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Utilizing Two-phase Processing with FBLS for
Single Image deraining

Xiao Lin, Lizhuang Ma, Bin Sheng, Zhi-Jie Wang, Wansheng Chen

Abstract—Rain removal from a single image is a challenging
problem and has attracted much attention in recent years. In
this paper, we revisit the single image deraining problem, and
present a novel solution. The central idea of our solution is to
merge the merits of two-phase processing methods and the Fuzzy
Broad Learning System (FBLS). Specifically, our solution first
uses the dehazing algorithm to preprocess the input rainy image
and separates it into the detail layer and the base layer. After
that, it puts the Y-channel image of the detail layer into the FBLS
to obtain the derained Y channel image, which is then combined
with the Cb and Cr channel images to obtain the derained detail
layer. Later, it fuses the derained detail layer and the base layer
to get a preliminary derained image. Finally, it superimposes the
details extracted from the dehazed image with some transparency
on the preliminary result, obtaining the final result. Experimental
results based on both real and synthetic rainy images demonstrate
that our proposed solution can outperform several state-of-the-
art algorithms, while it consumes much less running time and
training time, compared against the competitors.

Index Terms—Single image rain removal, computer vision,
machine learning, image processing.

I. INTRODUCTION

In recent years, single image dehazing and deraining are
very hot topics in the fields of multimedia, computer vision,
and image processing [1], [2], [3], [4], [5], [6], [7], [8]. In this
paper, we focus on discussing the problem of single image
deraining. The rain in the image can be roughly divided into
two cases: (i) rain streaks near to the camera lens, which can
be considered as noise in the image; and (ii) rain in a long
distance, which looks like a translucent veil or fog. Under rainy
conditions, the impact of rain streaks on images and video
is often undesirable. In addition to a subjective degradation,
the effects of rain can also severely affect the performance
of many multimedia processing systems, e.g., content-based
image retrieval [9], image enhancement methods [10], [11],
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surveillance systems [12], [13]. Fig. 1 shows examples of rain
removal. From the figure, one can easily see that there are
great differences between images before and after removing
rain streaks. This implies that rain removal is great important,
and thus has attracted much attention in past years.

In the literature, previous works related to rain removal can
be roughly divided into two branches: Video-based methods
[14], [15], which remove rain streaks from video; and single-
image-based methods [13], [16], [17], which remove rain
streaks from a single rainy image. In this paper, we are
interested in the latter. In past years, many methods/techniques
were proposed for rain removal from a single image, such
as sparse codes [18], layer priors [19], guided L0 smoothing
filter [20], anisotropic filter [21]. Generally, recent methods
can be classified into three categories [22]. The first category is
simply filtering-based where a nonlocal mean filter or guided
filter is often used [23], [20], [24]. These methods run fast
while they can hardly produce a satisfactory performance con-
sistently. The second category builds models for rain streaks
[25], [18], [19]. These models can discriminate rain streaks
from the background. However, it often happens that some
details of the image will be mistreated as rain streaks. The
third category, which seems more reasonable, is to form a two-
phase processing [26], [27], [28]. Specifically, a well-designed
filtering is first used to decompose a rainy image into the
low-frequency part and high-frequency part; the low-frequency
part can be made free of rain as much as possible, the high-
frequency part can be used to further extract the image’s details
to be added back into the low-frequency part.

On the other hand, in the existing works (including the
works mentioned above), some researches [29], [30], [12], [31]
employed the deep learning technology, owing to its success
in many other applications, such as visual recognition [32],
semantic segmentation [33], natural language processing [34],
[35], bioinformatics [36]. Nevertheless, it is well known that
deep learning technique bears also some issues/limitations,
such as high hardware requirement, long training time, and
too many hyper-parameters. Recently, the fuzzy broad learning
system (FBLS) [37], [38] has been shown useful for regression
and classification. An obvious strong point is that, unlike deep
learning models which consist of the stack of neuron layers,
the FBLS has only one neuron layer and it does not need to
stack layers in deep, but only need to expand in broad. In
addition, its hyper-parameters are far less than that of deep
learning based models, and so its training process is very fast.

Motivated by the above facts, in this paper we attempt to
integrate the two-phase processing with FBLS for single image
deraining task. Specifically, we first use the dehazing algorithm
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Fig. 1: Single image rain removal example. (a) Rainy image.
(b) image after deraining.

based on dark channel prior [39] to process the input rainy
image. This makes the misty rain in the distance removed
and highlights the rain streaks hidden in the “fog”. Then,
we use a filter to obtain the detail layer and the base layer,
respectively. To reduce the complexity of computation and/or
training, we convert the RGB color space of the detail layer to
the YCbCr color space, and puts Y channel image of YCbCr
color space into FBLS for obtaining the derained Y-channel
image (notice: in the training phase, it puts Y channel image
of YCbCr color space and ground truth image into FBLS for
training). After that, we combine the derained Y-channel image
with the previous Cb and Cr channel images, in order to get the
derained three-channel detail layer. Next, the processed detail
layer is fused with the base layer to get a preliminary derained
image. To strengthen the quality of the preliminary result,
we further extract details from the dehazed image, and the
extracted details are superimposed on the preliminary result,
obtaining the enhanced derained image (i.e., the final result).
To summarize, the main contributions of this paper are as
follows:

• We propose a novel solution for rain removal from
a single image. Our solution combines the two-phase
processing with FBLS seamlessly. To our knowledge,
this could be the first attempt to combine two-phase
processing with FBLS for single image deraining task.

• We conduct the empirical study based on both real and
synthetic rainy images. The experimental results show us
that the proposed solution can beat several state-of-the-
art algorithms, in terms of solution quality. Particularly,
our solution has much fewer training and running time,
compared against several strong competitors.

The rest of the paper is organized as follows. In next section,
we review related work. Section III presents our solution in
detail. The experimental results and discussions are covered
in Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORK

In the existing literature, previous works related to rain
removal are mainly in two branches: (i) rain removal from a
video, and (ii) rain removal from a single image. For category
(i), video-based methods are extensively studied in past years
[14], [40], [41]. In addition, as pointed out in [12], rain
can be more easily identified and removed using inter-frame
information [40], [41]. Many of these methods work well,
but are significantly aided by the temporal content of video.
Unlike the task of removing rain from a video, the single image
deraining task is significantly more challenging, since much
less information is available for detection and removing rain.
In what follows, we focus more of our attention on reviewing
previous works in this branch.

In the past years, there are already some works addressing
the problem of rain removal from a single image [23], [20],
[24], [42], [30], [25], [18], [19], [26], [27], [28]. As mentioned
in [22], existing methods can be generally classified into three
categories. (1) The methods based on simple filtering [23],
[20], [24], in which a nonlocal mean filter or guided filter is
often used. For example, Xu et al. [24] designed a rain-free
guidance method to remove rain from a single image. Kim et
al. [23] detected the rain streak regions and removed rain in a
single image by nonlocal means filtering. Wang et al. [21] used
the anisotropic filter to remove rain streaks. More recently,
Ding et al. [20] removed rain streaks from a single image
by combining L0 gradient minimization with a guided filter.
A common feature of this line of methods is that, they run
fast while they can hardly produce a satisfactory performance
consistently (either the output image is left over with some rain
streaks, or quite a few image’s details are lost so that the output
image becomes blurred). (2) The model-based methods [25],
[18], [19], which usually build models for rain streaks. For
example, Chen et al. [25] found that rain streaks always appear
similar patterns, and so they proposed a low-rank appearance
model to remove rain streaks from a single image. Luo et al.
[18] suggested to use the discriminative sparse codes that are
based on the non-linear generative model of rainy image. Li
et al. [19] made use of some patch-based prior model for both
the background layer and rainy layer for the rain removal task.
This line of methods or models can discriminate rain streaks
from the background. However, it often happens that some
details of the image will be mistreated as rain streaks. (3) The
two-phase processing based methods [26], [27], [28], which
seem to be more reasonable. Specifically, they usually use a
well-designed filtering to decompose a rainy image into the
low-frequency part and high-frequency part; the low-frequency
part can be made free of rain as much as possible, the high-
frequency part is used to further extract image’s details. For
example, the authors in [27], [26] proposed a single-frame-
based rain removal framework by properly formulating the rain
removal task as an image decomposition problem, based on
morphological component analysis. Later, Chen et al. [28] also
proposed a single-color-image-based rain removal framework,
but they are based on sparse representation. Later, Wang et al.
[22] further advanced this line of methods by combining image
decomposition and dictionary learning. To some extent, our
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Fig. 2: The overall framework of our solution.

paper is similar to the methods in category (3), i.e., two-phase
processing based methods. This is mainly because we also
separate the image into the base and detail layers, using the low
and high pass filtering, respectively. Nevertheless, our work is
different from these works in several points at least: (i) we
use the dehazing technique to remove fogs before separating
the image; (ii) we employ the fuzzy broad learning system to
assist the deraining task; and (iii) we extract the details from
the dehazed rainy image to further strengthen the result.

On the other hand, in the existing works (including the
works mentioned above), some works (e.g., [29], [30], [12],
[43]) employed the deep learning technology, owing to its
success in many other applications such as recommendation
[44], [45], visual recognition [32], semantic segmentation [33],
[46], saliency detection [47], [48], moving prediction [49],
[50], [51], [52], etc. Meanwhile, it is well known that deep
learning technique bears also some issues/limitations, such
as high hardware requirement, long training time, and too
many hyper-parameters. To alleviate these issues, the fuzzy
broad learning system (FBLS) [37], [38] has been extensive
studied recently. It combines/integrates the Takagi-Sugeno
(TS) fuzzy system [53] on basis of broad learning system
(BLS) [54]. The BLS is a framework that can replace the
structure of deep learning. The strong points of BLS are that,
it can alleviate the troubles/issues (e.g., long training time)
caused by a large number of parameters in deep learning
based models. Unlike deep learning models, which consist
of the stack of neuron layers, the BLS has only one neuron
layer, which are composed of feature nodes and enhancement
nodes. In addition, its hyper-parameters are far less than that
of deep learning based models, and so its training process
is very fast. To fuse TS fuzzy system with BLS, the FBLS
replaces the feature nodes in BLS with a group of TS fuzzy
subsystems, and then the intermediate outputs (generated by
all fuzzy subsystems) are sent to the enhancement nodes as
a vector connection for further nonlinear transformation. The

final output is generated by combing the outputs from both the
fuzzy subsystem and the enhancement nodes. Since the FBLS
saves the adjustment process of sparse autoencoder in BLS, it
reduces the complexity of the structure and improves image
recognition performance [53]. On the other hand, compared
against the TS fuzzy system, it has fewer rules and shorter
running time, and it works better. Inspired by these merits,
in our paper we attempt to leverage FBLS for single image
deraining task.

III. THE PROPOSED SOLUTION

A. Overview

Fig. 2 plots the overall framework of our solution. It first
uses the dehazing algorithm to deal with the rain in the
distance based on the dark channel prior, so as to highlight the
rain streaks near to the lens. Then, our solution separates the
dehazed image into the base and detail layers by using the low
and high pass filtering, respectively. Meanwhile, it converts
the separated three-channel detail layer from the RGB color
space to the YCbCr color space. Later, it puts the Y-channel
image of the detail layer into the fuzzy broad learning system
(FBLS) to obtain the derained Y-channel image (notice that, in
the training phase the corresponding Y-channel ground truth
is also put into the FBLS). After that, our solution combines
the Cb and Cr channel images (separated before) with the
derained Y channel image, so as to restore the derained detail
layer of these three channels. Then, it obtains the preliminary
derained image by fusing the derained detail layer with the
base layer. Finally, it superimposes the details extracted from
the dehazed image with some transparency on the preliminary
derained image, obtaining the final result.

B. Training

We need some preprocessing operations on the images
before we train our model. In what follows, we first cover
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Fig. 3: Effect of dehazing processing: (a) the initial image
before dehazing; (b) the image after dehazing.

the details of the preprocessing operations, and then discuss
the training process in detail.

1) Preprocessing for training: The preprocessing contains
two main operations: (i) processing the rain in the distance;
and (ii) separating the image. Next, we address them, respec-
tively.

I Processing the rain in the distance. It is easy to understand
that the rain in the image can be classified into two categories:
(i) rain streaks, which are close to the lens; and (ii) the rain
in the distance (i.e., far way to the lens). Therefore, one can
model the rainy image as follows:

I = B +RC +RD (1)

where I denotes the original rainy image, B denotes the clean
background layer, RC denotes the rain close to the lens, and
RD denotes the rain in the distance.

To reduce the complexity of model learning in the later
phase, and to increase the final quality of rain removal, it is
needed to process RD in the original input image. To this end,
we use the dark channel priority dehazing algorithm [55] to
process RD. Generally, it is based on the following equation:

Fr(x) =
F (x)−A

max(tr(x), T0)
+A (2)

where Fr(x) is the dehazed image, F (x) is the input image,
tr(x) is the transmittance, T0 is a threshold in [0,1], and A
is the light composition of the global atmosphere, which is
obtained based on the pixel in the dark channel. After the
dehazing operation, RC becomes clearer, as shown in Fig.
3. This way, in the subsequent steps it would be easier to
process RC , and is helpful to improve the accuracy of the
final resultant image.

I Separating the image. Given an image, one can separate it
into two layers: (i) the base layer, which has the low frequency;
and (ii) the detail layer, which has the high frequency. We
can use the rolling guidance filter [56] to extract the high-
pass detail layer and low-pass base layer of the rainy image.

Fig. 4: Separating the rainy image: (a) preprocessed images to
be separated; (b) the separated detail layer; (c) the separated
base layer.

Fig. 5: Channel separation of RGB color space and YCbCr
color space: (a) the detail layer of the un-separated channel; (b-
d) channel R, G, and B in the RGB color space, respectively;
(e-g) channel Y, Cb, and Cr in the YCbCr color space,
respectively.

Compared with the smooth base layer, the detail layer looks
more sharp and contains more rain streaks, as shown in Fig.
4. As the reader may know, image sparsity has been used
in many computer vision applications. It is easy to understand
that, when one uses sparse data for network training, it will ac-
celerate network convergence speed, and significantly reduce
network training time. To this end, we use the detail layer
of sparse rainy image for network training, which simplifies
the complexity of network training data. In addition, unlike
channels of RGB color space in which all of them contain
rain streaks, only Y channel of YCbCr color space contains
rain streaks, as shown in Fig. 5. This implies that network
training can be carried out on the Y channel of YCbCr color
space.

2) Training via FBLS: After preprocessing, the information
extracted from the Y channel in the YCbCr color space is taken
as the training data, denoted as X = {x1, x2, ..., xN}T ∈
Rn×m. In the meanwhile, we also use the corresponding
rainless Y-channel image in the YCbCr color space as the
training ground truth. These paired training data is sent to
the fuzzy broad learning system (FBLS). Fig. 6 illustrates
the detailed structure of our training model. Generally, it
consists of three layers: (i) input layer, which imports the
training data X; (ii) data processing layer, which is mainly
composed of fuzzy subsystems and enhanced node groups;
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Fig. 6: The structure of our training model.

here the input of the enhancement node groups are transformed
from the intermediate output of the fuzzy subsystems; and (iii)
output layer, which utilizes the outputs of fuzzy subsystems
and enhancement node groups to generate derained Y-channel
image in the YCbCr color space. Note that, in the training
phase the output layer is the ground truth image. Among
these three layers, the data processing layer is much more
complicated than other layers. More specifically, we need to
obtain F p, Hg and Zp as shown in Fig. 6.

I Obtaining Zp. In our method, we use first-order
Takagi-Sugeno (TS) fuzzy model to map input xs =
(xs1, xs2, ..., xsN ) to the ith fuzzy subsystem, where s =
1, 2, ..., p. Each fuzzy subsystem has ki fuzzy rules, as shown
in Fig. 7. Formally, it is defined as

zisk = f ik(xs1, xs2, ..., xsN ) =

N∑
t=1

αiktxst (3)

where αikt refers to the coefficient, which is generated ran-
domly in [0,1]; k = 1, 2, ..., ki denotes the fuzzy rule of the
i-th fuzzy system.

Another element in the subsystem is the weighted fire
strength, which is defined as:

ωisk =

∏n
t=1 µ

i
kt(xst)∑ki

k=1

∏n
t=1 µ

i
kt(xst)

(4)

where µikt(xst) refers to the Gaussian membership function,
which is computed as:

µikt(xst) = e
−(

xst−cikt
σi
kt

)2

(5)

where the center cikt can be obtained by using k-means clus-
tering algorithm over the training set; and σikt is a harmonic
parameter.

With the weighted fire strength ωisk and fuzzy rule zisk,
we can derive the intermediate output value Zsi of the s-th
training sample in the i-th fuzzy subsystem. That is,

Zsi = (wis1z
i
s1, w

i
s2z

i
s2, ..., wskiz

i
ski) (6)

Then, for all training samples, the intermediate output of all
training samples in the i-th fuzzy subsystem can be obtained
as follows:

Zi = (Z1i, Z2i, ..., Zpi), i = 1, 2, ..., (7)

Fig. 7: Illustration of the TS fuzzy subsystem.

Finally, for all the subsystems, the intermediate output Zp can
be obtained as follows:

Zp = (Z1, Z2, ..., Zp) ∈ RN×(K1+K2+...+Kp) (8)

I Obtaining Hg . The enhanced node’s output Hv (v =
1, 2, ..., g) can be derived from the intermediate output Zp.
Specifically, it is defines as follows:

Hv = ξv(Z
pωv + βv) ∈ RN×Lv (9)

where ωv is the weight of the enhanced node, and βv is the bias
term; the values of these two items are generated randomly in
(0,1). In addition, ξ(·) refers to a nonlinear transformation
function, and Lv denotes the number of neurons in group v
of enhanced nodes.

Then, for the output Hg of all enhancement nodes, it can
be computed as:

Hg = (H1, H2, ...,Hg) ∈ RN×(L1+L2+...+Lg) (10)

I Obtaining F p. As for the s-th training sample of the i-th
fuzzy subsystem, its output is Fsi, which is computed as:

Fsi = (

ki∑
k=1

(γik1ω
i
skz

i
sk), ...,

ki∑
k=1

γikCω
i
skz

i
sk)

=

n∑
t=1

αiktxst(ω
i
s1, . . . , ω

i
ski)

 γi11 . . . γi1C
...

...
γiki1 . . . γikiC


(11)

Then, for all n training samples of the i-th fuzzy subsystem,
it is computed as:

Fi = (F1i, F2i, ..., Fpi)
T = DΩiγi (12)

where

D = diag

(
n∑
t=1

αiktx1t, ...,

n∑
t=1

αiktxpt

)
,
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Algorithm 1 The training process of FBLS

Input: Training samples (X,Y ), p fuzzy subsystems , number
of fuzzy rules ki , enhancement nodes Lv , and g enhance-
ment node groups.

Output: The weight W
1: Randomly initialize αikt in [0,1] and set σikt = 1
2: while i <= p do
3: Calculate ki centers
4: Initialize Gaussian member function, and set σikt = 1
5: for s = 1;s ≤ N do
6: Calculate Zsi using Eq. 6
7: Calculate Fsi using Eq. 11
8: end for
9: Obtain Zi using Eq. 7

10: Calculate Fi using Eq. 12
11: i = i+ 1
12: end while
13: Obtain Zp using Eq. 8
14: for v = 1; v ≤ g do
15: Randomly initialize ωv and βv
16: Calculate Hv

17: end for
18: Obtain Hg using Hg = (H1, H2, ...,Hg);
19: Obtain F p using Eq. 13
20: Calculate the pseudo-inverse A+ = (λI +AAT )−1AT ;
21: return W = A+O;

Ωi =

 ωi11 . . . ωi1ki
...

...
ωip1 . . . ωipki

 ,

γi =

 γi11 . . . γilC
...

...
γiki1 . . . γikiC


Then, for all subsystems, the output F p is computed as:

F p =

p∑
i=1

Fi =

p∑
i=1

DΩiγi = D(Ω1, ...,Ωp)

 γ1

...
γp


= DΩΓ

(13)

where Γ denotes
(
(γ1)T , . . . , (γp)T

)T
, Ω = (Ω1, ...,Ωp).

I Obtaining W . On the basis of F p and Hg , we can build
the following equation:

O = F p +HgWe

= DΩΓ +HgWe

= (DΩ|Hg)

(
Γ

We

)
= (DΩ|Hg)W

(14)

where O denotes the output of the FBLS, and W =
(

Γ
We

)
. Note

that, O in the training phase is the ground truth. Based on the

Fig. 8: Example of merging the base layer and the derained
detail layer. (a) The detail layer after rain removal. (b) Rainless
base layer. (c) preliminary derained image.

above equation, we can obtain W by the pseudo-inverse. That
is,

W = (DΩ|Hm)+O

= A+O
(15)

where A+ is computed as

A+ = (DΩ|Hg)+ (16)

We also note that, the pseudo-inverse calculation is somewhat
time-consuming, we use the following method [37] to optimize
the calculation. That is,

A+ = lim
λ→0

(λI +AAT )−1AT (17)

where λ is an equilibrium factor. By combing Eqs. 15 and 17,
we can get the weight W . The overall process of training on
the FBLS is summarized in Algorithm 1.

C. Generating Rainless Map
As for the test phase, we also preprocess the input image as

described earlier. That is, we also process RD and separate the
image into the (low pass) base layer and the (high pass) detail
layer via a rolling guidance filter. Later, we put the Y-channel
image of the detail layer into the fuzzy broad learning system
(FBLS) to obtain the derained Y channel image, which is then
combined with the Cb and Cr channel images, obtaining the
derained detail layer. Then, we fuse the derained detail layer
and the (low pass) base layer to obtain a preliminary derained
image. Formally, it is described as follows:

Ipre = IdeD + Ib

where Ipre, IdeD and Ib denote the preliminary derained im-
age, the derained detail layer, and the base layer, respectively.
Fig. 8 shows an example of merging these two layers.
I Further enhancement. In the meanwhile, we employ the
guided filter [57] to extract the details from the dahazed im-
age1. For clearness, we denote the extracted detail part as Iedp.

1The guided filter is simpler and quicker than the Rolling guidance filter
[56]. Nevertheless, we here can also use the latter, since the visual effect
obtained by these two filters are similar.
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Fig. 9: Example of the enhancement processing. (a) Dehazed
rainy image. (b) Seventy percent transparency image details
extracted from dehazed rainy image. (c) Preliminary derained
image. (d) Enhanced image, i.e., final result.

To further suppress the rainwater component and highlight
other detailed components, we adjust the pixel transparency
of Iedp based on the following equation:

IdeT = (Iedp ×Alpha+ 127)/255 (18)

where IdeT is the detail image after adjusting the transparency,
and Alpha refers to the transparency. Note that, the numbers
127 and 255 can be viewed as the color values.

Then, we superimpose the adjusted detail image IdeT as a
blend color onto the preliminary derained image as the base
color to further improve the visual effect. The superposition
operation is as follows:

B =


(Ipre × IdeT )/255 if Ipre ≤ 128

255− (I∗pre × I∗deT )/128 if Ipre > 128
(19)

where I∗pre = 255− Ipre, and I∗deT = 255− IdeT , B denotes
the final image. Fig. 9 shows an example of the enhanced
image.

IV. EXPERIMENTS

In this section, we first introduce the experimental settings,
and then cover the experimental results. Finally, we summarize
our findings.

A. Experimental Setup

As the reader may know, in the field of single image
deraining, there are no available large-scale real rainy image
datasets with ground-truth images. In addition, it is clear that
large-scale data can benefit to model training. To this end, we
followed the prior work [58], [29], [30], [19], and also used the
synthetic dataset for model training. The dataset used in our
paper contains 20,800 images with 224×224 size. We divided
the dataset into two parts: one part contains 16,640 images,
which are used as the training set. The other part contains
4, 160 images, which are used as the test set. In addition,
we also employed two other synthetic color images for test,
since these two images are widely used in the prior work [26],
[30]. For clearness, we call them img1 and img2, respectively.
Besides the synthetic test images, we also downloaded the real

world rainy images from the site (https://image.baidu.com/) as
the test images.

Following prior works [59], [60], we adopted two widely
used evaluation metrics: (i) Peak Signal to Noise Ratio
(PSNR), and (ii) Structural Similarity Index Measurement
(SSIM). Generally, the higher the PSNR (SSIM) value is, the
better a method is.

In the experiments, the equilibrium factor λ was set to
10−9, and the harmonic parameter σikt was set to 1. We
used the “sigmoid” function as the activation function of the
enhancement node. We used the rectified linear unit as the
nonlinear transformation function ξ(·). We set the transparency
Alpha to 70%, according to extensive offline tests.

As for the number of fuzzy subsystems p, the number of
enhancement nodes g, and the number of fuzzy rules ki, we
initially set them to 5, 200, and 3 empirically. After that, we
gradually increase them to 150, 1300, and 30, respectively.
We found that the average SSIM and PSNR values over
the test set (i.e., 4,160 images) increase when we increase
the values of these parameters, and these values tend to be
stable when p, g, and ki are increased to 125, 1100, and 23.
Specifically, the average SSIM and PSNR values over the test
set are 0.8531 and 24.01, respectively. In view of this, in the
remaining experiments, we set p, g, and ki to 125, 1100, and
23 respectively, unless stated otherwise.

We compared our proposed solution with both traditional
rain removal methods and also deep learning based ones.
For some algorithms (e.g., Auto-SP [26], CCRR [5], JBLO
[4]) we used the implementations provided by authors. As
for algorithms without publicly available implementations, we
directly compared the results presented in their papers. The
codes of our solution were written using Matlab 2016Ra.
Our experiments were conducted on a computer with 4-core
2.80Ghz CPU and 64GB RAM.

B. Experimental Results

Synthetic rainly images with ground-truth. Table I presents
the quantitative comparison of our solution and state-of-the-
art algorithms over img1. From this table, it can be seen
that, our solution outperforms most of these state-of-the-art
algorithms (e.g., Low-rank [25], JORDER [61], CNN [29],
GMMLP [19], Auto-SP [26], Dis-SP [18]), demonstrating
the feasibility and competitiveness of our solution. In the
meanwhile, we observed that our solution is slightly inferior
to several algorithms (e.g., CCRR [5], JBLO [4]), in terms of
SSIM and PSNR. A possible reason is that our method does
not leverage new rain streak priors. Another possible reason is
that the fuzzy broad learning system is still a relatively young
system, appealing to much more improvements. Nevertheless,
we have to mention that the visual effect of our solution
is highly close to them (i.e., CCRR and JBLO), since the
derained result of our solution preserves well the details
(e.g., wrinkles on the clothes) while removing rain streaks
effectively, as shown in Fig. 10. Furthermore, we observed
that the experimental results over img2 exhibit the similar
performance, as shown in Table II and Fig. 11. This further
validates the feasibility and competitiveness of our solution.
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TABLE I: Quantitative comparison on img1. The top three results have been highlighted in red, blue and green.

Method Low-rank DDN JORDER CNN GMMLP Auto-SP Dis-SP CCRR JBLO Ours
SSIM 0.8153 0.7906 0.6881 0.7584 0.7638 0.7853 0.8419 0.8662 0.8789 0.8583
PSNR 22.74 25.78 22.8 20.00 23.27 21.23 24.84 25.56 29.18 25.18

Fig. 10: Qualitative comparison over img1. The bottom part of each subfigure is the partial enlarged effect of the corresponding
image. (a) Rainless ground truth; (b) input rainy image; (c) Low-rank [25]; (d) DDN [12]; (e) JORDER [61]; (f) CNN [29];
(g) GMMLP [19]; (h) Auto-SP [26]; (i) Dis-SP [18]; (j) CCRR [5]; (k) JBLO [4]; (l) our method.

Real world rainy images. Fig. 12 presents the visual compari-
son with representative algorithms on several real world rainy
images. It can be seen that, (i) some methods (e.g., Dis-SP
[18]) preserve most of the details, while the rain streaks are
not removed sufficiently. (ii) Some methods (e.g., GMMLP
[19] and SL [62]) make the derained image too smooth,
losing many details. (iii) Some methods (e.g. SL [62]) make
the color of the derained image too dark. In contrast, our
method efficiently removes the rain streaks while preserving
the details of the images well. This essentially demonstrates
that our method is also effective for processing real world
rainy images. On the other hand, this implies that our method
has good generalization performance (since we here tested

on the real world rainy image while we trained our model
using synthetic rainy images). Note that, we did not conduct
qualitative comparison on real world rainy images, since the
ground truth images are not available.
Runing time. Table III summarizes the CPU running time of
our method with state-of-the-art methods including GMMLP
[19], SL [62], Dis-SP [18], CNN [29], JORDER [61], DNN
[12], ID CGAN [63], DDC [58]. It can be seen that, among
these algorithms our method takes the least running time
for different image sizes. Generally, it is 2× faster than the
strongest competitor (i.e., ID CGAN [63]). This demonstrates
that our method has a very competitive execution efficiency.
Note that, the execution efficiency is another important metric

TABLE II: Quantitative comparison on img2. The top three results have been highlighted in red, blue and green.

Method Low-rank DDN JORDER CNN GMMLP Auto-SP Dis-SP CCRR JBLO Ours
SSIM 0.8215 0.8071 0.6424 0.7326 0.8138 0.8181 0.7915 0.8526 0.8610 0.8457
PSNR 21.87 28.30 21.40 21.29 25.43 21.74 24.15 26.05 29.16 25.47
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Fig. 11: Qualitative comparison over img2. The bottom part of each subfigure is the partial enlarged effect of the corresponding
image. (a) Rainless ground truth; (b) input rainy image; (c) Low-rank; (d) DDN; (e) JORDER; (f) CNN; (g) GMMLP; (h)
Auto-SP; (i) Dis-SP; (j) CCRR; (k) JBLO; (l) our method.

TABLE III: Running time of different methods (seconds).

Image Size GMMLP SL Dis-SP CNN JORDER DDN DDC ID CGAN Ours
250×250 196 68 53 1.32 48 1.81 0.98 0.15 0.073
500×500 942 76 230 2.86 88 13.27 4.04 0.55 0.29
750×750 1374 99 782 5.47 149 39 9.12 1.17 0.57

to evaluate an algorithm, since it is very vital for many real-
time applications.

C. Further Comparison

To further examine the performance of our proposed
method, Table IV below covers the comparison results on the
test dataset with 4,160 images (recall Section IV-A), and on
Rain100H and Rain100L datasets [61], respectively. Generally,
our proposed method outperforms most of the algorithms. This
finding is basically consist with the results presented in Section
IV-B.

Besides, we also conduct a user study based on images
chosen from these datasets. Generally speaking, we randomly
extract 20 images from the above datasets, and then execute
algorithms to perform deraining operation on these selected
images, respectively; and finally we invite 10 persons to
evaluate the quality of the generated de-rained images. The
invited persons are allowed to give scores (0∼10) for each
generated image. For ease of comparison, we compute and
report the average score. The results are shown in Table V.

From this table, we can see that the evaluation score of our
solution is higher than most of algorithms, and it is very near
to the scores of JORDER and DDN. Note that, compared to
the competitors, our solution does not rely on the rain streak
priors, and it can automatically detect and remove rain streaks.
This can be also viewed as an advantage of our solution.

D. Discussion and Summary

Recall Section IV-A, we trained our model and obtained the
average SSIM and PSNR values over large-scale test images
with ground truth. It is meaningful to examine the visual
effects of such test images. To this end, we show several
representative rainy images and the derained results, as shown
in Fig. 13. It can be seen that, these rainy images (cf., the
1st column) have different rain intensity (e.g., heavy rain,
light rain), and the rain streaks are in various directions (e.g.,
from right-top to left-bottom, from left-top to right-bottom).
Nevertheless, our method exhibits good deraining performance
on these challenging images, since it removes effectively the
rain streaks and preserves most of details in the original
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Fig. 12: Comparison of different rain removal methods on real world rainy images. (a) Real world rainy image; (b) derained
result using Dis-SP [18]; (c) derained result using SL [62]; (d) derained result using GMMLP [19]; (e) derained result using
our method.

TABLE IV: Quantitative comparison on the testing set with 4,160 images, and on the Rain100H and Rain100L datasets. The
top three results have been highlighted in red, blue and green.

Method Auto-SP GMMLP CNN Dis-SP DDN JORDER Ours
4160-SSIM 0.62 0.75 0.63 0.72 0.87 0.90 0.85
4160-PSRN 20.1 23.32 23.05 20.9 30.36 29.8 24.01

Rain100H-SSIM 0.40 0.43 0.37 0.54 0.76 0.80 0.74
Rain100H-PSNR 13.78 15.05 13.21 17.55 21.92 25.21 20.13
Rain100L-SSIM 0.70 0.86 0.81 0.86 0.93 0.97 0.89
Rain100L-PSNR 23.13 28.65 23.70 23.39 29.39 35.23 27.36

TABLE V: User Study with 20 randomly selected images. The score refers to the average score evaluated by 10 persons.

Method Auto-SP GMMLP CNN Dis-SP DDN JORDER Ours
Evaluation Score 7.14 7.52 7.43 7.15 8.22 8.17 8.15

input images. Note that, it is possible that some generated
images look over-enhanced. In this case, one can improve it
by adjusting the transparency of the detailed image.

Another thing related to training is the training efficiency.
As the reader may know, many existing deraining methods
usually take a long time to train their models (e.g., CNN [29]
consumes approximately two days on a PC with Intel Core i5
CPU 4460, 8GB RAM and NVIDIA Geforce GTX 750, DDN
[30] consumes over 8 hours to train their model, DNN [12]
consumes approximately 14 hours to train their model). In
contrast, training our model used about half an hour. This can
be viewed as another advantage of our method.
Summary. We find that, (i) our solution can achieve singe im-
age rain removal efficiently and it outperforms several state-of-
the-art algorithms (e.g., Low-rank [25], JORDER [61], CNN
[29], GMMLP [19], Auto-SP [26], Dis-SP [18]), in terms of
PSNR and SSIM. (ii) Although our solution is slightly inferior
to several strong competitors (e.g., CCRR [5], JBLO [4]) in

terms of PSNR and SSIM, the visual effect of our solution is
close to the ones generated by these strong competitors. (iii)
Our solution has the good generality performance. Specifically,
we trained our model using the synthetic dataset, while our
solution can exhibit good deraining performance on real world
test images. (iv) Compared against existing algorithms, our
solution has a higher efficiency in terms of training time and
running time. Specifically, it takes about 0.5 hours to train our
model, and on average our solution can perform singe image
rain removal in 0.07, 0.29, and 0.57 seconds for image sizes
with 250×250, 500×500, and 750×750, respectively.

V. CONCLUSION

In this paper we have presented a single image deraining
method. Our solution first pre-processes the input image based
on the dark channel prior dehazing algorithm, so as to high-
light the rain streaks hidden in the in the distance (or “fog”).
After that, it separates the dehazed image into detail layer and
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Fig. 13: Rainy images with different cases such as rain in
different directions, heavy rain and light rain scenarios. (a)
Preprocessed image (b) Rainless ground truth. (c) The derained
image using our method.

base layer. Particularly, it uses the fuzzy broad learning to pro-
cess the high-frequency detail layer of the rainy image. Then,
the processed detail layer is combined with the base layer to
obtain a preliminary derained image. Finally, it superimposes
the details extracted from the dehazed image with a certain
transparency on the preliminary derained image, obtaining the
final result. We have conducted empirical study based on both
real and synthetic rainy images. Experimental results show
that our solution can generate high-quality derained images,
outperforming several state-of-the-art algorithms. Moreover,
our solution has a higher efficiency in terms of training time
and running time. A challenging problem is to jointly train
the dehazing and deraining based on the fuzzy broad learning
system, we leave this opening problem as the future work.
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