.

Space cost of the Bed-first-Tree: Suppose the fanout of the
Bed-first-Tree is b, and we use a bottom-up method to bulk load the
Bed-first-Tree (since it is based on B+-Tree, and this construction
style can get all the nodes almost completely filled). Thus, if the
size of the keywords set is n, the height of the tree should be
dlogb ne, and there are b0+b1+. . .+bdlogb ne−2 = bdlogb ne−b

b2−b =

O( n−bb2−b ) non-leaf nodes. Let m be the space cost of each MBR,
and γ be the average keyword length of this data set. Then, the
space cost of non-leaf nodes is O( n−bb2−b ∗m+ n−b

b−1 ∗ γ). The leaf
nodes need O(nγ+nσ+nm/b) space to store the keywords and
augmented information (i.e., the posting list or R-Tree), where
σ the maximum size of the records that contain one specific
keyword. Totally, the space cost is O(nb−bb−1 ∗γ+nσ+ n−1

b−1 ∗m).
aBRQ algorithm: Our algorithm first visits the Bed-first-Tree

to retrieve candidates for each query keyword, as Algorithm 1
shows. The specific steps for retrieval are shown in Algorithm
2. During retrieval, as for a non-leaf node, we first compute the
distance from the query point to its MBR and check whether it
intersects with the circle region (Line 6). We then leverage the
pruning power of string matching to choose possible child nodes
(Line 7-13). In detail, if LB(s, [si−1, si]) ≤ θ, then there exist
candidates in the corresponding child node of this string interval.

Algorithm 2: RangeQuery
Input : A spatial predicate Qs; A query keyword s and

its edit distance threshold θ; A Bed-first-Tree
root node r;

Output: A set of satisfied records;
1 Let S be a stack initialized to ø, R be the result set

initialized to ø;
2 S.push(r, [smin,smax]);
3 while S 6= ø do
4 Let node n and local string boundaries [smin,smax] =

S.pop();
5 if n is not a leaf node then
6 if n’s MBR overlaps with query region then
7 if LB(s, [smin, s1] ≤ θ then
8 S.push(n1, [smin, s1]);

9 for i from 2 to m do
10 if LB(s, [si−1, si] ≤ θ then
11 S.push(ni, [si−1, si]);

12 if LB(s, [sm, smax] ≤ θ then
13 S.push(nm+1, [sm, smax]);

14 else if n’s MBR overlaps with query region then
15 foreach string si of n and edit(si, s) ≤ θ do
16 Add records in the region for si to R;

17 return R;

We recursively visit the matching sub-nodes. During propagation,
if we reach the leaf node, we visit the corresponding posting lists
or R-Trees of matched strings to run circle range test, and then
get the intermediate results (Line 15-18). The final results can be
obtained by computing the intersection of intermediate results for
each query keyword.

Further optimization to Bed-first-Tree: An important obser-
vation is that, string length provides simple but useful information,
which may help us to quickly prune strings that are not within
the given edit distance. Formally, we have the following property
called length filter.

PROPERTY 2. If two strings s1 and s2 are within edit distance
k, their lengths cannot differ by more than k.

Based on the above, we can organize the Bed-first-Tree with
respect to string lengths, as Figure 3 shows. Here we use an
example to show how it processes a query. Given an aBRQ
Q = {Qs = (τ, ε), Qt = {(”apple”, 1)}, only strings whose
lengths vary from 4 to 6 can pass the string predicate. Then, this
query is further processed by three corresponding Bed-first-Trees.
Finally, we can unite results of each child tree to get the final
results.

aBKQ algorithm: For an aBKQ with a single keyword, we
can first find the k nearest points set for each of its similar words
(say as {K1,K2, . . . ,Kn}). Then, we search the kNN set among
the union of {K1,K2, . . . ,Kn}. Regarding multiple keywords, it
is somewhat complicated, since the k nearest points for a specific
keyword may not contain the other query keywords. To better
support aBKQ for multiple keywords, we leverage the LBAK-
Tree [20] to deal with the case of multiple keywords. As the
LBAK-Tree is a variant of R-Tree, we can use a priority queue to
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order objects, which pass the textual filtering in the LBAK-Tree.
This is similar to how we process eBKQ via the BFIR-Tree.

5 DISTRIBUTED INDEXING
To support distributed indexing efficiently, we propose a two-level
index framework that seamlessly integrates the local indexes (i.e.,
the indexes proposed in previous sections) and the global index
(introduced later). Our framework is built on Spark, which is
a widely used platform supporting distributed in-memory based
environments. The global index is deployed on the master node
and local indexes are deployed on slave nodes, as shown in Figure
4. For short, we refer to our distributed solution as Skia (Spatial-
keyword in-memory analytics), which has following important
merits. On one hand, local index structures like BFIR-Tree can
avoid visiting irrelevant items, and thus enable us to reduce query
latency. On the other hand, the global index can prune irrelevant
partitions, which performs the first step of filtering and frees more
CPU resources for other queries, improving query throughput
significantly.

5.1 Phases of Distributed Indexing
In this subsection, we introduce our implementation of the in-
dexing for handling spatial-keyword queries in Spark. As Figure
4 shows, the proposed algorithm includes three phases (without
regard to query types and the underlying index structures), detailed
as follows.

Partition: Partitioning splits data into n partitions which are
mapped to each node of the cluster. Generally, a good partitioner
focuses on three considerations: (1) Data Locality: nearby data
items in the spatial aspect or the textual aspect should be assigned
to the same partition. (2) Load Balancing: all partitions should be
roughly of the same size. (3) Scalability: time cost of partitioning
should be acceptable. In our paper, we propose to using a spatial-
based partitioner called STRPartitioner to perform partitioning,
due to its simplicity and proven effectiveness [5, 25]. Generally,
STRPartitioner implements the first iteration of STR algorithm
[26] to determine partition boundaries, namely minimum bound-
ing rectangles (MBRs). Based on these MBRs, we can build a
temporary R-Tree to map each object to a specific partition.

Local Indexes Construction: For each partition, we can build
a specific index file. For instance, using BFIR-Tree to build local
indexes to support exact spatial-keyword queries. Moreover, we
can collect spatial statistics (e.g. MBRs for each partition) and
textual statistics to further construct the global index. They are in

Algorithm 3: BFRSearch
Input : A query Q = {Qs, Qt} and

Qt = {s1, . . . , sk}; A BFR-Tree root node r;
Output: A set of partition ids;

1 Let S be a stack initialized to ø, R be the result set
initialized to ø;

2 S.push(r);
3 while S 6= ø do
4 Let node n = S.pop();
5 if n is not a leaf node then
6 foreach child entry ei of n do
7 if ei satisfies the spatial predicate Qs then
8 S.push(ei.node);

9 else
10 foreach child entry ei of n do
11 Let flag = True;
12 if ei satisfies the spatial predicate Qs then
13 foreach keyword si in {s1, . . . , sk} do
14 if si 6∈ ei’s Bloom filter then
15 Let flag = False and break;

16 if flag == True then R.add(i) ;

17 return R;

the form of (id, MBR, β), where id identifies the partition and β
represents the textual information of this partition.

Global Index Construction: Using statistics collected in the
local indexes construction, we can build a global index in the
master node used to prune irrelevant partitions. Generally, it
combines R-Tree, which is established by bulk loading the MBRs
data, with scalable textual filtering techniques. However, using
textual statistics is somewhat complicated; more details are given
below.

5.2 Global Index Construction
The global index enables us to visit less partitions, which frees
more CPU resources and lowers network cost in the meantime,
while leading to overhead space and time cost. To get a tradeoff,
we suggest that the global index should have the following
features: space efficiency, fast retrieval and powerful pruning
ability. Simba [5] builds a pure R-Tree as the global index
to support pruning partitions in spatial analytics. Indexing 4.4
billion records, the global index only consumes 700KB. However,
indexing for textual data is generally expensive both in time and
space. Especially when the data size grows, the textual analysis
cost will increase quickly. Thus, there should be a more elegant
way to support pruning, especially for textual part. To achieve this,
two techniques are presented as follows.

5.2.1 The BFR-Tree
The BFR-Tree is designed for global indexing when processing
eBRQ and eBKQ. The entries in its leaf nodes are in the form
of (MBR, id, Bloom filter). Here we use Bloom filters to describe
the text content of corresponding partition. As for non-leaf nodes,
they are same to the R-Tree nodes, namely only store spatial
information. In contrast to error-free hybrid indexes like BFIR-
Tree or IR-Tree, the BFR-Tree is more scalable as it consumes
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much less memory. In addition, it can achieve almost the same
pruning performance compared to error-free techniques, since
false positives rarely appear and false negatives are impossible
in the BFR-Tree.

Construction of BFR-Tree: Notice that the BFR-Tree is
designed for global index and thus we assume the input table R is
partitioned into a set of partitions {R1, . . . , Rm}, where m is the
number of partitions. Let the MBR and strings set of each partition
be (Mi, Si), where i corresponds to the identifier of the partition.
Given all MBRs and string sets {(M1, S1), . . . , (Mm, Sm)},
we construct a bloom filter Bi for Si and get a new set
{(M1, B1), . . . , (Mm, Bm)}. Then we create a classic R-Tree
by bulk loading this new set.

Search Algorithm of BFR-tree: Let Q be a query with a
spatial predicate Qs and a textual predicate Qt. Algorithm 3
presents a solution for filtering partitions when processing eBRQ.
It is also easy to revise this algorithm to support eBKQ using a
priority queue.

5.2.2 GR-Tree
Similar to the BFR-Tree, we can design the global index, based
on the R-Tree, for approximate spatial-keyword queries. First, we
introduce the widely used count filter as the property of n-grams
[7].

PROPERTY 3. If two strings s1 and s2 are within distance k
and their n-grams are denoted as G1 and G2, then we have |G1∩
G2| ≥ max(|s1|, |s2|)− 1− (k − 1) ∗ n.

Inspired by the filtering technique above, we can collect the
n-grams for each partition and use Bloom filters to store them
respectively. Yet, there may exist the issue that a specific n-gram
derives from multiple strings and thus all the n-grams of the query
keyword are matched. To improve this, we employ the length filter
to divide the big set into several small sets to reduce the probability
of collisions.

5.3 Spatial-Keyword Queries in Spark
The proposed two-level index framework and further presented
techniques enable us to explore novel algorithms for spatial-
keyword queries in the context of Spark. We have mentioned
four kinds of queries previously. Next, we cover their distributed
solutions with respect to the spatial predicates.

5.3.1 Supporting eBRQ and aBRQ
Although the eBRQ and aBRQ differs, their solutions are
similar. With the aid of global index and local indexes, the solution
is as follows.

Global filtering: We first use the global index to retrieve the
possible partitions. For instance, we can use the BFR-Tree for
eBRQ to find the partitions which intersect the query area and
possibly contain the query keywords. Then, we perform the local
processing below for each partition respectively.

Local processing: For each partition passing the above test,
we use the local index such as the BFIR-Tree to process the
eBRQ or the Bed-first-Tree for aBRQ. Then, relevant results
are collected together in the master node.

5.3.2 Supporting eBKQ and aBKQ
Solutions to the eBKQ and aBKQ are more complicated com-
pared to the above two. An important observation is: a partition,

Algorithm 4: BKQSearch
Input : Q = {Qs, Qt}, where Qs = (τ, k); the global

index G; each partition’s local indexes
{L1, . . . ,Ln}

Output: k nearest records that satisfy Qt
1 Use global index G to find P = {p1, p2, . . . , pk}, which

are k nearest partitions to τ that satisfy Qt, and let R =
∅;

2 foreach partition pi ∈ P do
3 Ri ← k nearest records that satisfy Qt based on Li;
4 R← R ∪Ri;
5 if |R| ≥ k then
6 µ← the k-th smallest distance to τ in R;
7 Pnew ← partitions whose minimum distances to τ are

at most µ and they satisfy Qt;
8 if Pnew − P 6= ∅ then
9 foreach partition pj ∈ (Pnew − P ) do

10 Rj ← k nearest records that satisfy Qt based
on Lj ;

11 R← R ∪Rj ;

12 Sort R by distance to τ and return k nearest records;

13 else
14 foreach partition pj /∈ P do
15 Rj ← k nearest records that satisfy Qt based on

Lj ;
16 R← R ∪Rj ;
17 Sort R by distance to τ and return k nearest records;

which fulfills the textual predicate and is closer to the query point,
is more likely to contain the potential results for the eBKQ or
aBKQ. Using this observation, we can develop the algorithm as
the Algorithm 4 shows.

Step 1: Based on the global index, we first find the k nearest
partitions which pass the string test (Line 1). For the retrieved
k partitions, we can use corresponding local indexes to further
process the query, and collect these results to the driver program
(Line 2-4). If k or more than k results are collected, we will use
the tighter bound in Step 2. Otherwise, Step 3 is performed.

Step 2: If k or more than k results are collected, we will
calculate the k-th minimum distance from query point to the
candidates collected in step 2 as the radius µ (Line 5-6). Then,
we leverage the global index again to find partitions, which pass
textual predicates, and whose MBRs intersect with the circle
centered at the query point with the radius µ (Line 7). If the newly
retrieved partitions are the same, then we order the candidates
in step 1 by distances to the query point, and take k nearest
records. Otherwise, we shall retrieve results from the newly added
partitions, and merge the results with the ones from Step 1 and
then take k nearest records (Line 8-12).

Step 3: If less than k results are returned, the remaining
partitions should further process the query, in order to assure the
k nearest items are retrieved correctly. We will merge the results
with the ones from Step 1 and then take k nearest records (Line
14-17).

6 IMPLEMENTATION IN SPARK

In this section, we introduce the details of our implementation
based on Spark SQL, i.e., the designed SQL programming inter-
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faces, memory management and optimization rules.

6.1 Programming Interfaces
Users tend to organize data in databases and then write simple
SQL statements to do analytics. Inspired by this observation, we
extend Spark SQL and wield interfaces introduced by Simba to
provide an easy way for analyzing spatial-textual data. To put it
clear, we proceed to illustrate them with examples.

Point. A spatial-keyword query needs to specify the query
location and thus we need to introduce a new data type called
Point. Using the keyword Point, users can express a multi-
dimensional position. For example, users can describe a restaurant
location by using Point(16.23, 21.46).

Spatial-keyword predicates. We extend SQL to provide rich
spatial-keyword predicates. As mentioned above, there are four
kinds of spatial-keyword queries and here we give the program-
ming interfaces for each of them.

eBRQ. For instance, to find places near a point of interest
or POI for short (say within distance 20) whose text description
contains “relish” and “coffee”, users can use command:

SELECT * FROM table1 WHERE POINT(x, y) IN
CIRCLERANGE(POINT(10, 6), 20) AND
CONTAINS(s, "relish", "coffee").

eBKQ. The query below can ask for 5 nearest neighbors of a
POI with keyword “cake” and “lemon” from table table1:

SELECT * FROM table1 WHERE POINT(x, y) IN
KNN(POINT(12, 10), 5) AND
CONTAINS(s, "cake", "lemon").

aBRQ. An approximate Boolean range query as follows asks
for places near a POI (say within distance 6) whose text descrip-
tion contains a keyword whose edit distance from “apple” is within
1 and another keyword having an edit distance within 2 from
“banana”:

SELECT * FROM table1 WHERE POINT(x, y) IN
CIRCLERANGE(POINT(14, 17), 6) AND
s LIKE (("apple", 1), ("banana", 2)).

aBKQ. E.g., the following command retrieves 5 nearest neigh-
bors of a POI whose text description contains a keyword having
an edit distance within 3 from “electron” from table table1:

SELECT * FROM table1 WHERE POINT(x, y) IN
KNN(POINT(13.2, 18.7), 5) AND
s LIKE (("electron", 3)).

Index management. Users can specify the index structure
by using "USE INDEXTYPE" where "INDEXTYPE" is the
keyword for a specific index structure. To create a BFIR-Tree
index called bfirIndex on attributes x, y and s for table
street, you can use SQL command:

CREATE INDEX bfirIndex ON street(x, y, s) USE BFIRTREE.

6.2 Memory Management
Caching indexes in memory is really important for real-time
analytics. In our experiments, we found that the average query
latency for queries would be several minutes, when indexes are
partially cached in disk due to insufficient memory. Besides,
indexing for spatial-textual objects actually costs much memory,
especially for the textual part. However, current Spark-based in-
memory analytics engines, like Simba [5] or LocationSpark [27],
all store and manipulate indexes through underlying Java Virtual
Machines (JVMs) [28]. This incurs two performance issues: (1)
With large memory consumption, the JVM is easy to be trapped

in frequent garbage collection and even Full Garbage Collection
(generally costs several minutes) [28]. This hurts the performance
a lot. (2) Storing indexes as JVM objects directly can consume
more memory due to extra object headers. In Skia, we decide
to manage our indexes through off-heap memory space. Indexes
are serialized into bytes and stored in off-heap memory. This can
entirely solve the problem of GC and further reduce the memory
cost of indexing.

6.3 Query Optimization

This section covers three optimizations, and we address them
respectively: (1) Intuitively, we can reduce the lengths of lists
to union if we process intersection first. For instance, for a query
(A∨B)∧C , it can be rewritten as (A∧C)∨(B∧C). Moreover,
[29] has further proved that if the length of C’s result is shorter
than A’s or B’s, then the latter costs less than the original query;
otherwise, the cost will be at most 5

3 times the original query,
which is less likely to happen. Based on this, we first rewrite
the query into Disjunctive Normal Form (DNF). (2) It is not
hard to understand that, not all predicates in the given query
can be optimized by indexes. For example, given a DNF query
(A∧B ∧C)∨ (D ∧E)∨ (D ∧F ), it is possible that only A, B
and D can be optimized by indexes. To address this dilemma, we
form a new query by temporally abandoning the predicates that
cannot be optimized. E.g., in the above example we form a new
query (A∧B)∨D. (3) It is possible that there are some relevant
predicates, and a straightforward process could be inefficient. For
example, if A and B are both Exact Boolean Range queries, and
the query circle range of A is completely included by B’s, then
the results for query A∧B should all be in the range of A’s query
circle. Besides, the results for queryA∧B should contain both the
query keywords of A and B. Thereby, we could combine relevant
predicates and then process the new query. Continue the above
example, if A and B are relevant predicates, then we can further
rewrite the new query as A′ to reduce the search space. This way,
one can wield the indexes to calculate the A′ ∨ D and filter the
intermediate result using the abandoned predicates C , E and F .

7 EXPERIMENT
7.1 Experiment Setup

We implement our index techniques and spatial-keyword opera-
tions based on Spark SQL. Our experiments are performed on a
cluster of 17 nodes with three configurations: (1) 8 machines with
a 6-core Intel Xeon E5-2603 v3 1.60GHz processor and 20GB
RAM; (2) 2 machines with a 6-core Intel Xeon E5-2620 2.00GHz
processor and 56GB RAM; (3) 7 machines with a 6-core Intel
Xeon E5-2609 1.90GHz processor and 16GB RAM. One machine
of type (2) is selected as the master node and the others as slave
nodes. Each slave node uses 15GB memory and all the available 6
cores for further computing. All the nodes are running on Ubuntu
14.04.2 LTS with Hadoop 2.4.1 and Spark 1.3.0.

In our experiments, two real world datasets are used: (1)
OSM dataset contains 30 million records. The spatial part is
obtained from the OpenStreetMap project [30] consisting of two-
dimensional coordinates. Each point augments with strings ex-
tracted from documents collected by the SNAP [31]. The average
keywords size for each record is 16.5 and the average keyword
length is 9.6. (2) TX-CA dataset contains 26 million points,
including 14 million points from the TX dataset and 12 million
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TABLE 2: The space cost of index structures on OSM dataset

Index structure IR-Tree BFIR-Tree CBFIR-Tree S2I-V LBAK-Tree Bed-first-Tree
Space cost(GB) 59.8 38.9 43.6 40.4 28.8 24.2
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Fig. 5: Comparison among index structures for eBRQ on TX-CA dataset

points from the CA dataset. These points represent the real road
network and streets of Texas and California [30]. We combine
each point with its state, county and town names as associated
strings. The average keywords size for each record is 5.2 and the
average keyword length is 7.0. Notice that although each node uses
15GB memory, Spark platform has reserved some memory for
its execution. Due to limitation of available memory for caching
indexes, these two datasets are appropriate for our experiments.

Following prior works [5, 22], we mainly focus on two metrics
to evaluate the performance, namely the throughput and latency.
Specifically, we start 10 threads continually issuing queries and
totally 500 queries are tested each time, in order to calculate the
average latency. The throughput is measured by the number of
requests handled per minute.

Regarding the query generation, we randomly select one
record from the given dataset, and use its point as the query loca-
tion. To learn the impact of query keywords, we randomly choose
a specified number of keywords from each record. This way, one
result can be retrieved at least. Besides, we also vary the query
radius to study how query area affects the performance. Specifi-
cally, the query area is a percentage over the entire area covered by
the dataset points, whose default value is 1%. In our experiments,
we vary the percentage among {1%, 5%, 10%, 15%, 20%}. For
approximate spatial-keyword queries, the edit distance threshold
varies from 1 to 3. Notice that, a bigger threshold than 3 can
introduce too many meaningless results. The default HDFS block
size is 64MB, and we divide the data set into 150 partitions in
default. As for the setup of Bloom filters (used for the BFR-Tree
and the BFIR-Tree), MD5 hash functions are used. To minimize
the probability of false positives of Bloom filters, it is important
to select appropriate number of hash functions. Following prior
work [8], we set number of hash functions as κ = m

n ln 2 (mn
is the number of bits used for each element). In this case, the
false positive rate is ( 1

2 )κ = (0.6185)
m
n . We have used 8 bits for

each element (i.e., the m
n is fixed to 8) to achieve predictable and

acceptable false positive possibility. Further, we can quickly know
the Bloom filter size m (notice that, the indexed elements size n
is already known during the construction of Bloom filters).

In our experiments, we first investigate the performance of
proposed index structures. Specifically, we have implemented the
proposed index structures as local indexes in Skia and have done
the experiments under distributed environments. Then we compare
our distributed solution (i.e., Skia) against state-of-the-art analytic
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Fig. 6: Comparison among index structures for eBKQ on TX-
CA dataset

engines. We also explore the scalability w.r.t the data size and
cluster size. Lastly, the effectiveness of the proposed global index
scheme is investigated.

7.2 Comparison among Index Structures

In this subsection, we aim to compare the performance of our
proposed index structures and existing ones in distributed envi-
ronments. To begin with, we vary the query parameters for exact
spatial-keyword queries and observe the performance of each
index structure. Then we turn to the comparison on approximate
spatial-keyword queries.

7.2.1 Performance of exact spatial-keyword queries

eBRQ queries. Figure 5a shows the effect of query area by vary-
ing the query percentage. The four structures all witnessed rather
slow degradation in performance, i.e., both in system throughput
and average latency. The bigger query area introduces higher cost
but due to the additional pruning power of string predicates, the
cost just increases slightly. Besides, it is obvious that our proposed
indexes achieve better scalability and performance than the IR-
Tree. Especially, the S2I-V is more tolerant to the variance of
query area.

Next, Figure 5b illustrates the impact of query keywords. As
we can see, our proposed BFIR-Tree performs as good as the IR-
Tree. Notice that the BFIR-Tree outperforms the IR-Tree a lot in
space budget (refer to Table 2). Besides, the S2I-V stands out when
the number of keywords increases. This is mainly because that,
when the number of query keywords increase, the S2I-V performs
better by leveraging the pruning ability of infrequent items.
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Fig. 7: Comparison among index structures for aBRQ on OSM dataset
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Fig. 8: Comparison with Simba for eBRQ on TX-CA dataset

0 5 1 0 1 5 2 0 2 50 . 0 1

0 . 1

1

1 0

 

 

lat
en

cy(
s)

k

 S i m b a
 S k i a

0 5 1 0 1 5 2 0 2 50

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

 

 

thr
ou

gh
pu

t(q
ue

ry/
mi

n)

k

 S i m b a
 S k i a

Fig. 9: Comparison with Simba for eBKQ on TX-CA dataset
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Fig. 10: Comparison with Simba for aBKQ on OSM dataset

eBKQ queries. Figure 6 shows the performance of eBKQ
queries. We vary k from 1 to 20 and explore its influence.
As k increases, all the four techniques witness small drop in
performance. The results indicate that a first probing step (recall
Section 5) is effective in most times, which avoids visiting every
partition to get the final results.

7.2.2 Performance of approximate spatial-keyword queries

Figure 7a shows the impact of query area sizes. It can be seen
that, the Bed-first-Tree outperforms the LBAK-Tree a little when
query area is small. Whereas, the Bed-first-Tree is more scalable
and stable when the query area enlarges.

Figure 7b shows the impact of query keyword sizes. Interest-
ingly, as the number of query keywords increases, the performance
of both first grows and then decreases continually. This could be
due to that, the query retrieves a lot more results with only one
query keyword assigned. When two query keywords are assigned,
some nodes become irrelevant and thus less visits happen, which
leads to smaller cost. However, the cost of approximate string
search will become the main issue when the query keywords
size continues to increase. Thus we witness a decreasing trend
of performance when keywords size is bigger than 2.

7.3 Comparison against Simba
To the best of our knowledge, there does not exist available
distributed spatial-keyword analytics engines that support these
four spatial-keyword queries. A straightforward idea is to extend
existing spatial analytics engines to support the four queries.
Generally, these engines build their indexes based on R-Tree (or
similar structures), and it is not hard to revise them with the final
phase of textual filtering (e.g., we can augment the leaf nodes
of the R-Tree with textual indexes). As Simba [5] has proved its
superior performance compared to other spatial analytics engines,
we extend Simba to support the aforementioned four queries, and
then we compare Skia against the extended Simba (Simba for
short). We implement Skia in the same environment as Simba.
Details of comparison are given below.

eBRQ queries. Figure 8 shows the performance of exact
spatial-keyword range queries. Skia outperforms Simba slightly
when the query area is small. This is mainly because that, we just
need to visit a small set of nodes and the pruning power of text
cannot be utilized fully. However, the performance of Simba drops
quickly when the query area enlarges, since many irrelevant nodes
are visited in Simba. In contrast, Skia still maintains powerful
performance, as Skia’s textual pruning ability starts to make a
difference.

eBKQ queries. Figure 9 shows the performance of eBKQ
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Fig. 11: Comparison with Simba for aBRQ on OSM dataset
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Fig. 12: Effect of the data size for eBRQ
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Fig. 13: Effect of the global index for eBRQ
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Fig. 14: The impact of cluster size

queries. Skia apparently dominates Simba here. This is because
that, Simba needs to visit many irrelevant partitions, without a
powerful global index. Besides, it suffers from the inefficient local
indexes.

aBRQ queries. For approximate spatial-keyword queries, it
can be seen from Figure 11 that, Skia outperforms Simba by about
one order of magnitude. The widening gap of performance is due
to the expensive cost of approximate string matching, and that our
proposed Bed-first-Tree remarkably accelerates the process. The
performance of both Skia and Simba drops when the query area
enlarges. However, Skia achieves better scalability with a slower
dropping in performance.

aBKQ queries. As Figure 10 shows, the performance of Skia
drops when k enlarges. This is because that, we need to visit more
partitions when k increase. However, Skia still performs better
than Simba here, this is mainly due to the help of efficient local
indexes. Compared to results of eBKQ queries, performance
of Skia deteriorates quicker, as processing approximate spatial-
keyword queries is more expensive.

The impact of data size: Figure 12 shows that the perfor-
mance of both solutions drops, when data size increases from 10
million to 60 million records (2×OSM). However, Skia achieves
better scalability as it drops much slower. It proves that our
solution can scale to larger data set.

Effectiveness of the global index: We compare two schemes:
spatial index only (e.g., a single R-Tree) and spatial-textual index
(e.g., the BFR-Tree). During the comparison, the same local index
(S2I-V) is used. As Figure 13 depicts, the hybrid global index (i.e.,
spatial-textual index) apparently accelerates the searching process.
This demonstrates that, although our partitioning scheme is text-
insensitive, the augmented textual index can actually enhance the
pruning ability.

The impact of cluster size: Experiment results for eBRQ and
aBRQ are illustrated by Figure 14. In detail, the performance of
both queries increases as the cluster size enlarges. This is intuitive
and complies to our expectation that, the larger cluster size intro-
duces stronger computing ability. Besides, in our experiments, we
found that the cluster size has more impact on the performance of
approximate spatial-keyword queries.

Comparison with Simba using the same global index: We
also want to verify that Skia is more efficient than Simba even if
the effectiveness of our proposed global index is compromised. As
Simba uses the R-Tree as the global index by default, we also set
Skia’s global index to R-Tree. Under this setup, the comparison
result is showed in Figure 15. As it depicts, the performance of
Skia is still better than Simba because of the stronger pruning
ability of local indexes in Skia.
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Fig. 15: Comparison with Simba (Use R-Tree as global index)

8 CONCLUSIONS

This paper proposed a series of index structures including the
BFIR-Tree, CBFIR-Tree, S2I-V and the Bed-first-Tree to answer
spatial-keyword queries. We developed a two-level index frame-
work to seamlessly integrate the global indexes (i.e., the BFR-
Tree and GR-Tree) and local indexes together. We also designed
distributed processing algorithms that fully wield the proposed
framework and indexes. We conducted extensive experiments un-
der a general distributed environment, showing that our proposed
indexes and distributed solution achieve superior performance,
compared against state-of-the-art techniques.

REFERENCES

[1] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz,
and T. Suel, “Text vs. space: efficient geo-search query
processing,” in CIKM, 2011, pp. 423–432.

[2] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword
query processing: an experimental evaluation,” in VLDB,
2013, pp. 217–228.

[3] A. Arasu, S. Chaudhuri, K. Ganjam, and R. Kaushik, “In-
corporating string transformations in record matching,” in
SIGMOD, 2008, pp. 1231–1234.

[4] N. Koudas, A. Marathe, and D. Srivastava, “Flexible string
matching against large databases in practice,” in VLDB,
2004, pp. 1078–1086.

[5] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba:
Efficient in-memory spatial analytics,” in SIGMOD, 2016,
pp. 1071–1085.

[6] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, and A. Gh-
odsi, “Spark SQL: Relational data processing in Spark,” in
SIGMOD, 2015, pp. 1383–1394.

[7] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou, “Approxi-
mate string search in spatial databases,” in ICDE, 2010, pp.
545–556.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
cache: a scalable wide-area web cache sharing protocol,”
IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp.
281–293, 2000.

[9] D. Comer, “Ubiquitous B-tree,” ACM Computing Surveys
(CSUR), vol. 11, no. 2, pp. 121–137, 1979.

[10] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava,
“Bed-tree: an all-purpose index structure for string similarity

[11] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma, “Hybrid
index structures for location-based web search,” in CIKM,
2005, pp. 155–162.

search based on edit distance,” in SIGMOD, 2010, pp. 915–
926.

[12] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on
spatial databases,” in ICDE, 2008, pp. 656–665.

[13] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in SIGMOD, 1984, pp. 47–57.

[14] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the
top-K most relevant spatial web objects,” in VLDB, 2009, pp.
337–348.

[15] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and
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