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Abstract—Logs are pervasive in modern computing systems,
and are valuable to service and system management. Neverthe-
less, with the rapidly growing size and complexity of computing
systems, the log volume is exploding, which makes automatic log
analysis imperative. Generally, in automatic log analysis, the first
and fundamental step is log parsing, to which a lot of effort has
been devoted. However, in most existing log parsing methods, log
messages are merely treated as plain text. In natural language
processing (NLP) area, it is a common practice to represent words
and sentences with vectors, then the similarity between two words
or sentences can be measured by the distance between their
vectors. Inspired by these, we put forward a novel log parsing
framework, named LPV (Log Parser based on Vectorization),
which performs log parsing by converting log messages and log
templates into vectors, with the help of a vectorization method
in NLP. LPV incorporates offline and online log parsing. In
the offline log parsing, the central idea is to first represent
log messages with vectors, so that the similarity between two
log messages can be measured by the distance between their
vectors, then we cluster log messages via clustering the vectors,
and finally we extract log templates from the resultant clusters.
By the end of the offline log parsing, each log template is
assigned with an average vector, so that in the online log parsing,
the similarity between an incoming log message and each log
template can also be measured by the distance between their
vectors. Extensive experiments have been conducted based on
several public log datasets to evaluate LPV with three different
vectorization methods. The results demonstrate that, with a
proper vectorization method, LPV performs competitive with
state-of-the-art log parsing methods, in both effectiveness and
efficiency.

Index Terms—Log parsing, log template extraction, log anal-
ysis, vectorization, service and system management.
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ClusterFileSystem: ServerFileSystem domain 
root2_tmp is no longer served by node node-225

(“ClusterFileSystem: ServerFileSystem domain * is no 
longer served by node *”, [“root2_tmp”, “node-225”]).
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Fig. 1. Illustration of parsing a log message. The parsing result is represented
by a tuple consisting of a log template and a list of variables.

I. INTRODUCTION

LOGS are common in modern computing systems while
they are very valuable resources. There exists rich in-

formation about the resident system in logs, and logs play
a very important role in the whole lifecycle of computing
systems [2], [3]. Traditionally, system designers and devel-
opers employ logging mechanism to record significant events
happened in the system, e.g., the start/stop of a service,
system state changes, etc. Meanwhile, system administrators
and maintainers heavily rely on logs to understand system
runtime status, when they detect and diagnose anomalies and
failures, such as software/hardware exceptions, warnings, and
errors [4]–[6]. On the other hand, with the growing scale
and complexity of computing systems, the log volume is
exploding, which makes it cumbersome, tedious, error-prone,
and even impractical to manually deal with the huge amount of
logs and mine useful information from them [7], [8], especially
for high-performance computing (HPC) and cloud computing
systems [9]–[13]. Thus, automatic log analysis is in urgent
need, because it can free us from the above dilemmas and ease
many management tasks, such as anomaly detection, failure
prediction, and root cause analysis of service and system issues
[14]–[22].

In typical automatic log analysis, the first and fundamental
step is log parsing, which aims to parse unstructured logs into
structured data [23], as logs are usually unstructured plain text
output by the “printf” or similar functions in C language
and the equivalents in other programming languages [24]–
[26]. Fig. 1 gives an illustration of log parsing, where the
log message in the upper box can be split into two parts:
the constant and the variable (the variable part is the text in
boldface). By log parsing we aim to obtain a log template,
which keeps the constant part literally while the variable part
is replaced with some wildcards (see the * in red color in
Fig. 1). The final result of parsing a log message is a log
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template, together with a list of variables which are replaced
by wildcards in the log template.

However, it is often nontrivial to distinguish the constant
part from the variable in a log message. In former literatures
and past practice, there roughly exist three types of log parsing
methods. The first type requires domain experts to go over
logs and offer rules such as regular expressions, which is
cumbersome, tedious, labor-intensive, and error-prone. The
second type dives into the source code to reach the correspond-
ing “print” statements of log messages [27], which can gain
accurate log templates theoretically, but requires the source
code to be available. The third type employs some heuristics
or machine learning and data mining techniques to figure
out the constant part automatically, which needs little domain
knowledge and does not need access to the source code [3],
[24], [25], [28]–[31]. In a nutshell, the third type of methods
make decisions based on the fact that, the constant part appears
in all log messages output by the same “print” statement, so
the subsequence contained in more log messages is more likely
to be the constant part. Thus, it is natural to treat log parsing
as a clustering problem, followed by extracting the longest
common subsequence (LCS) [32] of tokens from each cluster.

In natural language processing (NLP) area, it is a common
practice to represent words and sentences with vectors, then
the similarity between two words or sentences can be mea-
sured by the distance between two vectors. A log message
is a string of tokens and can also be deemed as a sentence.
The bag-of-words model [33] is a simple yet popular way
to represent texts with vectors, but it is not trivial to apply
this model to converting log messages into vectors, because
the length (number of tokens) of a log message is usually
small, while the vocabulary size (number of unique tokens)
of logs is likely very large [34], [35], leading to the Curse of
Dimensionality [30], [31] and high-dimensional sparse vectors.
In recent years, distributed representations of words (or word
embeddings) with a modest or low dimensionality, which are
trained on large corpora, have greatly benefited various NLP
tasks. For example, word2vec [36], [37] can learn high-quality
word embeddings, which capture syntactic and semantic word
relationships well; ELMo, furthermore, can learn contextual-
ized word representations, which model syntax, semantics,
and polysemy at the same time [38]. On the other hand,
current state-of-the-art log anomaly detection approaches (e.g.,
LogAnomaly [20], LogRobust [39], HitAnomaly [21]) propose
to represent each log template with a semantic vector based
on the distributed representations of its tokens, instead of
simply using a template index, to better detect anomalies.
But currently they rely on an existing log parsing method
(e.g., FT-tree [40], Drain [41]) to get log templates first, and
then represent each log template with a vector by encoding
each token with a distributed representation. One can easily
understand that it would be much convenient for log anomaly
detection if the log parsing method can return log templates
and the corresponding vectors together.

Inspired by the above, we put forward a novel log parsing
framework in this paper, whose basis is vectorization, i.e., rep-
resenting tokens, log messages, as well as log templates with
vectors, utilizing a vectorization method in NLP. In [1], we

proposed a log parser based on vectorization which is named
LPV, the vectorization method used there is word2vec. This
work extends LPV to a general framework, which can support
any vectorization method. For consistency, we also dub this
framework as LPV (Log Parser based on Vectorization), which
still incorporates offline and online log parsing. Briefly, as
for the offline log parsing, we first convert each textual log
message into a vector, with the help of a vectorization method,
e.g., bag-of-words, word2vec, ELMo, etc. Then, we cluster the
entire log messages via clustering their corresponding vectors.
Next, we extract one or more log templates from each cluster
of log messages, and merge similar log templates into a single
one to get fine-tuned log templates. In the end, we assign
each log template with an average vector, which is computed
based on the vectors of log messages sharing this template. As
for the online log parsing, we first convert an incoming log
message into a vector, just as in the offline log parsing. Then
we calculate the distance between this vector and every log
template’s vector. Subsequently, we can greatly accelerate the
log parsing by matching this incoming log message only with
a few closest log templates (in terms of the vector distance)
generated in the offline log parsing.

To summarize, this paper makes the following contributions:

• In the offline log parsing, our framework represents log
messages with vectors, and clusters log messages via
clustering their corresponding vectors. This enables us
to make full use of abundant history logs to achieve high
effectiveness.

• Our framework also supports online log parsing. We
assign each log template with an average vector, so that
the similarity between an incoming log message and a log
template can also be measured by the distance between
two vectors. This idea can accelerate online log parsing
by matching each incoming log message only with the
most possible log templates.

• We have implemented the framework using three different
vectorization methods, and conducted empirical study on
several public log datasets, which are widely used by
previous studies for evaluation. The experimental results
demonstrate that, with a proper vectorization method,
LPV performs competitive with state-of-the-art log pars-
ing methods, in both effectiveness and efficiency.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents our frame-
work LPV, including the overall workflow and details of each
phase. In Section IV, we first evaluate the performance of LPV
by comparing with state-of-the-art log parsing methods, then
we measure the impacts of different parameters. Finally, we
conclude our paper in Section V.

II. RELATED WORK

Log parsing is particularly important for automatic log
analysis, and has attracted a lot of interest from both academia
and industry in past years. Existing log parsing methods
roughly fall into three categories, i.e., the rule-based, the
source code-based, and the data-driven methods [42].
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A. Rule-based and Source Code-based Log Parsing Methods

The rule-based log parsing methods heavily rely on domain
experts to establish handcrafted rules, in forms like regular
expressions. Although straightforward, this kind of methods
require thorough understanding of the log formats, and a lot of
manual efforts are needed to build different rules for different
types of logs. Currently, a vast majority of industrial log
management and analysis software systems offer interfaces for
end users, to provide their customized log parsing rules, e.g.,
Splunk, ELK, Logentries, etc.

The idea behind the source code-based log parsing methods
is somewhat intuitive. If we can locate the “print” statement
of a log message in the source code, we could definitely get
its template. Xu et al. [27] employed such a method to extract
log templates for system problem detection. This kind of
methods bear two drawbacks: 1) the source code is not always
available, especially for commercial software, which limits the
application scope; 2) different programming languages may
have different logging grammars, and need different tricks to
get the templates.

B. Data-driven Log Parsing Methods

A lot of research efforts have been poured into the data-
driven log parsing. Our method LPV also belongs to this
category. The main techniques adopted by this kind of methods
are frequent pattern mining and clustering.

Frequent pattern mining in log parsing tries to figure out
the frequent words and patterns in a log dataset. The basic
observation is that, more frequent words are more likely to be
the constant. For example, in SyslogDigest [43], a sequence
of words with high frequencies are considered as a message
template. This method gets inspiration from signature abstrac-
tion in spam detection, and learns templates by constructing a
tree structure for each message type to describe the template
hierarchy, according to the frequencies of word combinations.
Similarly, FT-tree [40] also maintains a tree structure for each
message type, but it utilizes the frequencies of words rather
than that of word combinations, so it supports incremental
learning of templates. STE (statistical template extraction) [44]
gives higher scores for template words than parameters based
on statistics, then determines each word in a message to be a
template word or parameter via score clustering. Logram [45]
generates n-gram dictionaries to keep the frequency of each
unique n-gram in a log dataset, then identifies dynamically
generated tokens from low-appearing n-grams and replaces
them with wildcards to generate log templates. Another tech-
nique line works as follows, first all frequent words in a log
dataset are identified, then different clusters of log messages
are formed according to the frequent words contained in each
log message, and finally a log pattern (i.e., a log template) is
created for each cluster. Log parsing methods employing this
technique include SLCT [46], LogHound [47] and LogCluster
[3].

Clustering in log parsing is to cluster log messages cor-
responding to different templates into different groups, by
employing clustering algorithms or some kind of heuristics.
For example, LogTree [30] makes use of the format and

structural information of log messages in the clustering pro-
cess, via building semi-structural log messages and giving
different importance to different levels, and various clustering
algorithms can be plugged into it to generate system events.
LogSig [31] tries to partition all log messages into k groups
based on the term pairs generated for each log message, and
constructs the message signature for each message group.
IPLoM [28], [29] iteratively partitions the whole log dataset
into respective clusters through three steps (i.e., partition
by token count, partition by token position, and partition
by search for bijection, respectively), and finally produces a
message type description (i.e., a log template) for each cluster.
In [48], clusters are formed in an online manner according
to the log similarities between each arriving message and
each existing cluster. In brief, if the highest log similarity is
no less than a predefined threshold, the message is assigned
to the cluster with the highest similarity, otherwise a new
cluster is created from the message. Similarly, LogMine [49]
defines a distance between two log messages or patterns, and
inserts each log message or pattern into an existing cluster if
the distance between it and the representative of the cluster
is less than a threshold, or creates a new cluster otherwise.
HELO [50], unlike the above methods, consists of an offline
clustering process and an online one. In the offline clustering
process, HELO recursively finds a split column to divide log
messages into different clusters, until all clusters are stable,
and then identifies a group template for each cluster. In the
online clustering process, the group templates from the offline
process can be adapted according to incoming log messages.
Our method, LPV, initially proposed in [1], incorporates both
offline and online log parsing. The offline log parsing clusters
log messages by converting them into vectors, with the help
of word2vec, and then extracts log templates from the clusters.
The online log parsing converts each incoming log message
into a vector, and identifies its template from the templates
generated in the offline log parsing through vector distance. In
this journal version, we extend LPV to a general framework
which can support any vectorization method, and take bag-
of-words and ELMo as two additional examples. In addition,
extensive experiments were conducted to illustrate how the
parameters of LPV affect its effectiveness.

There are also other techniques used by the data-driven
log parsing methods. For example, MoLFI [51] formulates
log parsing as a multi-objective optimization problem, i.e.,
maximizing the number of log messages matched by each
template and the specificity of each template to a particular
type of event at the same time, and employs a multi-objective
genetic algorithm (NSGA-II [52]) to tackle the problem. Spell
[24], [25] utilizes an LCS-based approach, and achieves nearly
linear time complexity for most incoming log messages by
pre-filtering. Drain [41] utilizes a fixed-depth parse tree to
accelerate the log group search process, by log message length,
preceding tokens, and token similarity successively.

All in all, in most existing log parsing methods, log mes-
sages are merely treated as pure strings, and string matching
or string distance is the basis to accomplish log parsing.
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Fig. 2. Overall framework of LPV.

III. METHODOLOGY

In this section, we first give an overview of LPV, and then
cover its implementation details.

A. Overview of LPV

The core idea of LPV is to represent log messages as well
as log templates with vectors, so that the similarity between
two log messages or between a log message and a log template
can be measured by the distance between their corresponding
vectors.

Fig. 2 gives the overall framework of LPV, which consists
of an offline log parsing process and an online one. In the
offline log parsing, we first divide the entire log dataset
into separate clusters, by first representing log messages with
vectors utilizing some kind of vectorization method, and then
clustering the resultant vector set via a clustering algorithm.
Afterwards, we extract one or more log templates from each
cluster of log messages, and merge similar templates into a
single one to get the final fine-tuned templates. Finally, we
assign each log template with a template vector, which is
defined as an average vector of the vectors of all log messages
sharing the same log template. The online log parsing fully
leverages the outputs of the offline log parsing. Specifically,
for each incoming log message, we first convert it into a
vector, just as in the offline log parsing. Then, we calculate
the distance between this vector and each template vector, and
pick out the n closest template vectors (the n corresponding
templates are chosen as candidate templates). Finally, we
match the incoming log message with each candidate template,
and select the entirely matched one as the template of the
incoming log message, if such a candidate template exists;
otherwise, if there does not exist such a candidate template,
the log message itself is regarded as its template, and the actual
template can be extracted in later offline log parsing.

B. The Offline Log Parsing

To the offline log parsing, the input is an existing log dataset
collected over a period, and the outputs are: (i) a vocabulary
together with the vectors of all tokens, for vectorization
methods like bag-of-words and word2vec, or a pre-trained
model, for vectorization methods like ELMo; and (ii) a set
of log templates together with their corresponding template

TABLE I
SUMMARY OF TWO SUPERCOMPUTER LOG DATASETS (BGL AND HPC)a

Dataset Period #{OLM} #{ULM} #{USLM}

BGL 215 days 4,747,963 358,353 773
HPC 9 years 433,490 9,965 156
aCFDR Data, https://www.usenix.org/cfdr-data

vectors. Next, we explain each phase of the offline log parsing,
including Preprocessing, Vectorization, Clustering, and Log
Templates Extraction, as shown in Fig. 2.

1) Preprocessing: The aim of this phase is to reduce
the dataset size and vocabulary size, which is accomplished
through two operations: duplicates removal and common vari-
ables substitution.
I Duplicates removal. There often exist lots of repeated

log messages in a log dataset with a long time span. Note
that, here we only take the content field of each log message
into consideration, and exclude other fields like the timestamp,
the component name, etc. See Table I for an example, in
which BGL is a log dataset collected from a BlueGene/L
supercomputer located at Lawrence Livermore National Labs
(LLNL) and HPC is a log dataset collected from an HPC
system located at Los Alamos National Laboratory (LANL),
#{OLM}, #{ULM}, and #{USLM} refer to the total
number of original log messages, the number of unique
log messages after all repeated log messages have been re-
moved, and the number of unique log messages after common
variables substitution and further eliminating identical ones,
respectively. We can see from the 3rd and 4th columns (i.e.,
#{OLM} and #{ULM}) that, more than 90% of the log
messages in BGL and HPC are repeated. So by removing the
repeated log messages, we can dramatically reduce the dataset
size and avoid a large number of repeated manipulations.
I Common variables substitution. It is observed that the

huge number of variables (e.g., IP addresses, the node IDs
of a large-scale system, usernames, numbers, etc.) is a main
cause to the large vocabulary size of a log dataset. Although
we cannot identify all variables, or we would have accom-
plished log parsing, we do know some most possible formats
of variables, such as common variables like IP addresses,
numbers, etc. Therefore, in LPV we utilize some regular
expressions to substitute those common variables with a few
special tokens, e.g., substituting all IP addresses with a special
token “$$IPADDR$$”. After these substitutions, a lot of log
messages could be the same, and duplicates can be removed
again to get unique substituted log messages, since these
duplicates definitely have the same log template. In this way,
we not only avoid a large vocabulary size, but also reduce
the dataset size further (refer to the last column of Table I),
benefiting to the rest processing. It is worth noting that, (i) we
do not carry out common variables substitution in-place, the
original log messages stay as is; and (ii) we will extract log
templates from the original log messages.

To help understanding the Preprocessing phase, Fig. 3 gives
a simple illustration. It can be easily understood from the
figure that, by recording the indices of original log messages
and unique log messages, LPV enables us to trace original log

https://www.usenix.org/cfdr-data


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

index log message

0 Connection to 192.168.10.101

is established.

1 Connection to 192.168.10.102

is established.

2 Connection to 192.168.10.103

is established.

3 Connection to 192.168.10.102

is established.

4 Connection to 192.168.10.101

is established.

5 Connection to 192.168.10.102

is established.

index unique log message indices of log 

messages 

0 Connection to 192.168.10.101

is established.

[0, 4]

1 Connection to 192.168.10.102

is established.

[1, 3, 5]

2 Connection to 192.168.10.103

is established.

[2]

index unique substituted log message indices of unique 

log messages 

0 Connection to $$IPADDR$$

is established.

[0, 1, 2]

Fig. 3. A simple illustration of the Preprocessing phase of the offline log parsing.

messages throughout the offline log parsing.
2) Vectorization: In this phase, we try to represent each

unique substituted log message with a vector by two steps:
Word2Vector and Log2Vector. For log messages that have been
preprocessed into the same unique substituted log message,
they share the same log template, and thus can be represented
by an identical vector.

I Word2Vector. In this step we map each unique token to
a vector, utilizing some kind of vectorization method. Here
we take three vectorization methods as instances, i.e., bag-
of-words, word2vec, and ELMo. Specifically, we first split
each unique substituted log message into a list of tokens by
whitespaces and punctuation marks including “=”, “(”, “)”,
“[”, “]”, “:”, “?”, etc. Then, we build a vocabulary of these
tokens and sort them by frequency in descending order. Note
that punctuation marks are also treated as individual tokens,
as they always keep constant across all the log messages
output by the same “print” statement. Finally, (1) for bag-
of-words, we encode each token using a one-hot scheme,
i.e., representing each token with a sparse vector, whose
length is the vocabulary size, and all of its elements are 0’s
except the one at the position corresponding to the token,
which is set to 1. For example, assuming there are four
tokens in a vocabulary, then they can be encoded as follows:

1st token: [1, 0, 0, 0]
2nd token: [0, 1, 0, 0]
3rd token: [0, 0, 1, 0]
4th token: [0, 0, 0, 1]

(2) For word2vec, we operate as in our previous work [1].
We adopt the Skip-gram model architecture described in [37],
which is to predict the surrounding words of each given word
(the number of words to predict, to the left and right of
the given word, is called window size). We employ negative
sampling as an alternative to the hierarchical softmax, which
selects several negative samples for each data sample. But we
disable the subsampling of high-frequency tokens, because we
think they are more likely to be constant in log messages. In
addition, when training, we constrain the pair of input and
label tokens within a unique substituted log message, since
there exist no strong correlations between the tail tokens of
a unique substituted log message and the head tokens of the
next one. (3) For ELMo, we use the TensorFlow version1 to
train a 2-layer bidirectional language model (biLM) on a new

1https://github.com/allenai/bilm-tf

𝑽1 :

𝑽2 :

𝑽3 :

𝑽4 :

𝑽5 :

𝑽6 :

𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6

𝑽𝑙:

Word2Vector Log2Vector

+

Fig. 4. A simple illustration of the Vectorization phase of the offline log
parsing.

corpus (i.e., the set of unique substituted log messages from
a log dataset), and dump biLM embeddings for the entire set
of unique substituted log messages to a single file. Here each
layer of the biLM is a bidirectional LSTM. Then, we select
the top layer representation (LSTM output) of each token as
its vector.
I Log2Vector. In this step we compute a vector for each

unique substituted log message, by summing up all its tokens’
vectors. Generally, for a unique substituted log message l
which consists of n tokens [t1, t2, . . . , tn], assuming the vec-
tors of these tokens are V1,V2, . . . ,Vn respectively, then the
vector of l (denoted by Vl) is computed as follows:

Vl =
n∑

i=1

Vi (1)

It can be easily seen that, each token in a unique substituted
log message l makes a contribution to l’s vector Vl.

Fig. 4 shows the process of converting a simple unique
substituted log message l, which consists of 6 tokens (i.e.,
[t1, t2, t3, t4, t5, t6]), into a vector Vl. By utilizing a proper
vectorization method, we aim to achieve the goal that, vectors
of unique substituted log messages sharing the same template
are close in the vector space. In addition, by summing up
the vectors of all tokens in a unique substituted log message,
all unique substituted log messages’ vectors have the same
dimension. These features could be convenient to the following
Clustering phase.

3) Clustering: After representing each unique substituted
log message with a vector, we can calculate a distance between
any two, and cluster these unique substituted log messages
based on the distance, as shown by the simple illustration
in Fig. 5. Since we often do not know the number of log
templates in a log dataset in advance, so it is more desirable

https://github.com/allenai/bilm-tf
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vectors of unique 
substituted log messages 

unique substituted log message 𝑙𝑖

…
…

unique substituted log message 𝑙𝑗

unique substituted log message 𝑙𝑔

…
…

unique substituted log message 𝑙ℎ

unique substituted log message 𝑙𝑒

…
…

unique substituted log message 𝑙𝑓

clusters of unique 
substituted log 

messages

Fig. 5. A simple illustration of the Clustering phase of the offline log parsing.

to employ a clustering algorithm that does not need to specify
the number of clusters. In view of this, we adopt the Complete-
Linkage clustering method [53] and use Euclidean distance in
our implementation. The hierarchical/agglomerative clustering
process will be terminated when the minimum distance be-
tween any two clusters exceeds a threshold τd. We would like
to point out that, other clustering algorithms and distance types
may also be plugged into our framework.

4) Log Templates Extraction: Log templates will be ex-
tracted through three steps in this phase, i.e., Partition, Intra-
cluster Merge, and Inter-cluster Merge. Next, we address them
successively.

I Partition. For every cluster of unique substituted log
messages formed in the Clustering phase, we generate a
candidate log template for each of its members in this step.
Specifically, for each special token in a unique substituted
log message, we first extract all common variables previously
substituted by it, since we can trace the original log messages,
just as mentioned in the Preprocessing phase (cf. Section
III-B1). If all the variables are identical, then this special
token is replaced with the unique variable value; otherwise, it
is replaced with the wildcard. Taking Fig. 3 as an instance,
because the IP addresses substituted by “$$IPADDR$$”
in the unique substituted log message “Connection to
$$IPADDR$$ is established.” are not identical, the
candidate log template would be “Connection to * is
established.” if we choose “*” as the wildcard; on
the other hand, if all the IP addresses are the same,
say “127.0.0.1”, then we treat it as a constant, and
the candidate log template would be “Connection to
127.0.0.1 is established.”. The reason why we
call this step “Partition” is that, there will be a candidate log
template for each member of a cluster after this step, which
likes partitioning a cluster with multiple members into multiple
smaller ones.

This step brings the following two benefits, which can
improve the parsing effectiveness:
• Possible mistakes made by the previous common vari-

ables substitution can be corrected, i.e., constants which
have common variables’ formats and are substituted by
special tokens are restored to their original contents.

• If the distance threshold τd in the Clustering phase (cf.
Section III-B3) is too big, then there may be some
unique substituted log messages within a cluster which
do not share the same log template, this step generates
different candidate log templates for them and mitigates

(1) a  b  c  d  e

(2) a  f  c  g  e

(3) a  h  c  i  j  e

(4) b  i  j  h

(a)

(1) a * c * e

(2) a i  c * e

(b)
Fig. 6. Examples for merge. (a) Intra-cluster Merge; (b) Inter-cluster Merge.

the influence of a too big τd.

I Intra-cluster Merge. In this step we try to merge similar
candidate log templates within a cluster into a single one,
through the following six substeps:

• First, we split each candidate log template in a cluster into
tokens by whitespaces, equal signs (“=”), etc. We say the
tokens at the same position of each candidate log template
form a column, e.g., the first tokens of all candidate log
templates in the cluster form the first column. Here we
assume the number of columns of these candidate log
templates to be n.

• Second, for each column, e.g., the ith column (1 6
i 6 n), we find out the most frequent token ti and its
frequency fi (i.e., the number of occurrences) from the
tokens in this column. If there are multiple such tokens,
any one can be selected.

• Third, we first figure out all unique values and their
respective frequencies from the list [f1, f2, . . . , fn] ob-
tained in the previous substep. Suppose that there are
m unique values, denoted by uf1, uf2, . . . , ufm. Then
we iterate from the most frequent unique value to the
least frequent which are bigger than 1. In each iteration
(suppose the unique value being iterated is ufj > 1
(1 6 j 6 m)), we count the number of columns which
satisfy fi > ufj , and check the ratio of the count result
(i.e., the number of satisfied columns) over the total
number of columns (i.e., n). If the ratio is no less than a
threshold τr, then we stop the iteration and select the most
frequent token ti of each satisfied column as a constant
(go from the first column to the last successively), and
proceed to the fourth substep. If there are no constants
found after the whole iteration, then it means there is no
need to merge candidate log templates in this cluster, and
we quit the Intra-cluster Merge step for this cluster.

• Fourth, we pick out all candidate log templates, each of
which contains the selected constants successively. This
means that we do not require the constants to be in some
fixed columns, but only to keep the relative order, i.e.,
a constant selected from a column must appear before
constants from following columns.

• Fifth, we get a merged log template by concatenating all
constants in order, and inserting a wildcard between two
constants, if there is at least one token between them in
any of the candidate log templates picked out.

• Finally, for the remaining candidate log templates within
the cluster, we repeat the above operations to merge them
recursively.

Think of the four lines in Fig. 6a as a cluster, and let τr =
0.5, the Intra-cluster Merge of these lines goes as follows:
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• First, each of the four lines is split by whitespaces, and
the number of columns is 6 (determined by line (3)).

• Second, for the 1st column, the most frequent token t1
is a and its frequency f1 = 3. Similarly, t2 is b and
f2 = 1, t3 is c and f3 = 3, t4 is d and f4 = 1, t5 is e
and f5 = 2, t6 is e and f6 = 1. As for the 2nd or 4th
column, since the frequency of each token is 1, so any
token can be selected for each of these two columns.

• Third, now we get [f1, f2, f3, f4, f5, f6] =
[3, 1, 3, 1, 2, 1] ⇒ uf1 = 1, uf2 = 3, uf3 = 2, it
is obvious that the most frequent unique value bigger
than 1 is 3, and the number of columns satisfying fi > 3
is 2 (f1 and f3). Because 2/6 < τr, we iterate to the
less frequent unique value, i.e., 2, and the number of
columns satisfying fi > 2 is 3 (f1, f3, and f5). Since
3/6 = τr, so t1, t3, t5, i.e., a, c, e are selected as
constants.

• Fourth, lines (1), (2) and (3) are picked out, as they
contain a, c, e successively.

• Fifth, now we can get the result “a * c * e” if “*”
is chosen as the wildcard, because there is one token
between a and c, and one or two token(s) between c
and e, in the three lines picked out.

• Finally, since only line (4) is left, so we do not need to
merge it recursively.

I Inter-cluster Merge. If the distance threshold τd in the
Clustering phase (cf. Section III-B3) is too small, then some
unique substituted log messages sharing the same log template
may be clustered into different clusters, and we also need to
merge their candidate log templates into a single one. Briefly,
for each candidate log template in a cluster Ci, we merge
it with the ones in the closest cluster Cj (Cj can be easily
identified from the clustering result). The Inter-cluster Merge
is much simpler than the Intra-cluster Merge, since in this step
two candidate log templates are merged only if they have the
same length and match at each position. And two candidate log
templates match at one position if and only if their tokens at
this position are identical, or one of the tokens is the wildcard.
As for the result template, the value at each position is set as
follows:

• If the tokens of the two candidate log templates at this
position are identical, then the token is set as the result
template’s value at this position.

• Otherwise, one of the two tokens at this position should
be the wildcard, then the result template’s value at this
position is set to the wildcard.

For example, assume the two lines in Fig. 6b are two candidate
log templates belonging to two closest clusters, then the Inter-
cluster Merge result of them would be “a * c * e” if “*”
is the wildcard.

Once the log templates are extracted, for each log template,
we can get a set of unique log messages sharing this template,
because we can trace them through the unique substituted log
messages, as described in the Preprocessing phase (cf. Section
III-B1). Then we compute a template vector for each log
template. In our implementation, the template vector (denoted

by TV) of a log template T is defined as follows:

TV =
1

|Θ|
∑
l∈Θ

Vl (2)

where Θ is the set of unique log messages sharing this template
T, |Θ| is the number of elements in Θ, and Vl is the vector
of l. Recall that, unique log messages preprocessed into the
same unique substituted log message have an identical vector.

C. The Online Log Parsing

After the offline log parsing is finished, its outputs (i.e.,
a vocabulary together with the vectors of all tokens or a
pre-trained model, and all log templates together with their
template vectors) can be leveraged by the online log pars-
ing. Without loss of generality, assume that there are N
log templates (T1, T2, . . . , TN ) generated in the offline log
parsing, and their template vectors are TV1,TV2, . . . ,TVN

respectively, the online log parsing is performed through the
following four phases: Preprocessing, Vectorization, Candidate
Templates Selection, and Template Identification, as shown
in Fig. 2. Specifically, for each incoming log message l, the
online log parsing is done as follows:

• Preprocessing. This phase is similar to the Preprocessing
phase of the offline log parsing (cf. Section III-B1), but
we only need to perform common variables substitution
here, since there is only one log message and duplicates
removal is not needed.

• Vectorization. In this phase, the substituted log message
is first split into tokens. Then, for vectorization methods
like bag-of-words and word2vec, the vector of each token
is obtained by looking up the vocabulary together with
all tokens’ vectors from the offline log parsing; for
vectorization methods like ELMo, the pre-trained model
from the offline log parsing is used to compute the vectors
for all tokens on the fly. In this process, new tokens which
are unseen in the offline log parsing are mapped to a
special token UNK. For bag-of-words, it is treated just
like other tokens; for word2vec and ELMo, it is initialized
with a zero vector. Finally, this log message’s vector
Vl is calculated by summing up the vectors of all its
tokens according to equation (1), just as in the offline
log parsing.

• Candidate Templates Selection. In this phase, we cal-
culate the distance between the log message’s vector Vl

and each template vector TVi(1 6 i 6 N), and find
out the n closest template vectors to Vl. Note that the
distance type used here should be the same as the one
used in the Clustering phase of the offline log parsing,
i.e., Euclidean distance in our implementation (cf. Sec-
tion III-B3). Suppose the n closest template vectors to
Vl are TVi1,TVi2, . . . ,TVin, then their corresponding
templates Ti1, Ti2, . . . , Tin are called the top n candidate
templates.

• Template Identification. In this phase, we try to identify
the incoming log message l’s template from the top n
candidate templates. This is accomplished by matching



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

vector of the incoming log message
template vector

top 3 candidate templatesthe corresponding templates

the final template

the completely matched one

Fig. 7. A simple illustration of the Candidate Templates Selection and
Template Identification phases of the online log parsing.

TABLE II
THE THREE LOG DATASETS USED FOR EVALUATION

Dataset # log messages # ground truth templates

BGL 4,747,963 394
HPC 433,490 105
HDFS 11,175,629 29

l with each candidate template, and selecting the com-
pletely matched one as the result. Here, we think a log
message and a log template are completely matched, if
and only if they become identical after replacing each
wildcard in the log template with some character(s). For
example, suppose the line (1) in Fig. 6a is an incoming
log message, and the line (1) in Fig. 6b is one of
the top n candidate templates, then they are completely
matched, since they become identical after replacing the
first wildcard with b and the second wildcard with d in
the candidate template. On the other hand, if the incoming
log message does not match with any one of the top n
candidate templates, then the log message itself is treated
as its template and the actual template can be generated
in later offline log parsing.

Fig. 7 gives a simple illustration of the last two phases of the
online log parsing. Note that, a small n like 3 or 5 is enough,
as will be shown later in our experiments. This indicates
that, the online log parsing can be dramatically accelerated
by matching each incoming log message only with a few
candidate templates.

IV. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of LPV employing three different vectorization methods re-
spectively, i.e., bag-of-words, word2vec, and ELMo, by com-
paring with state-of-the-art log parsing methods. For simplic-
ity, we denote LPV employing bag-of-words as LPV[BoW], LPV
employing word2vec as LPV[W2V], and LPV employing ELMo
as LPV[ELMo], respectively. In addition, we measure how each
of the parameters impacts the effectiveness by taking LPV[W2V]

as an instance.

A. Experimental Settings

1) Log datasets: In addition to the two supercomputer log
datasets (BGL and HPC) mentioned in Table I, we also use

another dataset of HDFS logs (denoted by HDFS), which were
generated by a Hadoop cluster set up on 203 EC2 nodes,
through running sample Hadoop map-reduce jobs for 48 hours
[27]. Some key features about these three log datasets are
given in Table II, in which # log messages is the total number
of original log messages, and # ground truth templates
is the number of ground truth templates. The ground truth
templates of BGL and HPC are manually extracted and pro-
vided online2 by the authors of IPLoM, and that of HDFS
are provided online3 by the LogPAI team. Moreover, for
each of these log datasets, 2,000 log messages (together with
everyone’s ground truth template) are provided online3 by the
LogPAI team, which are randomly sampled from the entire log
dataset yet retain the key properties such as event redundancy
and event variety [42].

2) Baselines: We use three state-of-the-art log parsing
methods (i.e., Drain [41], Spell [25], and Logram [45]) as the
baselines. Drain utilizes a fixed-depth parse tree to guide log
template search. It traverses the tree by log message length
and preceding tokens to a leaf node, and selects the final
template by token similarity, or creates a new template if no
suitable one is found. Spell makes use of the following idea:
for log messages output by the same “print” statement, the
constants often take a major part, and the longest common
subsequence (LCS) of tokens is very likely to be the log
template. To improve efficiency, Spell employs an inverted
list and a prefix tree to avoid matching with all existing
strings. Logram leverages n-gram dictionaries to parse log
messages efficiently. It first generates an n-gram dictionary
which records the frequency of each unique n-gram in the log
dataset (n=2,3). Then, for each log message, if the frequency
of a 3-gram in it is less than a threshold, then this 3-gram
may contain dynamically generated tokens and is further
transformed into 2-grams. Afterward, for these 2-grams, if the
frequency of a 2-gram is less than another threshold, it is
considered to contain dynamically generated tokens. Finally,
dynamically generated tokens are identified from those low-
appearing 2-grams, and are replaced with wildcards to generate
the log template.

3) Evaluation metrics: We use four metrics (i.e.,
Accuracy, Precision, Recall, and F -measure) to measure
the effectiveness of LPV’s offline log parsing. Accuracy
is defined as the ratio of original log messages which are
correctly parsed; Precision is the ratio of generated log
templates which are the same as the ground truth; Recall is
the ratio of ground truth templates which are correctly figured
out; and F -measure is defined as follows:

F -measure =
2× Precision×Recall
Precision+Recall

Additionally, we use the time cost of parsing each entire log
dataset to measure the efficiency of LPV’s offline log parsing.

Because LPV’s online log parsing is based upon the outputs
of its offline log parsing, so the effectiveness of LPV’s online
log parsing is expected to be the same as that of its offline
log parsing. We verify this by testing whether LPV’s online

2https://web.cs.dal.ca/∼makanju/iplom/
3https://github.com/logpai/logparser

https://web.cs.dal.ca/~makanju/iplom/
https://github.com/logpai/logparser


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE III
DEFAULT VALUES OF LPV[BOW]’S PARAMETERS

Parameter τd τr

Default Value 1.5 0.5

TABLE IV
DEFAULT VALUES OF LPV[W2V]’S PARAMETERS

Parameter τd τr ES WS epochs NNS

Default Value 1.2 0.5 24 5 110 25

log parsing is capable of retaining the effectiveness of its
offline log parsing, which is accomplished by picking out the
2,000 log messages provided by the LogPAI team (mentioned
in Section IV-A1) from each log dataset and checking the
percentage of log messages whose true templates are among
the top 3 candidates. In addition, we measure the efficiency
of LPV’s online log parsing by the time cost of parsing these
2,000 log messages online.

4) Parameter setting: There are no parameters in LPV’s
online log parsing. In the offline log parsing, there are two
thresholds: the threshold τd in the Clustering phase (cf. Section
III-B3), which refers to the minimum inter-cluster distance
allowed; and the threshold τr in the Intra-cluster Merge of the
Log Templates Extraction phase (cf. Section III-B4), which
refers to the allowed minimum value in terms of # constants

# columns to
merge candidate log templates in a cluster, # constants is the
number of constants selected and # columns is the number
of columns in the cluster. In addition, for word2vec, we have
the following 4 key parameters: the embedding size (denoted
by ES), the window size (denoted by WS), the number of
epochs to train (denoted by epochs), and the number of
negative samples per training example (denoted by NNS); for
ELMo, we have the following 3 key parameters: the LSTM
hidden state size (denoted by LSTMHS), the LSTM output
size (denoted by LSTMOS), and the number of epochs to train
(denoted by epochs).

The default values of these parameters are given in Tables
III, IV, and V. The way we get these default values is as
follows: for each group of parameters corresponding to a vec-
torization method, we first give each parameter an empirical
value, then we tune one parameter at a time by varying its
value while keeping the others unchanged, after this we set the
parameter to the value which leads to the best effectiveness,
and go on with another parameter. We remark that, since
we aim to get a unified value for each parameter across all
datasets, so we did not choose the parameter values that lead
to the best effectiveness for each dataset individually, but the
ones which lead to outstanding effectiveness on all datasets.
We will explore how the parameters impact the effectiveness
in Section IV-D, by taking LPV[W2V] as an example.

5) Experimental environment: We conducted our exper-
iments on a Linux Server, which is equipped with a 24-
core Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 128GB
DDR4 RAM @ 2400 MHz, and NVIDIA GeForce GTX 1080
Ti 11G GPUs. The Linux distribution is Ubuntu 16.04.5 LTS

TABLE V
DEFAULT VALUES OF LPV[ELMO]’S PARAMETERS

Parameter τd τr LSTMHS LSTMOS epochs

Default Value 20 0.5 96 24 600

64-bit. We implement LPV with Python 3.5.2 and TensorFlow
1.10.1 with GPU support.

B. Effectiveness

As mentioned earlier, LPV’s online log parsing is expected
to have the same effectiveness as its offline log parsing. For
ease of presentation, we first evaluate the effectiveness of
LPV’s offline log parsing, by comparing with three state-of-
the-art log parsing methods (i.e., Drain, Spell, and Logram).
Then, we verify whether LPV’s online log parsing retains the
effectiveness of its offline log parsing.

1) The offline log parsing: Fig. 8 presents the effectiveness
comparison among Drain, Spell, Logram, and LPV employ-
ing three different vectorization methods (i.e., bag-of-words,
word2vec, and ELMo) on the three log datasets (BGL, HPC,
and HDFS). To avoid bias possibly caused by the randomness
of the vectors from word2vec and ELMo, each metric value
used to plot a bar of LPV[W2V] or LPV[ELMo] is the average of 5
repeated runs, and the maximum and minimum values in these
runs are marked out by two short horizontal lines at the top
of the bar. The reason why the accuracies of Logram reported
here have a large margin with those in the original paper is
that, for each log dataset, the original paper only used the
2,000 log messages provided by the LogPAI team (mentioned
in Section IV-A1) to evaluate the accuracy of Logram, while
we used the entire log dataset.

We can observe that, even with a simple vectoriza-
tion method, LPV[BoW] achieves a competitive performance.
It outperforms Drain, Spell, and Logram in three metrics
(Accuracy, Recall, and F -measure) on BGL, in all four
metrics on HPC, and in three metrics (Accuracy, Precision,
and F -measure) on HDFS. What’s more, LPV[BoW] achieves
the best Recall on BGL, and the best Accuracy, Precision,
and F -measure on HDFS. These indicate that, log templates
of these three log datasets can be effectively distinguished just
by the tokens contained in each template.

On the whole, LPV[W2V] has the best effectiveness on BGL: it
achieves the best Accuracy, Precision, and F -measure, and
its Recall is the second best. On HPC, LPV[W2V] outperforms
Drain, Spell, and Logram in all four metrics, and is on par
with LPV[BoW] and LPV[ELMo]. On HDFS, LPV[W2V] has the best
Accuracy, and is competitive with the best ones in the other
three metrics.

As to LPV[ELMo], its effectiveness is not so attractive on BGL,
but it is still competitive with Spell and is much better than
Drain and Logram in all four metrics. On HPC, LPV[ELMo] has
obvious fluctuations in Precision, Recall, and F -measure.
Nevertheless, the averages are better than the others, and the
lower bounds are still better than the corresponding metric
values of Drain, Spell, and Logram. On HDFS, LPV[ELMo] has
the best Accuracy, Precision, F -measure and the second
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Fig. 8. Effectiveness comparison among Drain, Spell, Logram, and LPV employing three different vectorization methods, on the three log datasets.

TABLE VI
EFFECTIVENESS VERIFICATION OF LPV’S ONLINE LOG PARSING

BGL HPC HDFS

LPV[BoW]

No Match 206 96 0
Top 1 1794(100%) 1903(99.95%) 2000 (100%)
Top 3 1794(100%) 1904(100%) 2000 (100%)

LPV[W2V]

No Match 199 84 0
Top 1 1793 (99.56%) 1915 (99.95%) 2000 (100%)
Top 3 1801 (100%) 1916 (100%) 2000 (100%)

LPV[ELMo]

No Match 202 84 0
Top 1 1790 (99.56%) 1913 (99.84%) 2000 (100%)
Top 3 1798 (100%) 1916 (100%) 2000 (100%)

best Recall. ELMo uses a complicated language model, and
the results here make us to believe that the three log datasets
are not large enough to train the model well.

All in all, the effectiveness results aforementioned validate
the feasibility and superiority of our framework to employ
vectorization methods in offline log parsing.

2) The online log parsing: To verify whether LPV’s online
log parsing retains the effectiveness of its offline log parsing,
for each log dataset, we operate as follows: first, we pick
out the 2,000 log messages provided by the LogPAI team
(mentioned in Section IV-A1) from the dataset, and perform
offline log parsing with the rest log messages; then, we
perform online log parsing with the 2,000 log messages, and
check for each log message whether its ground truth template
is among the top 3 candidates. Table VI gives the results of
LPV[BoW], LPV[W2V], and LPV[ELMo]. In this table, ‘No Match’
stands for the number of log messages, whose ground truth
templates are not generated in the offline log parsing; and
‘Top n’(n=1, or 3) refers to the number (and percentage) of
log messages, for each of which the ground truth template is
among the top n candidates.

We can see that, for LPV[BoW], LPV[W2V], and LPV[ELMo] on
each of the three log datasets, except for the log messages
whose ground truth templates are not generated in the offline
log parsing, the others’ ground truth templates are all among
the top 3 candidates, and for more than 99% of them, the
ground truth template is exactly the top 1 candidate.

Therefore, it can be asserted that, LPV’s online log parsing
completely retains the effectiveness of its offline log parsing,
and often needs to match the incoming log message only
with the top 1 or top 3 candidate template(s), instead of
matching with all existing log templates, which is beneficial
to improving the parsing efficiency. What’s more, the high
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Fig. 9. Time cost comparison of parsing each entire log dataset among Drain,
Spell, Logram, and LPV employing three different vectorization methods. The
upper bars with shadow stand for the model training time.

percentage of ‘Top 1’ (more than 99%) indicates that, it is
feasible in online log parsing to measure the similarity between
an incoming log message and a log template by the distance
between their corresponding vectors.

C. Efficiency

1) The offline log parsing: Fig. 9 gives the time cost
comparison of parsing each entire log dataset among Drain,
Spell, Logram, and LPV employing three different vectoriza-
tion methods (i.e., bag-of-words, word2vec, and ELMo). Each
number used to plot a bar is the average time cost of 5 repeated
runs. And for LPV[W2V] and LPV[ELMo], the model training time
on each dataset is marked out by the upper bar with shadow.

We can see that Logram is the fastest on all the three
log datasets, which owes to its n-gram dictionaries kept
in memory. But its relatively low effectiveness (Accuracy,
Precision, Recall, and F -measure) on each log dataset (cf.
Fig. 8) indicates that, simply using the frequencies of n-grams
may not perform well when parsing large log datasets. LPV[BoW]

is much faster than Drain and Spell on BGL and HPC, and is
a little bit slower than them on HDFS. As to LPV[W2V] and
LPV[ELMo], if the model training time is excluded, which is
possible if there are token vectors off the shelf provided by
others, just like in the NLP area, then they can be even faster
than LPV[BoW]. All these show the competitive efficiency of
LPV’s offline log parsing.

2) The online log parsing: For LPV, we operate as in
Section IV-B2. For Drain, Spell, and Logram, we run them
with the 2,000 log messages provided by the LogPAI team
(mentioned in Section IV-A1) as input for each log dataset.
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TABLE VII
TIME COST COMPARISON OF PARSING 2,000 LOG MESSAGES ONLINE

AMONG DRAIN, SPELL, LOGRAM, AND LPV EMPLOYING THREE
DIFFERENT VECTORIZATION METHODS (UNIT: SECONDS)

BGL HPC HDFS

Drain 0.2765 0.2544 0.2805
Spell 0.3200 0.2770 0.3094
Logram 0.0719 0.0402 0.0890
LPV[BoW] 1.3183 0.2624 0.3734
LPV[W2V] 0.2365 0.1334 0.2593
LPV[ELMo] 10.7195 3.8558 4.3452

Table VII gives the time cost comparison of parsing these
2,000 log messages online among Drain, Spell, Logram, and
LPV employing three different vectorization methods (i.e.,
bag-of-words, word2vec, and ELMo), and each number in the
table is the average time cost of 10 repeated runs.

It can be seen that, Logram is again the fastest on all
the three log datasets. Except for Logram, on each of the
three log datasets, LPV[W2V] is the fastest, and its average time
cost of parsing a log message is less than 0.2 milliseconds.
LPV[BoW] is competitive with Drain and Spell on HPC and
HDFS, but is slower than them on BGL. For the bag-of-
words model, the vector dimension is the vocabulary size,
which is in hundreds for HPC and HDFS, while in thousands
for BGL. The lower efficiency of LPV[BoW] to that of LPV[W2V]

demonstrates the advantage of employing lower-dimensional
vectors in log parsing. LPV[ELMo] is much slower than the
others, because for each incoming log message, it computes
representations for the tokens of the log message on the fly,
using the pre-trained model from the offline log parsing, which
is rather computationally expensive.

D. Impacts of Different Parameters

To evaluate how each of the parameters influences the
effectiveness of LPV, we take LPV[W2V] as an instance, and vary
one parameter while keeping the others with the default values
listed in Table IV, since LPV[W2V] has outstanding effectiveness
and higher efficiency than LPV[BoW] and LPV[ELMo] on all the
three log datasets. The value changes of the four metrics
(Accuracy, Precision, Recall, and F -measure) on the three
log datasets (BGL, HPC, and HDFS) when varying different
parameters are shown in Figs. 10, 12∼16. Again, to avoid bias
possibly caused by the randomness of the vectors, all metric
values used to plot these figures are the average of 5 repeated
runs.

1) Impact of τd: Fig. 10 shows the effect when varying
parameter τd. It can be seen that, on HDFS, the performance
keeps stable; while on BGL and HPC, the performance is not
so good when τd is too small or too big. Intuitively, a small τd
may partition log messages having the same log template into
different clusters, while a large τd may partition log messages
having different templates into a single cluster, both do harm to
the performance. However, the fluctuation of the performance
is somewhat mild, which validates the effective design of the
three steps (i.e., Partition, Intra-cluster Merge, and Inter-cluster
Merge) in the Log Templates Extraction phase (cf. Section
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Fig. 10. Impact of τd on LPV[W2V]’s effectiveness.

III-B4). To explore this deeper, Fig. 11 shows the number
of clusters changed in various stages throughout the offline
log parsing, with different τd’s, where # initial clusters
is the number of clusters formed after the Clustering phase,
# clusters partitioned and # clusters merged are the
number of clusters “partitioned into smaller clusters” and
the number of clusters merged into larger clusters (includ-
ing Intra-cluster Merge and Inter-cluster Merge) respectively,
and # final clusters is the number of final clusters, also
the number of templates generated, since a log template is
extracted from each of the final clusters. We can observe that
the Log Templates Extraction phase keeps the number of final
clusters from changing sharply, weakening the influence of
τd to some extent. Especially for HDFS, the number of final
clusters keeps the same when varying τd, which leads to a
stable performance.

2) Impact of τr: From Fig. 12, we can see that LPV[W2V]’s
effectiveness is sensitive to parameter τr. As mentioned in
Section IV-A4, τr is the lower bound of # constants

# columns to merge
candidate log templates in a cluster. If it is too small, then less
tokens in a log template have to be constant, causing more
log messages to share the same log template, which is too
general. If it is too big, then more tokens in a log template
have to be constant, causing less log messages to have the
same log template, which is too specific. Both cases lead to
poor effectiveness. This correlation is not so strong on HDFS,
this is because there are only 29 ground truth templates in
HDFS, and it is relatively easy to distinguish these templates.

3) Impact of ES: Fig. 13 shows the impact of parameter
ES. We can see that, the performance is stable on the whole
except when ES is too small, in which case the vectors are
not able to express and distinguish different tokens effectively,
especially for BGL and HPC. But if ES is too big, the perfor-
mance may slightly drop down, this is because a larger em-
bedding size introduces more randomness, thus more training
is needed to get stable vectors. Nevertheless, from the figure
we can see that, it is feasible to represent tokens in a large
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Fig. 11. Variation of the numbers of clusters in different stages when varying τd.
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Fig. 12. Impact of τr on LPV[W2V]’s effectiveness.
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Fig. 13. Impact of ES on LPV[W2V]’s effectiveness.
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Fig. 14. Impact of WS on LPV[W2V]’s effectiveness.

log dataset with low-dimensional vectors, which is beneficial
to the parsing efficiency, because lower-dimensional vector
arithmetic is less computationally expensive. In addition, this
confirms the validity of the operations in the Preprocessing
phase of the offline log parsing to reduce the size of the dataset
and vocabulary (cf. Section III-B1).

4) Impact of WS: For parameter WS, a small value de-
grades the performance, as shown in Fig. 14. It can be easily
understood that, a larger window size can capture syntactic
and semantic word relationships better, since more neighbors
are utilized to encode each token into a vector; and a small
window size may lose some significant context information,
harming the quality of the vectors. But the impact of WS
on the effectiveness is somewhat subtle, meaning that there
are not very strong relationships between neighbor tokens
in a log message. Indeed, log messages are commonly free
texts without any mandatory schemas or grammar rules, since
developers can almost output any strings into log files. This
is also confirmed by the fine effectiveness of LPV[BoW].

5) Impact of epochs: As to parameter epochs, we find that
if it is too small, then the performance is not so good, as
shown in Fig. 15. This is mainly due to that, the syntactic
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Fig. 15. Impact of epochs on LPV[W2V]’s effectiveness.
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Fig. 16. Impact of NNS on LPV[W2V]’s effectiveness.

and semantic word relationships may not be well captured
by the tokens’ vectors, when the model is without sufficient
training. But a bigger epochs does not necessarily lead to
better performance, since the performance would be stable
after enough epochs of training.

6) Impact of NNS: Fig. 16 indicates that parameter NNS
has little impact on LPV[W2V]’s effectiveness, which validates
the use of negative sampling in word2vec, and indicates that
a small NNS is enough to get good effectiveness on the three
log datasets.

The impacts of the four key parameters of word2vec (ES,
WS, epochs, and NNS) on the effectiveness of LPV[W2V] verify
that, the quality of token vectors does have impact on the
result of this log parsing method based on vectorization, which
indicates that we can get better effectiveness through higher-
quality vectors.

It should be noted that, Accuracy is defined based on the
number of original log messages, while Precision, Recall,

and F -measure are defined based on the number of log
templates. Therefore, they do not necessarily follow the same
trend, because the number of log messages sharing a log
template may differ greatly for different log templates.

V. CONCLUSION

In this paper, we proposed a novel log parsing framework
based on vectorization, which is called LPV, and implemented
with three different vectorization methods (i.e., bag-of-words,
word2vec, and ELMo). Different from prior log parsing meth-
ods, LPV represents log messages and log templates with
vectors, so that the similarity between two log messages or
between a log message and a log template can be measured by
the distance between two vectors. LPV incorporates offline and
online log parsing. More specifically, in the offline log parsing,
LPV clusters log messages via clustering their corresponding
vectors, and then extracts log templates from the resultant
clusters; in the online log parsing, LPV picks out several
closest (most possible) log templates for each incoming log
message in terms of vector distance, and accelerates log
parsing by matching the incoming log message only with these
selected templates, instead of with all existing log templates.
Since the online log parsing is based upon the outputs of the
offline log parsing, so LPV enables us to make full use of
history logs to achieve high effectiveness in the offline log
parsing, and ensure high efficiency in the online log parsing at
the same time. We have conducted comprehensive experiments
based on three public log datasets, which have been widely
used by previous works for evaluation, and the results validate
the feasibility and competitiveness of our framework.
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[53] A. Großwendt and H. Röglin, “Improved analysis of complete-linkage
clustering,” Algorithmica, vol. 78, no. 4, pp. 1131–1150, 2017.

Tong Xiao received the bachelor’s degree in soft-
ware engineering from the North University of
China, Taiyuan, China, and the master’s degree in
computer science from the National University of
Defense Technology, Changsha, China. He is cur-
rently working toward the PhD degree at the College
of Computer Science and Electronic Engineering,
Hunan University, Changsha, China. His research
interests include log analysis, anomaly detection,
failure prediction, data mining, and deep learning.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

Zhe Quan received the PhD degree in computer
science from the University de Picardie Jules Verne,
France. He is currently a professor at the College
of Computer Science and Electronic Engineering,
Hunan University (HNU), Changsha, China. Before
joining HNU, he worked at the National Univer-
sity of Defense Technology, Changsha, China, and
worked as a postdoctoral research fellow at the
Berkeley and Livermore Lab of the University of
California, United States. His main research interests
include machine learning, artificial intelligence, par-

allel and high-performance computing, etc. He has published a set of research
papers in venues such as IEEE TPDS, AAAI, IJCAI, ICSC, BIBM, etc.

Zhi-Jie Wang received the PhD degree in computer
science from the Shanghai Jiao Tong University,
Shanghai, China. He is currently an associate profes-
sor at the College of Computer Science, Chongqing
University (CQU), Chongqing, China. His current
research interests include data mining, artificial in-
telligence, databases, machine learning, etc. He has
published a set of research papers in these fields
including IEEE TKDE, IEEE TPDS, IEEE TMM,
IEEE TALSP, IEEE TCSS, IJCAI, AAAI, ICDM etc.
He is a member of IEEE, ACM, and CCF.

Kaiqi Zhao received the PhD degree from the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore. He
is currently an assistant professor at the School
of Computer Science, the University of Auckland,
Auckland, New Zealand. Prior to that, he worked
as a Research Fellow at the Singtel Cognitive and
Aritificial Intelligence Lab for Enterprise, Nanyang
Technological University, Singapore. He has pub-
lished over 20 research papers in venues includ-
ing SIGMOD, VLDB, ICDE, KDD, EDBT, AAAI,

CIKM, VLDB Journal, etc. His current research interests include spatio-
temporal data mining, mining social media, text mining and knowledge
discovery, and machine learning.

Xiangke Liao received the BS degree from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 1985, and
the MS degree from the National University of
Defense Technology, Changsha, China, in 1988. He
is a Full Professor of the College of Computer,
National University of Defense Technology. His
research interests include parallel and distributed
computing, high-performance computer systems, op-
erating systems, cloud computing, and networked
embedded systems.

Huang Huang received the BSc degree from the
School of Information Science and Engineering,
Harbin Institute of Technology, in 2008, the MSc
degree from the College of Engineering, Shantou
University, in 2011, and the PhD degree from the
College of Computer, National University of De-
fense Technology, under the supervision of Prof. Y.
T. Lu. He is currently a post-doctor at the College of
Computer Science and Electronic Engineering, Hu-
nan University. His research interests include large-
scale distributed storage, parallel I/O optimization,

fault information collection and prediction.

Yunfei Du received the BS degree from the Beijing
Institute of Technology, Beijing, China, and the
PhD degree from the National University of De-
fense Technology, Changsha, China. He is now the
Chief Architecturer for cluster computing in Huawei
Technologies Co., Ltd. His research interests focus
on parallel and distributed systems, fault tolerance,
and scientific computing. He has published a set
of research papers in venues such as IEEE TPDS,
AAAI, PACT, ICCAD, etc.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, Wuhan, China, in
2003. He was a Visiting Scholar with the University
of Illinois at Urbana-Champaign, Champaign, IL,
USA, from 2004 to 2005. He is currently a Full
Professor of Computer Science and Electronic En-
gineering with Hunan University, Changsha, China,
and also the Deputy Director of the National Su-
percomputing Center, Changsha. He has served on
the editorial boards of the IEEE Transactions on

Parallel and Distributed Systems, the IEEE Transactions on Computers, the
IEEE Transactions on Sustainable Computing, and the IEEE Transactions
on Industrial Informatics. His current research interests include parallel
computing, cloud computing, big data computing, and neural computing.


	Introduction
	Related Work
	Rule-based and Source Code-based Log Parsing Methods
	Data-driven Log Parsing Methods

	Methodology
	Overview of LPV
	The Offline Log Parsing
	Preprocessing
	Vectorization
	Clustering
	Log Templates Extraction

	The Online Log Parsing

	Evaluation
	Experimental Settings
	Log datasets
	Baselines
	Evaluation metrics
	Parameter setting
	Experimental environment

	Effectiveness
	The offline log parsing
	The online log parsing

	Efficiency
	The offline log parsing
	The online log parsing

	Impacts of Different Parameters
	Impact of d
	Impact of r
	Impact of ES
	Impact of WS
	Impact of epochs
	Impact of NNS


	Conclusion
	References
	Biographies
	Tong Xiao
	Zhe Quan
	Zhi-Jie Wang
	Kaiqi Zhao
	Xiangke Liao
	Huang Huang
	Yunfei Du
	Kenli Li


