
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Task Scheduling for Energy Consumption
Constrained Parallel Applications on
Heterogeneous Computing Systems

Zhe Quan, Zhi-Jie Wang, Ting Ye, and Song Guo, Senior Member, IEEE

Abstract—Power-aware task scheduling on processors has been a research hotspot in computing systems. Given an application G
containing a set N of tasks {n1, ..., n|N|}, and a system containing a set U of processors {u1, ..., u|U|}, the power-aware task
scheduling generally refers to finding the appropriate processor and frequency for each task ni, so as to make sure that all tasks can
be finished efficiently and the overall energy consumption is guaranteed. In this paper, we study the problem of minimizing the
schedule length for energy consumption constrained parallel applications on heterogeneous computing systems, where the schedule
length refers to the time interval between starting the first task and finishing the last task. For this problem, existing work adopts a
policy that preassigns the minimum energy consumption for each unassigned task. Nevertheless, our analysis reveals that, such a
preassignment policy could be unfair for the low priority tasks, and it may not achieve an optimistic schedule length. Thereby, we
propose a new task scheduling algorithm that suggests a weight-based mechanism to preassign energy consumption for unassigned
tasks, and we provide the rigorous proof to show its feasibility. Further, we show that this idea can be extended to solve reliability
maximization problems with energy consumption constraint or with both deadline and energy consumption constraints, where the
reliability refers to the probability of executing application G without failures, and the deadline constraint refers to the “allowable”
maximum schedule length. We have conducted extensive experiments based on real parallel applications. The experimental results
consistently demonstrate that our proposed algorithms can achieve favourable performance, compared to state-of-the-art algorithms.

Index Terms—heterogeneous systems, energy consumption, parallel application, task scheduling, reliability

F

1 INTRODUCTION

COMPUTERS have been developed to achieve higher per-
formance over the past seven decades, due to the rapid

growing information technology (IT) demands in both in-
dustry and academia [2, 3, 4, 5, 6]. Computing systems offer
powerful computing and data storage ability, and thereby
they have been widely used for supporting industrial and
scientific workflows [7, 8, 9]. On the other hand, although
the performance of such systems has increased dramatically,
the power consumption has also increased. The increased
energy consumption causes severe economic, ecological,
and technical issues [3, 10, 11, 12]. A typical approach
to reducing power consumption in computing systems is
to use the power-aware software design [2, 3, 5, 13]. A
well-known mechanism, called dynamic voltage and frequency
scaling (DVFS), dynamically tunes the energy-delay tradeoff
[13, 14, 15]. As a result, power-aware task scheduling on pro-
cessors with variable voltages and frequencies has incurred
extensive studies [16, 17, 18, 19, 20, 21, 22, 23, 24].

• Zhe Quan, and Ting Ye are with the College of Information Science and
Engineering, Hunan University, Changsha, Hunan 410082, China. E-
mail: {quanzhe,ytcaro,lkl}@hnu.edu.cn,

• Zhi-Jie Wang is with (i) the School of Data and Computer Science,
Sun Yat-sen University, Guangzhou, China, (ii) the Guangdong Key
Laboratory of Big Data Analysis and Processing, Guangzhou, China,
and (iii) the National Engineering Laboratory for Big Data Analysis and
Applications, Beijing, China. E-mail: wangzhij5@mail.sysu.edu.cn

• Song Guo is with the Department of Computing, Hong Kong
Polytechnic University, Kowloon 999077, Hong Kong. E-mail:
song.guo@polyu.edu.hk

In the above works, some efforts were made to minimize
energy consumption while still meeting certain performance
goals. Others were made to maximize or minimize some
performance metric under certain energy consumption con-
straints. Our work belongs to the second category, and in
particular, we study the following problem: minimizing the
schedule length for energy consumption constraint parallel
applications on heterogeneous computing systems. Some
previous works [3, 25] considered this problem on the
homogeneous systems with shared memory, so they can-
not be applied to heterogeneous computing systems. Re-
cently, Xiao et al. [26] studied the problem on the hetero-
geneous computing systems, and developed an algorithm
called MSLECC (minimizing schedule length of energy
consumption constrained). Its basic idea is to guarantee the
overall energy consumption constraint by passing all energy
constraint on each task and preassigning the minimum
energy consumption for each unscheduled task, and then
minimize the schedule length in a heuristic manner. In
this way, the algorithm achieves a favourable performance.
Nevertheless, we observe that, for the low priority tasks, the
preassignment policy in MSLECC could be unfair, which
may lead to less optimistic results. This is because such
a policy could make the available energy consumption
for low priority tasks far less than that for high priority
tasks, and so the low priority task may have to choose the
processor that could incur a long scheduling length, due
to the energy consumption constraint. Motivated by this,
we develop a new approach called ISAECC, whose key
idea is to use a weighted energy preallocation, instead of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

a fixed scheme (i.e., the minimum energy preallocation), for
unscheduled tasks. The rationale behind our mechanism is
to make the energy consumption allocation more relevant
to the characteristics of task itself (e.g., energy consumption
level) and reduce the influence of priority order on energy
consumption allocation. We provide the rigorous proof to
show the feasibility of our proposed approach.

In addition, we show that the above idea can be extended
to solve another interesting problem — maximizing reliabil-
ity for energy consumption constrained parallel applications
on heterogeneous computing systems, where the reliability
refers to the probability of executing application G without
failures. High reliability is important and previous studies
[27, 28, 29] indicated that, the DVFS technique may cause
a sharp rise in transient failures of processors, consequently
affecting the reliability. Although we only simply extend the
above idea, the adapted algorithm can achieve a favourable
performance for the reliability maximization problem. This
essentially reflects, from another perspective, the effective-
ness of the weighted energy preallocation mechanism. To
further demonstrate the usefulness of the above idea, we
also extend it to solve another reliability maximization prob-
lem which considers two constrains: deadline and energy
consumption constraints, where the deadline constraint
refers to the “allowable” maximum schedule length [11, 12].
The main idea for solving this problem is to apply our
ISAECC algorithm (mentioned earlier) to get a preliminary
scheduling result at first, and then “reclaim” the slack time
between the deadline constraint and the schedule length to
reallocate the tasks. In this way, one can achieve the large
reliability as far as possible, while the deadline and energy
consumptions are still satisfied. To summarize, the main
contributions of this paper are as follows.

• We design a preassignment strategy that adopts a
weight-based mechanism. Also, we provide the rigor-
ous proof to show its feasibility.

• We develop a new task scheduling algorithm to
minimize the schedule length while considering the
energy consumption constraint.

• We extend the above idea to solve reliability max-
imization problems with energy consumption con-
straint or with both deadline and energy consump-
tion constraints.

• We evaluate our proposed algorithms based on real
parallel applications. The experimental results con-
sistently demonstrate the superiorities and competi-
tiveness of our algorithms.

The rest of the paper is organized as follows. Section 2
reviews prior works most related to ours. Section 3 gives
some preliminaries related to the problem of minimizing
the schedule length for energy consumption constrained
parallel applications. In Section 4, we present our approach
for this problem. In Section 5, we introduce two reliability
maximization problems and present our algorithms, respec-
tively. In Section 6, we discuss and analyze the experimental
results. Finally, we conclude the paper in Section 7.

2 RELATED WORK

Power-aware task scheduling is an important and hot topic
in parallel and distributed computing. This section reviews

previous works most related to ours. For ease of exposition,
we classify previous works into two categories: (i) schedule
length based task scheduling, i.e., focusing more attention on
minimizing the schedule length when executing power-
aware task scheduling; and (ii) reliability based task scheduling,
i.e., focusing more attention on obtaining the high reliability
when executing power-aware task scheduling.

2.1 Schedule Length Based Task Scheduling
Since the DVFS-based energy-efficient design technique was
first introduced in [2], it has been widely used in energy-
related task scheduling problems [3, 30, 31, 32]. For example,
the work [30] considered the energy-aware task scheduling
problem as a combinatorial optimization problem. The work
[3] studied the problem of minimizing schedule length
for energy consumption constrained sequential applications.
Later, this problem is extended to the context of constrained
parallel tasks [25]. Moreover, in [32] the authors considered
three constraints (i.e., energy, deadline and reward). Re-
cently, a survey [33] summarizes various scheduling strate-
gies in data center networks. These works were mainly
interested in data center networks or homogeneous systems
with shared memory, and so different from our work.

Actually, many previous works [32, 34, 35] studied
task scheduling problems on heterogeneous systems. For
example, Huang et al. [36] proposed an enhanced energy-
efficient scheduling algorithm to reduce energy consump-
tion while meeting the service level agreement. The work
[35] proposed a DVFS-enabled energy-efficient workflow
task scheduling algorithm. Rusu et al. [32] suggested an ef-
ficient algorithm for minimizing energy consumption while
meeting multiple constraints. Generally, the problems stud-
ied in these works are opposite to our problem, since we
are interested in minimizing scheduling length under cer-
tain energy consumption constraints, instead of minimizing
energy consumption while meeting other constraints.

Besides the above works, there are many other excellent
works that could be much more related to ours. For exam-
ple, Lee et al. [23] proposed energy-conscious scheduling
(ECS) for parallel application on heterogeneous distributed
systems to implement joint minimization of schedule length
and energy consumption. They focused on addressing the
trade-off between the quality of schedules and energy
consumption. In [37], the authors suggested an approach
that uses the constrained critical paths (CCPs) to accom-
plish better schedules. A representative work [38] proposed
the Heterogeneous Earliest Finish Time (HEFT) algorithm,
which was developed for minimizing the schedule length
on heterogeneous systems. Their model is the same to ours,
yet they did not fully consider the energy consumption con-
straint. The work most closet to ours could be [26], in which
both the problem and the used model are the same to ours.
Their paper proposed an algorithm called MSLECC. The
major feature of their method is to preassign the minimum
energy consumption for each unassigned task to satisfy
the constraint. Instead, our work proposed a weight-based
mechanism, achieving a better performance.

2.2 Reliability Based Task Scheduling
Regarding reliability based task scheduling, there are many
excellent works. Some prior works [39, 40, 41, 42, 43, 44,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

45] focused on leveraging backup and redundant devices to
improve the reliability. These works are obviously different
from ours. There are also some works that did not leverage
backup and redundant devices to improve the reliability. For
example, the work [29] studied the problem of maximizing
reliability of real-time embedded applications under hard
energy constraint. Tang et al. designed a reliability-driven
scheduling architecture in grid systems [46]. Generally, these
works are based on simple models which cannot precisely
reflect heterogeneous computing systems.

Some previous works investigated the problems which
are (generally) opposite to our problem. For example, the
work [28] studied the energy and reliability scheduling co-
design problem for real-time cyber-physical systems; their
goal is to minimize total energy while guaranteeing reliability
constraints. Xie et al. [21] studied the problem of minimiz-
ing the resource cost for a reliable parallel application on
heterogeneous embedded systems. Zhu et al. [47] studied
reliability-aware energy management schemes to minimize
energy consumption while preserving the reliability.

There are also some works solving the problems similar
to, but essentially different from, our problem. For example,
The work [48] suggested an algorithm to pursue low en-
ergy consumption and high system reliability for workflow
scheduling. In [49], the authors considered both reliability
and execution time, and developed scheduling algorithms
to maximize reliability and minimize execute time.

We realize that the problem studied in [27] is consistent
with the problem we considered. To maximize reliability
with energy conservation for parallel task scheduling, they
developed a Reliability Maximization with Energy Con-
straint (RMEC) algorithm, which incorporates three impor-
tant phases, including task priority establishment, frequency
selection, and processor assignment. The central idea of
RMEC is the reliability maximum energy (RME) conserva-
tive strategy. In brief, it selects a combination of processor
and frequency that can maximize the RME function (which
considers both energy and reliability), and then assigns such
processor and frequency to the current task. Although we
solve the same problem, our basic idea is to decompose
it into two sub-problems and adopts the weighted preas-
signment mechanism. Our method is clearly different from
theirs, and it achieved a better performance, as validated in
our experiments.

As for the deadline constraint, there are also many works
but they are more or less different from ours. For example,
the work [11] proposed the deadline, reliability, resource-
aware (DDR) algorithm to achieve minimum resources
while satisfying the deadline and reliability constraints.
Zhao et al. [50] presented an efficient method to maximize
the reliability under deadline and energy constraints on
a single processor. In contrast, our paper is interested in
such a problem on heterogeneous distributed systems. Xie
et al. [12] studied the problem of maximizing the reliability
under deadline constraint, and proposed FFSV2 algorithm.
Yet, their work did not consider the energy consumption
constraint. This article is a full version of the preliminary
work [1].

TABLE 1
Main notations and their descriptions

Notation Definition
c{i,j} Communication time between task ni and nj

w{i,k} Execution time of task ni running on the pro-
cessor uk with the maximum frequency

pred(ni) The set of direct predecessor tasks of task ni

succ(ni) The set of direct successor tasks of task ni

ζ{k,h} The failure rate per time unit of processor uk
with frequency f{k,h}

EST (ni, uk) The earliest start time of task ni executed on
processor uk

EFT (ni, uk, f{k,h}) The earliest finish time of task ni executed on
processor uk with frequency f{k,h}

LFT (ni, uk) The latest finish time of task ni executed on
processor uk

E(ni, uk, f{k,h}) The energy consumption of task ni executed on
processor uk with frequency f{k,h}

R(ni, uk, f{k,h}) The reliability of task ni executed on processor
uk with frequency f{k,h}

upr(i) The processor assigned to task ni

f{pr(i),hz(i)} The frequency assigned to task ni on processor
upr(i)

Egiven(ni) Energy consumption constraint of task ni

Epre(ni) The preassigned energy consumption for task ni

Egiven(G) Given energy consumption constraint of appli-
cation G

Dgiven(G) Given deadline constraint of application G
E(G) The total energy consumption of application G
SL(G) The final schedule length of application G
R(G) The final reliability of application G

3 PRELIMINARIES

In this section, we first introduce the models (Section 3.1),
and then describe the problem formally (Section 3.2). Finally,
we briefly introduce the method closest to ours, and reveal
its limitation (Section 3.3). For ease of reference, Table 1
summarizes the main notations.

3.1 Models
Following prior works [23, 26, 35, 36, 51], we use the directed
acyclic graph (DAG) to represent the application model. Let
U =

{
u1, u2, ..., u|U |

}
denote the set of processors, where

|U | is the number of processors. The DAG application model
is defined as G = {N,M,C,W}, where N denotes the set
of nodes in G, M denotes the set of communication edges,
C denotes the set of communication time, W is a matrix
with size |N |× |U |. In addition, we define the followings: (i)
each node ni ∈ N denotes a task; (ii) each edge m{i,j} ∈M
denotes the communication message from task ni to nj ; (iii)
c{i,j} ∈ C denotes the communication time of task ni and nj
; (iv) w{i,k} denotes the execution time of task ni running on
the processor uk with the maximum frequency; (v) pred(ni)
and succ(ni) denote the set of direct predecessor tasks and
the set of direct successor tasks of task ni, respectively; (vi)
nentry and nexit denote the task without predecessor and
without successor, respectively.

On the other hand, the power model used in this pa-
per follows that in [26, 52]. Specifically, the system power
consumption at frequency f is defined as:

P (f) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceff
m)

where Ps denotes static power (same to [26, 52], in this
paper we also do not consider it, since it is unmanageable),

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Pind and Pd denote frequency-independent and frequency-
dependent dynamic power, respectively, h denotes the sys-
tem state (h = 1 means the system is active, and h = 0
means it is inactive), Cef denotes the effective capacitance,
and m denotes the dynamic power exponent.

The minimum energy-efficient frequency, denoted by
fee, is defined as

fee =
m

√
Pind

(m− 1)Cef

Clearly, if the frequency of a processor ranges from the
minimum value fmin to the maximum value fmax, then the
actual frequency f should be in the interval [flow, fmax],
where flow = max(fmin, fee). In addition, since the pro-
cessors in the system are heterogeneous, we can define the
following sets:

• The set of Pind:
{
P{1,ind}, P{2,ind}, ..., P{|U |,ind}

}
;

• The set of Pd:
{
P{1,d}, P{2,d}, ..., P{|U |,d}

}
;

• The set of Cef :
{
C{1,ef}, C{2,ef}, ..., C{|U |,ef}

}
;

• The set of m :
{
m1,m2, ...,m|U |

}
;

• The set of actual efficient frequencies:
{
f{1,low}, f{1,α}, ..., f{1,max}

}
,{

f{2,low}, f{2,α}, ..., f{2,max}
}
,

...,{
f{|U |,low}, f{|U |,α}, ..., f{|U |,max}

}

This way, we can compute the energy consumption of
task ni executed on the processor uk with frequency f{k,h}
based on the following:

E(ni, uk, f{k,h}) = P{k,h} × w{i,k} ×
f{k,max}
f{k,h}

(1)

where P{k,h} = P{k,ind} + C{k,ef} × (f{k,h})
mk .

3.2 Problem Description
For ease of understanding the problem, we first clarify
several definitions.
Definition 1. Given a task ni executed on processor uk, its

earliest start time (EST) is denoted as EST (ni, uk), which
is computed as
EST(nentry,uk)= 0

EST(ni,uk)=max

(
avail[k], max

nj∈pred(ni)

{
AFT (nj)+c{i,j}

})
,

where avail[k] is the earliest available time while
processor uk is ready for executing a task, AFT (nj)
represents the actual finish time of task nj , and c{i,j}
refers to the communication time between task ni and
nj . In this paper, we assume c{i,j} = 0 when ni and nj
are assigned to the same processor.

Definition 2. The earliest finish time (EFT) of task ni executed
on processor uk with frequency f{k,h} is denoted as
EFT (ni, uk, f{k,h}), which is computed as

EFT (ni,uk,f{k,h})=EST (ni,uk)+w{i,k}×
f{k,max}
f{k,h}

(2)

We now describe the problem to be addressed. Specif-
ically, the scheduling problem discussed in this paper is

to find a proper processor and frequency for each task in
application G, so as to (i) generate the minimum schedule
length SL(G), where SL(G) = AFT (nexit); and (ii) ensure
the actual energy consumption of G, denoted by E(G),
is no larger than its given energy consumption constraint
Egiven(G). That is,

E(G) =

|N |∑
i=1

E(ni, upr(i), f{pr(i),hz(i)}) ≤ Egiven(G) (3)

where upr(i) and f{pr(i),hz(i)} denote the processor and
frequency assigned to task ni respectively, f{pr(i),hz(i)} ∈[
f{pr(i),low}, f{pr(i),max}

]
, upr(i) ∈ U and 1 ≤ i ≤ |N |.

Let Emin(G) and Emax(G) represent the minimum and
maximum energy consumption of application G, respec-
tively. They are calculated as

Emin(G) =

|N |∑
i=1

Emin(ni) (4)

Emax(G) =

|N |∑
i=1

Emax(ni) (5)

where the minimum and maximum energy consumption of
task ni are computed as

Emin(ni) = min
uk∈U

E(ni, uk, f{k,low}) (6)

Emax(ni) = max
uk∈U

E(ni, uk, f{k,max}) (7)

Note that, throughout this paper, we assume Emin(G) ≤
Egiven(G) ≤ Emax(G).

3.3 The MSLECC Method

In this subsection we review the existing method closest to
ours, and reveal its limitation through a running example.

I A brief review to the MSLECC algorithm. The MSLECC
algorithm is proposed in [26], and it consists of several
major steps: (i) it gets the sequence of tasks sorted by
the upward rank values (defined later); (ii) it preassigns the
minimum energy consumption for each unscheduled task;
(iii) it transfers the energy consumption constraint to that of
each task; and (iv) it traverses all processors and frequencies
to select a proper processor with the minimum EFT for each
task in the sequence.

Definition 3. The upward rank value (ranku) of a task reflects
its priority among all the tasks in the application [38]. It
is computed as

ranku(ni)=

∑|U |
k=1w{i,k}
|U |

+ max
nj∈succ(ni)

{
c{i,j}+ranku(nj)

}
Without loss of generality, one can use {ns(1), ns(2), ...,

ns(|N |)} to denote the sequence of tasks ranked by the ranku
values, and assume that ns(j) is the task that should be
assigned currently. For ease of presentation, let Shave =
{ns(1), ns(2), ..., ns(j−1)} denote the set of tasks that have
been assigned, and let Snot =

{
ns(j+1), ns(j+2), ..., ns(|N |)

}
denote the set of tasks that are unassigned. Then, when

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

18
12

14

119

151323
27

1619

23

17
11

13

Fig. 1. An example of the DAG application model.

scheduling the task ns(j), the energy consumption of ap-
plication G is computed as

Es(j)(G) =

j−1∑
x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

+ E(ns(j), uk, f{k,h}) +

|N|∑
y=j+1

Epre(ns(y))

(8)

where Epre(ns(y)) denotes the preassigned energy con-
sumption for task ns(y).

Fact 1. For any task ns(j) (j ∈ [1, ..., |N |]), if

Es(j)(G) ≤ Egiven(G), (9)

then the actual energy consumption E(G) ≤ Egiven(G)
(cf., Formula 3) can be satisfied.

Besides Step (ii), another important step is to transfer
energy consumption constraint of G to that of each task,
recall Step (iii). It is based on the followings. Firstly, by Eqs.
8 and 9, one can have

E(ns(j), uk, f{k,h}) ≤ Egiven(G)

−
j−1∑
x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

−
|N|∑

y=j+1

Epre(ns(y))

Let the energy consumption constraint of task ns(j) be

Egiven(ns(j)) =Egiven(G)

−
j−1∑
x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

−
|N|∑

y=j+1

Epre(ns(y))

(10)
Further, considering the upper bound Emax(ns(j)), one can

setEgiven(ns(j)) =min{Egiven(ns(j)), Emax(ns(j))}. Hence,
when processing task ns(j), one just needs to consider the
following constraint (instead of the total energy consump-
tion constraint):

E(ns(j), uk, f{k,h}) ≤ Egiven(ns(j))

Under this constraint, one can assign each task to a proces-
sor with the minimum EFT to obtain the minimum schedule
length.

TABLE 2
Power parameters of processors

uk P{k,ind} C{k,ef} mk f{k,low} f{k,max}
u1 0.03 0.8 2.9 0.26 1.0
u2 0.04 0.8 2.5 0.26 1.0
u3 0.07 1.0 2.5 0.29 1.0

TABLE 3
Execution time of each task.

Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

u1 14 13 11 13 12 13 7 5 18 21
u2 16 19 13 8 13 16 15 11 12 7
u3 9 18 19 17 10 9 11 14 20 16

I The limitation of MSLECC. We now introduce the concept
of “extra energy”, which will be used in analysing the
limitation of MSLECC.

Definition 4. The extra energy refers to the difference be-
tween the energy consumption constraint of a task and
its preassigned energy consumption. It is computed as

4Eex(ni) = Egiven(ni)− Epre(ni) (11)

Note that, for the MSLECC algorithm, it sets Epre(ni) =
Emin(ni), and initially, the “total” extra energy of G,
denoted by 4Eex(G), can be computed as 4Eex(G) =

Egiven(G)−
∑|N |
i=1Epre(ni).

To examine the limitation of MSLECC, we execute a
preliminary experiment running the application example
shown in Fig. 1. In this experiment, the parallel application
with 10 tasks is executed on 3 processors; the maximum
frequency of each processor is set to 1.0; the frequency preci-
sion is set to 0.01; the energy consumption constraint is set to
Egiven(G) = Emax(G) × 0.5 = 80.995, and the parameters
of all processors are shown in Table 2. Then, the schedul-
ing sequence of tasks is {n1, n3, n4, n2, n5, n6, n7, n8, n10},
Table 3 shows the execution time of each task on three
processors with maximum frequency, and Table 4 shows
part of scheduling results, which are ordered by the priority
from highest to lowest.

One can see from Table 4 that, the tasks with higher
priorities usually have more extra energy than those with
low priorities (cf., the fourth column). For example, the
extra energy of task n3 is 18.38 while task n7 is just 0.08.
The underlying reason could be that, MSLECC uses the
policy of preassigning the minimum energy consumption
for each unscheduled task. This leads to the vast majority
of total extra energy to be shared by the tasks with higher
priories. On the contrary, the low priority tasks have to find
the processors that consume low energy (since the available
energy consumption is little). This leads to less chance to
achieve an optimistic schedule length. The phenomenon
above essentially implies that, the preassignment policy in
MSLECC could be somewhat extreme, and so it could be
nice if one can have a more competitive task scheduling
scheme that allows us to obtain smaller schedule length
while satisfying the energy consumption constraint. This is
just the focus of our paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 4
Scheduling results

ni Egiven(ni) Epre(ni) 4Eex(ni)
n1 13.44 2.48 10.96
n3 20.33 1.95 18.38
n4 18.19 2.08 16.11
n2 19.26 2.30 16.96
n5 10.92 2.13 8.79
n6 13.44 2.30 11.14
n9 5.44 3.12 2.32
n7 1.32 1.24 0.08
n8 0.8874 0.8863 0.0011
n10 1.8204 1.8193 0.0011

E(G) = 80.98, SL(G) = 129.3660

4 OUR SOLUTION

The central idea of our approach is to preallocate the
energy consumption for unscheduled tasks by a weight
mechanism, instead of directly preallocating the minimum
energy consumption for them. In what follows, we first
show how to preassign energy consumption based on the
so-called weight mechanism (Section 4.1), and then prove
that such a preassignment scheme can always satisfy the
energy consumption constraint (Section 4.2). Finally, Section
4.3 presents the improved scheduling approach for energy
consumption constrained parallel applications (ISAECC).

4.1 Preassigning Energy Consumption
We first present several concepts, which are helpful to
understand our preassignment strategy.
Definition 5. Given Emin(G) and Egiven(G), the improvable

energy, denoted by Eie(G), is computed as

Eie(G) = Egiven(G)− Emin(G) (12)

Definition 6. Given a task ni, its energy consumption level
Eave(ni) is defined as the average of its maximum
and minimum energy consumption, i.e., Eave(ni) =
Emax(ni)+Emin(ni)

2 .

Like Definition 6, we can define the energy consumption
level of an application G by Eave(G) if replacing ni with G.
Definition 7. Given a task ni, the weight of its energy

consumption level, denoted by el(ni), is defined as

el(ni) =
Eave(ni)

Eave(G)
(13)

Here
∑|N |
i=1 el(ni) = 1. In the sequel, we show how to

preassign the energy consumption for each task ni based
on the weight.

Specifically, in our approach the preassigned energy
consumption Epre(ni) is computed as

Epre(ni) = min {Ewa(ni), Emax(ni)} (14)

where Ewa(ni) is computed based on the following:

Ewa(ni) = Eie(G)× el(ni) + Emin(ni) (15)

where Eie(G) refers to the improvable energy in terms of G
(recall Eq. 12). Note that, Eq. 15 could reflect the basic idea of
our method. Regarding Eq. 14, it is mainly for ensuring that,

in the extreme case the preassigned energy consumption is
no larger the upper bound Emax(ni).

To this step, a natural question is “does the above
preassignment mechanism satisfy the energy consumption
constraint?” Next, we address this question positively.

4.2 Feasibility of The Preassignment Mechanism
To prove the feasibility, we only need to show the following
theorem holds.
Theorem 1. Given an application G, and assume we preas-

sign the energy consumption for unscheduled tasks by
the weight mechanism, then each task ns(j) can always
find a processor to satisfy Eq. 9.

Proof. We prove it by induction. Firstly, for the first task
ns(1), all other |N |−1 tasks in application G are unassigned.
Then, by Eqs. 8, 12, 13, 15, and 14, we have

Es(1)(G) = E(ns(1), uk, f{k,h}) +

|N|∑
y=2

Epre(ns(y))

≤ E(ns(1), uk, f{k,h}) +

|N|∑
y=2

Ewa(ns(y))

= E(ns(1), uk, f{k,h}) +

|N|∑
y=1

Ewa(ns(y))− Ewa(ns(1))

= E(ns(1), uk, f{k,h}) + Egiven(G)− Ewa(ns(1))

and Ewa(ns(1)) ≥ Emin(ns(1)). This means that, ns(1)
at least can find a processor that satisfies its minimum
energy consumption Emin(ns(1)). In other words, when
E(ns(1), uk, f{k,h}) = Emin(ns(1)), we have

Es(1)(G) = E(ns(1), uk, f{k,h}) + Egiven(G)− Ewa(ns(1))

≤ Egiven(G)

This essentially shows that Eq. 9 is satisfied for ns(1).
Secondly, without loss of generality, assume that for the

jth task ns(j) it can find a processor upr(s(j)) and frequency
f{pr(s(j)),hz(s(j))} to satisfy the Eq. 9. That is,

Es(j)(G) =

j−1∑
x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

+ E(ns(j), upr(s(j)), f{pr(s(j)),hz(s(j))})

+

|N |∑
y=j+1

Epre(ns(y))

=

j∑
x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

+

|N |∑
y=j+1

Epre(ns(y))

≤ Egiven(G)

The above formulation can be written as
j∑

x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

≤ Egiven(G)−
|N |∑

y=j+1

Epre(ns(y))

(16)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 5
task assignment of application in Fig.1 using ISAECC

ni Egiven(ni) u(ni) f(ni) AST (ni) AFT (ni) E(ni) 4Eex(ni)
n1 7.7815 u3 0.84 0.0 10.7143 7.6789 0.0000
n3 9.4689 u1 1.0 22.7143 33.7143 9.1300 0.1027
n4 9.1651 u2 1.0 19.7143 27.7143 6.7200 0.3389
n2 11.9277 u3 0.67 10.7143 37.5800 11.7521 2.4451
n5 6.6457 u2 0.68 27.7143 46.8320 6.5964 0.1577
n6 7.5945 u3 0.83 37.5800 48.4233 7.5645 0.0493
n9 11.3104 u2 1.0 53.5800 65.5800 10.0800 0.0300
n7 7.0785 u1 1.0 33.7143 40.7143 5.8100 1.2304
n8 7.4362 u1 1.0 63.4233 68.4233 4.1500 1.2685
n10 11.5131 u2 1.0 79.4233 86.4233 5.8800 3.2862

E(G) = 75.3619, SL(G) = 86.4233

Thirdly, for the (j + 1)th task ns(j+1), the energy con-
sumption of application G is

Es(j+1)(G) =

j∑
x=1

E(ns(x), upr(s(x)), f{pr(s(x)),hz(s(x))})

+ E(ns(j+1), uk, f{k,h}) +

|N |∑
y=j+2

Epre(ns(y))

(17)
Combing Eqs. 16 and 17, we get

Es(j+1)(G) ≤ Egiven(G)−
|N|∑

y=j+1

Epre(ns(y))

+ E(ns(j+1), uk, f{k,h}) +

|N|∑
y=j+2

Epre(ns(y))

= Egiven(G) + E(ns(j+1), uk, f{k,h})− Epre(ns(j+1))

By Eqs. (14) and (15), we can know Epre(ns(j+1)) ≥
Emin(ns(j+1)). That means, when the energy consumption
E(ns(j+1), uk, f{k,h}) assigned to task ns(j+1) is in the inter-
val

[
Emin(ns(j+1)), Epre(ns(j+1))

]
, we have:

Es(j+1)(G) ≤ Egiven(G)

Putting all together, hence Theorem 1 holds. �

4.3 The Proposed Algorithm for Minimizing Schedule
Length

Our approach (i.e., ISAECC) for solving the problem of
minimizing the schedule length is shown in Algorithm 1. In
brief, Lines 2-6 are for calculating some values (e.g., energy
consumption level) for each task and also for the application
G, while Lines 7-8 are to calculate the preassigned energy
consumption for each task. Lines 9-22 are to select processor
and frequency for each task. In Lines 13-22, all processors
and frequencies are traversed for mapping the task to the
processor with the minimum EFT. Finally, Lines 23-24 are to
calculate the actual energy consumption E(G) and the final
schedule length SL(G).
Theorem 2. The time complexity of the ISAECC Algorithm is

O(|N |2× |U | × |F |), where |F | represents the maximum
number of discrete frequencies from f{k,low} to f{k,max}.

Proof. For each task, selecting the processor with the
minimum EFT has complexity O(|N | × |U | × |F |), and
traversing all tasks consumes O(|N |) time. Thus, the total
time complexity is O(|N |2 × |U | × |F |). �

Algorithm 1 The ISAECC Algorithm
Input: G=(N,M,C,W),U,Egiven(G)
Output: SL(G),E(G)

1: Sort tasks in a list dl by descending order of ranku;
2: for (∀i, ni ∈ N) do
3: Compute Emin(ni) and Emax(ni); // Eqs. 6 and 7
4: Compute Eave(ni);
5: Compute Emin(G) and Emax(G); // Eqs. 4 and 5
6: Compute Eave(G);
7: for (∀i, ni ∈ N) do
8: Compute Epre(ni); // Eq. 14
9: while (dl 6= ∅) do

10: ni = dl.out();
11: AFT (ni) =∞;
12: Compute Egiven(ni); // Eq. 10
13: for each uk ∈ U do
14: for each f{k,h} ∈

[
f{k,low}, f{k,max}

]
do

15: Compute E(ni, uk, f{k,h}); // Eq. 1
16: if E(ni, uk, f{k,h}) > Egiven(ni) then
17: continue;
18: Compute EFT (ni, uk, f{k,h}); // Eq. 2
19: if (EFT (ni, uk, f{k,h}) < AFT (ni)) then
20: Let upr(i) = uk and f{pr(i),hz(i)} = f{k,h};
21: E(ni, upr(i), f{pr(i),hz(i)}) = E(ni, uk, f{k,h});
22: AFT (ni) = EFT (ni, uk, f{k,h});
23: Compute actual energy consumption E(G); // Eq. 3
24: Compute the schedule length SL(G) = AFT (nexit);
25: return E(G), SL(G)

I The running example. We still consider the application
example described in Fig 1. For a fair comparison, all
parameters are the same as in Section 3.3. Table 5 shows
the task scheduling results generated by ISAECC.

From Table 5, we can see that the total energy con-
sumption E(G) = 75.3619, which is less than Egiven(G)
and the value 80.9939 got by MSLECC. The final schedule
length SL(G) = 86.4233, which is better than 129.3600
obtained by MSLECC. In addition, compared with Table 4,
the “extra energy” of different tasks with different priorities
does not show large differences. For intuition, Fig. 2 depicts
the scheduling Gantt chart in which the arrows represent the
communication message between tasks. The example above
implies that our method should be effective and relatively
fair for all tasks.

10 20 30 40 50 60 70 80 900

Fig. 2. Scheduling Gantt chart of application in Fig.1 using ISAECC

5 EXTENSIONS

In this section we extend the main idea presented in the
previous section to solve other scheduling problems on
heterogeneous computing systems : (i) maximizing the
reliability under energy consumption constraint (Section

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

5.1); and (ii) maximizing the reliability under deadline and
energy consumption constraints (Section 5.2). For short, we
call them MRECC and MRDECC problems, respectively.

5.1 MRECC Problem
This problem involves with three models: (i) application
model, (ii) power model, and (iii) reliability model. Since
the former two are as same as that in Section 3.1, we mainly
introduce the reliability model, followed by describing the
problem formally (Section 5.1.1), and then we cover our
proposed approach (Section 5.1.2).

5.1.1 Reliability Model and Problem Formulation
In a real system, the transition faults in the task execution
phase are unpredictable and inevitable, and they often fol-
low the probability distribution. A commonly used model
[27, 28, 29, 39, 53] for the transient failure of a processor is
the Poisson distribution with a parameter ζ . Let ζk denote
the failure rate per time unit of the processor uk. Then, the
reliability of task ni (executed on uk with the maximum
frequency in its execution phase) can be calculated as

R(ni, uk) = e−ζk×w{i,k} (18)

For a DVFS-capable system, considering the effect of
dynamic frequency scaling on transient faults, the average
rate depends on the actual processing frequency [27, 29].
That is, different frequencies have different failure rates. Let
ζ{k,max} denote the failure rate per time unit of processor
uk with the maximum frequency. Then, the failure rate per
time unit of uk with the frequency f{k,h} is defined as

ζ{k,h} = ζ{k,max} × 10
d(f{k,max}−f{k,h})
f{k,max}−f{k,min} (19)

where d > 0 denotes the sensitivity of failure rates to voltage
scaling.

According to Eqs. 18 and 19, one can compute the relia-
bility of task ni executed on the processor uk with frequency
f{k,h} as follows:

R(ni, uk, f{k,h})=e
−ζ{k,h}×

w{i,k}×f{k,max}
f{k,h}

=e
−ζ{k,max}10

d(f{k,max}−f{k,h})
f{k,max}−f{k,min}×

w{i,k}×f{k,max}
f{k,h}

(20)
Eq. 20 indicates that, in a processor the relationship be-

tween reliability and frequency is monotonically increasing.
Then, for an application G in a DVFS-capable system, its
reliability, denoted by R(G), is computed as

R(G) =

|N |∏
i=1

R(ni, upr(i), f{pr(i),hz(i)}) (21)

where f{pr(i),hz(i)} ∈
[
f{pr(i),low}, f{pr(i),max}

]
, upr(i) ∈ U ,

upr(i) and f{pr(i),hz(i)} denote the processor and frequency
assigned to task ni, respectively.
Problem statement. The scheduling problem to be ad-
dressed in this section is to find a proper processor and
frequency for each task such that we can (i) maximize the
reliability of the application G, i.e., R(G), and (ii) ensure the
actual energy consumption of G, i.e., E(G), is no larger than
its given energy consumption constraint Egiven(G), namely,
E(G) ≤ Egiven(G) (cf., Formula 3) can be satisfied.

5.1.2 Our Approach for MRECC Problem

It can be seen from the problem description that, the
problem contains two parts: satisfying energy consumption
constraint, and maximizing reliability. Naturally, as similar
as that in Section 4.3, we can also process it by decomposing
it into two sub-problems, and then solve them respectively,
and finally integrate them. As for the first sub-problem, it
can be also solved based on the weight mechanism, since
the sub-problem here is highly similar to that in Section 4.
For the second sub-problem, our basic idea is to choose
the processor-frequency pair (which satisfies the energy
constraint) with the maximum R(G) value for each task.

Algorithm 2 shows the pseudo-codes of our approach
(called ISAECC*) for solving the problem of maximizing
reliability under the energy consumption constraint. Firstly,
it sorts the tasks in a list dl (Line 1), and then computes some
basic information, e.g., Emin(ni) and Emax(G), based on
the equations described earlier (Lines 2-8). Next, it traverses
all processors and frequencies to select a proper processor-
frequency pair with maximum reliability for each task (Lines
9-23). Note that, we here need to traverse the frequencies
of a processor “from fmax to fmin” (Line 14), and stop
to traverse the remaining lower frequencies once a proper
frequency is found (Line 23). This is because the lower
frequency easily leads to low reliability (recall Eq. 20). The
rest of steps are to compute E(G) and R(G) based on
the processor-frequency pairs found before, and finally we
return the results (Lines 24-26).

Algorithm 2 The ISAECC* Algorithm
Input: G=(N,M,C,W),U,Egiven(G)
Output: R(G),E(G)

1: Sort tasks in a list dl by descending order of ranku;
2: for (∀i, ni ∈ N) do
3: Compute Emin(ni) and Emax(ni); // Eqs. 6 and 7
4: Compute Eave(ni);
5: Compute Emin(G) and Emax(G); // Eqs. 4 and 5
6: Compute Eave(G);
7: for (∀i, ni ∈ N) do
8: Compute Epre(ni); // Eq. 14
9: while (dl is not empty) do

10: ni = dl.out();
11: R(ni, upr(i), f{pr(i),hz(i)}) = 0;
12: Compute Egiven(ni); // Eq. 10
13: for each uk ∈ U do
14: for each f{k,h} from f{k,max} to f{k,low} do
15: Compute E(ni, uk, f{k,h}); // Eq. 1
16: if E(ni, uk, f{k,h}) > Egiven(ni) then
17: continue;
18: Compute R(ni, uk, f{k,h}); // Eq. 20
19: if (R(ni, uk, f{k,h}) > R(ni, upr(i), f{pr(i),hz(i)}))

then
20: Let upr(i) = uk and f{pr(i),hz(i)} = f{k,h};
21: E(ni, upr(i), f{pr(i),hz(i)}) = E(ni, uk, f{k,h});
22: R(ni, upr(i), f{pr(i),hz(i)}) = R(ni, uk, f{k,h});
23: break; //skip the lower frequencies
24: Compute actual energy consumption E(G); // Eq. 3
25: Compute R(G); //Eq. 21
26: return E(G), R(G)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 6
Power parameters of processors

uk P{k,ind} C{k,ef} mk f{k,low} f{k,max} ζ{k,max}
u1 0.03 0.8 2.9 0.26 1.0 0.00015
u2 0.04 0.7 2.5 0.27 1.0 0.00020
u3 0.07 1.0 2.5 0.29 1.0 0.00025

TABLE 7
RMEC vs. ISAECC* using the application in Fig. 1

ni
u(ni) f(ni) E(ni) R(ni)

RMEC ISAECC* RMEC ISAECC* RMEC ISAECC* RMEC ISAECC*
n1 u1 u1 0.26 0.65 2.4817 5.5865 0.9224 0.9904
n3 u1 u1 0.26 0.86 1.9499 6.9911 0.9385 0.9970
n4 u2 u2 0.27 1.0 1.9708 5.9200 0.9425 0.9984
n2 u1 u1 0.26 0.83 2.3044 7.7692 0.9277 0.9960
n5 u1 u1 0.26 0.67 2.1272 5.0228 0.9331 0.9925
n6 u1 u1 0.26 0.67 2.3044 5.4414 0.9227 0.9919
n9 u2 u2 0.27 0.96 2.9563 8.4011 0.9149 0.9972
n7 u1 u1 0.26 0.83 1.2408 4.1834 0.9604 0.9979
n8 u1 u1 0.26 1.0 0.8863 4.1500 0.9716 0.9993
n10 u2 u2 0.27 1.0 1.7245 5.1800 0.9495 0.9986

RMEC: E(G)=19.9463, R(G)=0.5312 ISAECC*: E(G)=58.6455, R(G)=0.9599

Theorem 3. The time complexity of the ISAECC* Algorithm
is O(|N |×|U |×|F |), where |F | represents the maximum
number of discrete frequencies from f{k,low} to f{k,max}.

Proof. For each task, selecting the processor with the max-
imum reliability has complexityO(|U |×|F |), and traversing
all tasks needs O(|N |) time. Thus, the total time complexity
is O(|N | × |U | × |F |). �

Remark. One can also extend the MSLECC algorithm in [26]
to solve the problem of maximizing reliability. For clearness,
we call it the MSLECC* algorithm. It can be done as follows:
(i) compute upward rank values to determine the order of
task scheduling; (ii) for each task, traverse all processors
and frequencies to choose the processor-frequency pairs that
satisfy the energy consumption; (iii) choose the processor-
frequency pair with maximum R(G) value from the pairs
obtained in Step (ii).
I The running example. We still use the application described
in Fig. 1 as the running example. The energy consumption
constraint is set asEgiven(G) = 3×Emin(G) = 59.8390, and
the parameters of all processors are listed in Table 6. Table
7 shows the scheduling results using the RMEC algorithm
[27] and our proposed algorithm — ISAECC*. It can be
seen that RMEC consumes much smaller energy than the
given energy constraint, and its energy consumption is less
than our algorithm ISAECC*. Nevertheless, the reliability
values obtained by RMEC are not optimistic. It seems that
it does not fully utilize the given energy consumption to
maximize the reliability. This result implies that, RMEC
may not actually for maximizing the reliability, although
the authors attempted to maximize the reliability in their
paper. Later (in Section 6), we will use more real parallel
applications to investigate their performances.

Additionally, Table 8 shows the scheduling results using
the algorithm MSLECC∗ and ISAECC*. It can be seen that
the total energy consumption generated by ISAECC* is
less than the given energy constraint, and also less than
the value obtained by MSLECC∗. On the other hand, the
final reliability value R(G) is 0.9599, which is higher than
0.82 obtained by MSLECC∗. These results imply that both
algorithms can satisfy the energy consumption constraints,

while our proposed algorithm ISAECC* has a better perfor-
mance in terms of reliability.

5.2 MRDECC Problem
Compared to the problem discussed in Section 5.1, the
MRDECC problem involves with another additional con-
straint, i.e., deadline constraint. In this section, we first
briefly introduce the concepts and notations related to this
problem, followed by describing the MRDECC problem
formally (Section 5.2.1), and then we cover our approach
for the MRDECC problem (Section 5.2.2).

5.2.1 Concepts and Problem Formulation
Given a parallel application G, we use Dgiven(G) to denote
the given deadline constraint.
Definition 8. Given a task ni executed on processor uk, its

latest finish time (LFT) is denoted as LFT (ni, uk), which
can be computed as

LFT(nexit,uk)= Dgiven(G)

LFT(ni,uk)=min

(
AE[k], min

nj∈succ(ni)

{
AST (nj)−c{i,j}

})
,

where AE[k] is the end of the available time that processor
uk can execute task ni. It means that uk would be assigned
to another task after AE[k]. In addition, AST (ni) denotes
the actual start time of task ni, and c{i,j} has the same
meaning with that in Definition 1.
Problem statement. The scheduling problem to be ad-
dressed in this section is to find a proper processor and
frequency for each task in application G such that we can
(i) maximize the reliability of the application G, i.e., R(G) (cf.,
Formula 21); and (ii) ensure the following two conditions
can be satisfied: (a) the actual energy consumption of G, i.e.,
E(G) , is no larger than its given energy consumption con-
straint Egiven(G), namely, E(G) ≤ Egiven(G) (cf., Formula
3); and (b) the final schedule length of G, i.e., SL(G), does not
exceed the given deadline constraint Dgiven(G), namely,

SL(G) = AFT (nexit)−AST (nentry) ≤ Dgiven(G) (22)

5.2.2 Our Approach for MRDECC Problem
At a high level, our approach mainly consists of two major
phases. In the first phase, we use the ISAECC algorithm
presented in Section 4.3 to get a preliminary scheduling
result. In the second phase, we “reclaim” the slack time
between the deadline constraint and the schedule length to
reallocate the tasks, in order to improve the reliability. In the
process of reallocation, we handle tasks from “exit task” to
“entry task”. The reason we handle tasks in this way is that
the latest finish time of the exit task, LFT (nexit), is available
after we execute the ISAECC algorithm. We remark that,
for the first phase, we cannot simply replace ISAECC with
ISAECC* presented in Section 5.1, this is because the latter
cannot guarantee the schedule length constraint. In what
follows, we focus our attention on the second phase of our
approach.
Definition 9. Given a task ni executed on a processor uk, its

maximum slack time (MST), denoted by MST (ni, uk), is
computed as

MST (ni, uk) = LFT (ni, uk)− EST (ni, uk) (23)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 8
MSLECC∗ vs. ISAECC* using the application in Fig. 1

ni
Egiven(ni) u(ni) f(ni) E(ni) R(ni)

MSLECC∗ ISAECC* MSLECC∗ ISAECC* MSLECC∗ ISAECC* MSLECC∗ ISAECC* MSLECC∗ ISAECC*
n1 11.84 5.6971 u1 u1 1.0 0.65 11.62 5.5865 0.9979 0.9904
n3 20.33 7.0626 u1 u1 1.0 0.86 9.13 6.9911 0.9984 0.9970
n4 18.19 6.5687 u2 u2 1.0 1.0 5.9200 5.9200 0.9984 0.9984
n2 19.26 7.7946 u1 u1 1.0 0.83 10.79 7.7692 0.9981 0.9960
n5 10.7 5.0324 u1 u1 1.0 0.67 9.96 5.0228 0.9982 0.9925
n6 5.611 5.4895 u1 u1 0.68 0.67 5.5716 5.4414 0.9923 0.9919
n9 2.9958 8.4727 u2 u2 0.30 0.96 2.9803 8.4011 0.9298 0.9972
n7 1.2563 4.2335 u1 u1 0.28 0.83 1.2486 4.1834 0.9654 0.9979
n8 0.8940 4.4986 u1 u1 0.28 1.0 0.8919 4.1500 0.9751 0.9993
n10 1.7266 6.3735 u2 u2 0.28 1.0 1.7260 5.1800 0.9527 0.9986

MSLECC∗: E(G)=59.8384, R(G)=0.8200 ISAECC*: E(G)=58.6455, R(G)=0.9599

where EST (ni, uk) (cf., Definition 1) and LFT (ni, uk)
(cf., Definition 8) refer to the earliest start time and
latest finish time of task ni executed on processor uk,
respectively.

Definition 10. Given a task ni running on processor uk with
frequency f{k,h}, its execution time, denoted by w{i,k,h},
is computed as

w{i,k,h} = w{i,k} ×
f{k,max}
f{k,h}

(24)

where w{i,k} (cf., Table 1) denotes the execution time
of task ni running on processor uk with the maximum
frequency f{k,max}.

Specifically, we reallocate each task ni in order to obtain
the large reliability, R(ni, upr(i), f{pr(i),hz(i)}), as far as pos-
sible. Our idea is to traverse the processors and frequencies
to seek the most proper ”processor-frequency” combination.
Formally, it can be formulated as follows.

R(ni, upr(i), f{pr(i),hz(i)}) = max{R(ni, uk, f{k,h})} (25)

where uk ∈ U and f{k,low} ≤ f{k,h} ≤ f{k,max}. Mean-
while, in the reallocation we need to check two conditions:
• The execution time w{i,k,h} should be smaller than the

maximum slack time, namely, w{i,k,h} ≤MST (ni, uk).
• The energy consumption E(ni, uk, f{k,h}) should sat-

isfy the constraint, namely,

E(ni, uk, f{k,h}) ≤Egiven(ni)

=Egiven(G)−
i−1∑
x=1

E(nx, upr(x), f{pr(x),hz(x)})

−
|N |∑

y=i+1

E(ny, upr(y), f{pr(y),hz(y)})

(26)
where

∑i−1
x=1E(nx, upr(x), f{pr(x),hz(x)}) represents the en-

ergy consumption of tasks that have not been reassigned,∑|N |
y=i+1E(ny, upr(y), f{pr(y),hz(y)}) represents the energy

consumption of tasks that have been reassigned.
Algorithm 3 shows the pseudo-codes of our approach for

solving the MRDECC Problem. Firstly, it uses the ISAECC
algorithm to obtain a preliminary scheduling result (Line
1). Then, it reallocates tasks in order to achieve a large
reliability (Lines 2-16). Note that, different from that in
Algorithms 1 and 2, we here employ a list dl2 in which

the tasks are ranked by ascending order of ranku (Line
2), since we need to handle tasks from exit task to entry
task. In addition, Line 5 is used to obtain the new energy
consumption constraint. Lines 6-16 are to select processor
and frequency with maximum reliability for each task based
on the maximum slack time. Then, it computes the final
reliability, energy consumption and schedule length (Line
17), and finally returns the results.

Algorithm 3 The MRDECC Algorithm
Input: G=(N,M,C,W),U,Egiven(G), Dgiven(G);
Output: R(G),SL(G),E(G)

1: Execute the ISAECC algorithm;
2: Sort tasks in a list dl2 by ascending order of ranku;
3: while (dl2 6= ∅) do
4: ni = dl2.out();
5: Compute Egiven(ni); // Eq. 26
6: for each uk ∈ U do
7: compute MST (ni, uk); // Eq. 23
8: for each f{k,h} ∈

[
f{k,low}, f{k,max}

]
do

9: Compute E(ni, uk, f{k,h}) and w{i,k,h}; // Eqs. 1
and 24

10: if E(ni, uk, f{k,h}) ≤ Egiven(ni) and w{i,k,h} ≤
MST (ni, uk) then

11: Compute R(ni, uk, f{k,h}); // Eq. 20
12: if (R(ni, uk, f{k,h}) > R(ni, upr(i), f{pr(i),hz(i)}))

then
13: Let upr(i) = uk and f{pr(i),hz(i)} = f{k,h};
14: E(ni, upr(i), f{pr(i),hz(i)}) = E(ni, uk, f{k,h});
15: R(ni, upr(i), f{pr(i),hz(i)}) = R(ni, uk, f{k,h});
16: break; //skip the lower frequencies
17: Compute R(G), E(G) and SL(G) ; //Eqs. 21, 3 and 26
18: return R(G),E(G), SL(G)

Theorem 4. The time complexity of the MRDECC Algorithm
is O(|N |2 × |U | × |F |), where |F | denotes the maximum
number of discrete frequencies from f{k,low} to f{k,max}.

Proof. By Theorem 2, Line 1 takes O(|N |2 × |U | × |F |) time.
For each task, computing MST and selecting the processor
and frequency take O(|N | × |U | × |F |) time. In addition,
there are O(N) tasks needing to be traversed. Thus, the time
complexity for reallocating is O(|N |2 × |U | × |F |). Putting
all together, the time complexity of MRDECC algorithm is
O(|N |2 × |U | × |F |). �

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 9
task assignment of application in Fig.1 using MRDECC

ni Egiven(ni) u(ni) f(ni) AST (ni) AFT (ni) E(ni) R(ni)
n1 7.68 u3 0.84 1.52 12.23 7.68 0.9955
n3 10.18 u2 0.95 28.32 42.0 10.18 0.9968
n4 7.77 u2 1.0 42.0 50.0 6.72 0.9984
n2 11.84 u1 1.0 30.23 43.23 10.79 0.9981
n5 9.00 u1 0.94 43.23 56.0 8.92 0.9977
n6 13.20 u1 1.0 56.0 69.0 10.79 0.9981
n9 15.71 u2 1.0 81.0 93.0 10.08 0.9976
n7 11.44 u1 1.0 69.0 76.0 5.81 0.9990
n8 9.78 u1 1.0 77.0 82.0 4.15 0.9992
n10 11.51 u2 1.0 93.0 100.0 5.88 0.9986

R(G) = 0.9791, E(G) = 80.99, SL(G) = 98.48

I The running example. In this section, we still consider
the parallel application described in Fig. 1 as the running
example. The parameters related to processors are the same
as that in Section 3.3 and Table 6. The deadline constraint
Dgiven(G) is set to 100, and the energy consumption con-
straint Egiven(G) is set to 80.995, which is the same as that
in section 3.3. Table 9 shows the scheduling results.

We can see that the final schedule length is 98.48, which
is smaller than the deadline constraint Dgiven(G) = 100.
And the actual energy consumption is 80.99, which is under
the energy consumption constraint Egiven = 80.995. In ad-
dition, the final reliability is 0.9791, which is higher than the
reliability value 0.9531 achieved by ISAECC algorithm. This
is because MRDECC algorithm further enhances the reliabil-
ity by using the maximum slack time between the deadline
constraint and schedule length obtained by ISAECC.

6 EXPERIMENTS

In this section, we first describe the experimental settings
(Section 6.1), and then cover the experimental results (Sec-
tions 6.2∼6.4).

6.1 Experimental Settings
In our experiments, we select two real parallel applications
for tests: (i) fast Fourier transform (FFT), and (ii) Gaussian
elimination (GE). Fig. 3 (a) shows an example of FFT parallel
application with ρ = 4, where ρ is a parameter representing
the size of application. For the FFT graph, the total number
of tasks is |N | = (2× ρ− 1) + ρ× log2 ρ, where ρ = 2y for
some integer y. Note that, the FFT parallel application with
the size ρ has ρ “exit” tasks; see e.g., the tasks numbered
as 12, 13, 14 and 15 in Fig. 3 (a). In order to match the
application model (recall Section 3.1), we add a “dummy”
exit task, whose execution time is zero; and we connect
the dummy exit task to the last ρ exit tasks, and set their
communication time to 0. On the other hand, the size of
a GE application is |N | = ρ2+ρ−2

2 . Fig. 3 (b) shows a GE
parallel application example with ρ = 5.

The simulated heterogeneous platform for testing the
problem of minimizing the schedule length uses 64 pro-
cessors. In addition, we set 10ms ≤ w{i,k} ≤ 100ms,
10ms ≤ c{i,j} ≤ 100ms. For the problem of maximizing the
reliability, the simulated heterogeneous platform uses 128
processors, and we set 10h ≤ w{i,k} ≤ 100h, 10h ≤ c{i,j} ≤
100h, 0.0000001 6 γk 6 0.0000128. For the problem of
maximizing reliability with two constraints (i.e., MRDECC

(a) FFT appl. with ρ = 4 (b) GE appl. with ρ = 5

Fig. 3. Example of real parallel applications.

problem), the simulated platform uses 64 processors, and
we set 10ms ≤ w{i,k} ≤ 100ms, 10ms ≤ c{i,j} ≤ 100ms,
0.0000001 6 γk 6 0.0000064. Other parameters related to
applications and processors are: 0.03 ≤ P{k,ind} ≤ 0.07,
0.8 ≤ C{k,ef} ≤ 1.2, 2.5 ≤ mk ≤ 3.0, and f{k,max} = 1.0
GHz. The frequency precision is 0.01 GHz. For ease of
observing the effectiveness of our proposed algorithms, in
our experiments we vary the sizes of energy consumption
constraints and the scales of applications, respectively. Par-
ticularly, for the MRDECC problem, we also vary the dead-
line constraint Dgiven. All these main parameter settings
basically follow prior works in this field.

As for the problem of minimizing the schedule length,
we compare our algorithm ISAECC with HEFT [38], ECS
[23] and MSLECC [26], since they have the same model.
The HEFT is a precedence-constrained application schedul-
ing algorithm for minimizing the schedule length on het-
erogeneous systems, and it does not consider the power
consumption constraint. The ECS considers both the energy
consumption and the scheduling length, while it focuses
more attention on the trade-off between the schedule length
and energy consumption. In contrast, the MSLECC is closest
to our algorithm, since both methods solve the same prob-
lem with the same constraints. Following prior works [26],
we use the actual energy consumption E(G) and schedule
length SL(G) as the performance metrics for this problem.

On the other hand, for the reliability maximization prob-
lem, we compare our algorithm ISAECC* with RMEC [27]
and MSLECC∗, since all of them have the same model
and solve the same problem. Here MSLECC∗ is a method
adapted from [26], recall the “Remark” in Section 5.1.2.
Similar to the first problem, we here use the actual energy
consumption E(G) and reliability R(G) as the performance
metrics. In addition, for the problem of maximizing re-
liability with two constraints, we compare our algorithm
MRDECC with HEFT [38], ISAECC (Section 4.3), and FFSV2
[12]. For this problem, we use E(G), R(G), and SL(G) as

TABLE 10
Scheduling results of FFT application by varying Egiven(G)

Egiven(G)
HEFT ECS MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
1544 4850 736 2033 999 1544 1195 1544 856
2090 5121 772 2264 1057 2090 1127 2089 832
2704 5049 747 2057 1028 2704 1057 2699 837
3178 5170 743 2063 1034 3178 1039 3171 775
4162 4795 753 2271 1045 4162 1024 4093 764

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

2.5 3.5 4.5 5.5 6.5
700

800

900

1000

1100

1200

S
L
(
G
)

l

 HEFT ECS MSLECC ISAECC

2.5 3.5 4.5 5.5 6.5
700

800

900

1000

1100

1200
S
L
(
G
)

l

 HEFT ECS MSLECC ISAECC

(a)

0 50 100 150 200 250

1000

2000

3000

4000

5000

6000

S
L
(
G
)

r

 HEFT ECS MSLECC ISAECC

(b)

Fig. 4. The schedule lengths of FFT parallel application.
(a) varying λ (essentially, the energy consumption constraint
Egiven(G)); (b) varying ρ (essentially, the scale of application).

TABLE 11
Scheduling results of FFT application with different scales

ρ Egiven(G)
HEFT ECS MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
16 899 2142 528 901 778 899 790 899 698
32 2272 4838 692 2394 1043 2272 991 2271 791
64 5056 10958 879 5519 1272 5056 1692 5056 1018

128 11053 22963 1088 12008 1457 11053 3152 11053 1226
256 25265 44492 1199 28926 1745 25265 5727 25265 1368

the performance metrics.

6.2 Experimental Results for Minimizing Schedule
Length with Energy Consumption Constraint
Exp-1. In this experiment, we compare E(G) and SL(G) of
the FFT application under different Egiven(G). The applica-
tion size is set to ρ = 32 (i.e., |N | = 223). Egiven(G) is set to
Emin(G)× λ. We vary λ from 2.5 to 6.5. Table 10 shows the
scheduling results. We can see that, although HEFT obtains
the smaller schedule length, it exceeds the energy consump-
tion constraint in each case. In addition, although the energy
consumption generated by ECS is less than HEFT, it can not
satisfy all constraints (e.g., when Egiven(G) = 1544) and
its schedule length is larger than that of HEFT. In contrast,
MSLECC and ISAECC can always satisfy the given energy
consumption constraint even if Egiven(G) is small. For the
sake of intuition, Fig. 4(a) shows the schedule length when
varying λ (notice: it essentially varies the energy consump-
tion constraint Egiven(G), since Egiven(G) = λ×Emin(G)).
It can be seen that, compared to ECS and MSLECC, our
algorithm has the obvious advantage on the schedule length
SL(G); it outperforms MSLECC by about 20.8%∼28.3%,
for example. Further, considering SL(G) of MSLECC and
that of ISAECC, we can find that their gap increases when
Egiven(G) decreases. This is because the preassignment pol-
icy of MSLECC, together with the small Egiven(G), makes
the available energy consumption of low priority tasks turn

TABLE 12
Scheduling results of GE application by varying Egiven(G)

Egiven(G)
HEFT ECS MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
1579 4601 1925 2335 2902 1579 3185 1579 2439
2222 4343 1947 2547 2802 2222 2947 2221 2357
2971 4422 2083 2531 2951 2971 2886 2967 2320
3374 4648 2042 2562 3019 3374 2630 3371 2163
4004 4366 1941 2308 2610 4004 2427 3927 1992

2.5 3.5 4.5 5.5 6.5

2000
2200
2400
2600
2800
3000
3200

S
L
(
G
)

l

 HEFT ECS MSLECC ISAECC

2.5 3.5 4.5 5.5 6.5

2000
2200
2400
2600
2800
3000
3200

S
L
(
G
)

l

 HEFT ECS MSLECC ISAECC

(a)

10 20 30 40 50 60 70

2000

4000

6000

8000

10000

12000

S
L
(
G
)

r

 HEFT ECS MSLECC ISAECC

(b)

Fig. 5. The schedule lengths of GE parallel application. (a) vary-
ing λ; (b) varying ρ.

TABLE 13
Scheduling results of GE parallel application with different scales

ρ Egiven(G)
HEFT ECS MSLECC ISAECC

E(G) SL(G) E(G) SL(G) E(G) SL(G) E(G) SL(G)
13 903 1831 1201 997 1809 903 1978 902 1489
21 2116 4177 2028 2421 2732 2116 3035 2116 2427
31 4726 10076 3028 6534 4456 4726 4607 4726 3654
47 10416 21398 4712 14698 6925 10416 7466 10416 5870
71 24040 55984 7357 36554 10551 24040 12691 24039 8839

less, which leads to the long schedule length. In addition,
as we expected, the larger Egiven(G) is, the better schedule
length we can obtain.
Exp-2. In this experiment, we compare E(G) and SL(G)
of the FFT application with different scales. We fix λ to 3.5
(i.e., Egiven(G) = Emin(G) × 3.5), and then vary the
scale of the application. Specifically, we vary ρ from 16
(i.e., |N | = 95, small scale) to 256 (i.e.,|N | = 2559, large
scale). Table 11 shows the scheduling results. Similar to
the results in Exp-1, although HEFT can obtain the smaller
schedule length while it exceeds the energy consumption
constraint in each case. As for ECS, it exceeds the energy
consumption constraint for each case in this experiment.
Also, both MSLECC and ISAECC can always satisfy the
energy consumption constraint. On the other hand, Fig.
4(b) depicts the variation tendency of SL(G). It can be
seen that, our algorithm can achieve better schedule lengths
than ECS and MSLECC. And for the MSLECC algorithm, its
SL(G) dramatically increases when the scale grows, while
SL(G) obtained by our algorithm only increases slightly.
This essentially illustrates that our algorithm has the better
scalability.
Exp-3. This experiment comparesE(G) and SL(G) of the GE
parallel application under different Egiven(G). The application
size is set to ρ = 21 (i.e.,|N |=230), which is roughly equal
to that in Exp-1, where we tested the FFT parallel application.
We vary Egiven(G) from Emin(G) × 2.5 to Emin(G) × 6.5.

TABLE 14
Scheduling results of FFT application by varying Egiven(G)

Egiven(G)
RMEC MSLECC∗ ISAECC*

E(G) R(G) E(G) R(G) E(G) R(G)
10456 1183.9 0.2659 10456 0.6946 10400 0.9954
8962 1183.9 0.2659 8962 0.5996 9841 0.9948
7842 1183.9 0.2659 7842 0.5257 7813 0.9941
6970 1183.9 0.2659 6970 0.4797 6962 0.9932
6273 1183.9 0.2659 6273 0.4443 6269 0.9921

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
R
(
G
)

a

 RMEC MSLECC* ISAECC*

6 7 8 9 10
0.2

0.4

0.6

0.8

1.0
R
(
G
)

a

 RMEC MSLECC* ISAECC*

(a)

100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

R
(
G
)

r

 RMEC MSLECC* ISAECC*

(b)

Fig. 6. The reliability of FFT parallel application. (a)varying α; (b)
varying ρ.

TABLE 15
Scheduling results of FFT application with different scales

ρ Egiven(G)
RMEC MSLECC∗ ISAECC*

E(G) R(G) E(G) R(G) E(G) R(G)
32 4577 535 0.5331 4577 0.7923 4572 0.9979
64 10426 1195 0.2205 10426 0.5639 10397 0.9949

128 23651 2807 0.0317 23651 0.3471 23633 0.9893
256 51997 5957 3.341E-4 51997 0.0864 51983 0.9769
512 114811 13397 4.273E-8 114811 0.0028 114803 0.9479

Fig. 5(a) plots SL(G) for different Egiven(G), and Table 12
shows the detailed scheduling results. Both of them indicate
that ISAECC achieves better schedule lengths than ECS and
MSLECC. Similar to that in Exp-1, MSLECC and ISAECC
can always satisfy energy consumption constraints while
HEFT and ECS cannot. On the other hand, combining Exp-3
and Exp-1, it shows that our solution is feasible for different
types of applications.

Exp-4. This experiment uses the GE parallel application under
different scales. We fix Egiven(G) to Emin(G)× 3.5, and vary
ρ from 13 (i.e., |N | = 90, small scale) to 71 (i.e., |N | = 2555,
large scale). These scales are roughly equal to those in Exp-2,
where we tested the FFT parallel application. Table 13 shows
detailed scheduling results, and Fig. 5(b) plots the variation
tendency of SL(G) when varying ρ. Similar to that in Exp-
2, the actual energy consumptions generated by ISAECC
and MSLECC are still within the given constraints, and our
algorithm can generate shorter schedule lengths, compared
against the ECS and MSLECC algorithms. Additionally, by
comparing Figs. 5(b) and 4(b), we find an interesting phe-
nomenon. That is, when ρ increases, the schedule lengths
obtained by ISAECC, ECS and HEFT increase slightly in Fig.
4(b), while they increase dramatically in Fig. 5(b). This phe-
nomenon could be due to that the FFT parallel application

0 100 200 300 400 500

0.992

0.994

0.996

0.998

1.000

r
e
l
i
a
b
i
l
i
t
y

task

Fig. 7. Distribution of reliability values of all task sequences.

6 7 8 9 10
0.2

0.4

0.6

0.8

1.0

R
(
G
)

a

 RMEC MSLECC* ISAECC*

6 7 8 9 10
0.2

0.4

0.6

0.8

1.0

R
(
G
)

a

 RMEC MSLECC* ISAECC*

(a) varying α

20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

R
(
G
)

r

 RMEC MSLECC* ISAECC*

(b) varying ρ

Fig. 8. The reliability of GE parallel application.

TABLE 16
Scheduling results of GE application with ρ = 31.

Egiven(G)
RMEC MSLECC∗ ISAECC*

E(G) R(G) E(G) R(G) E(G) R(G)
10157 1188 0.1912 10157 0.5607 10101 0.9955
8706 1188 0.1912 8706 0.4894 8681 0.9948
7618 1188 0.1912 7618 0.4497 7605 0.9939
6771 1188 0.1912 6771 0.3936 6761 0.9929
6094 1188 0.1912 6094 0.3545 6089 0.9915

has better parallelism than the GE parallel application.

6.3 Experimental Results for for Maximizing Reliability
with Energy Consumption Constraint
Exp-5. This experiment is to compare E(G) and R(G) of
the FFT application using different Egiven(G). The application
size is set to ρ = 64 (i.e.,|N | = 511); Egiven(G) is set to
(Emin(G) + Emax(G))/α; we vary α from 6 to 10. Table
14 shows the scheduling results while Fig. 6(a) plots the
variation tendency of R(G). We can see from Table 14 that,
for all these three methods, the actual energy consump-
tion E(G) can always satisfy the given energy constraint
Egiven(G). In particular, for each case E(G) and R(G)
produced by RMEC are constant. These results indicate that
RMEC is insensitive to the energy constraint, and RMEC
essentially does not really maximize the reliability. As for
its low reliability, it can be understood from Fig. 7 and Eq.
21. Notice that, Fig. 7 shows the distribution of reliability
values of RMEC for all 511 tasks, and in Eq. 21 the notation∏

means the multiplication of reliability values of |N | tasks.
On the other hand, we observe that the energy consump-
tions generated by MSLECC∗ and ISAECC* are both close
to the given energy constraint Egiven(G), and the reliability
values decrease when the given energy consumption con-
straints turn smaller. Nevertheless, our proposed method,
ISAECC*, achieves much higher reliability than RMEC and
MSLECC∗. For example, it outperforms MSLECC* by about

TABLE 17
Scheduling results of GE application with
Egiven(G) = (Emin(G) + Emax(G))/6.

ρ Egiven(G)
RMEC MSLECC∗ ISAECC*

E(G) R(G) E(G) R(G) E(G) R(G)
21 4707 544 0.4859 4707 0.9175 4699 0.9981
31 10114 1170 0.2104 10114 0.8688 10067 0.9961
47 22832 2675 0.0327 22831 0.3315 22828 0.9895
71 52405 6493 3.944E-4 52405 0.0925 52398 0.9759

106 115763 13324 1.455E-8 115763 0.0063 115762 0.9506

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

800 1000 1200
0.7

0.8

0.9

1.0

R
(
G
)

t

HEFT ISAECC FFSV2 MRDECC

0.3 0.4 0.5 0.6 0.7

0.94

0.95

0.96

0.97

0.98

0.99

1.00

R
(
G
)

t

(a)

20 40 60 80 100 120

0.80

0.85

0.90

0.95

1.00

R
(
G
)

r

(b)

800 900 1000 1100 1200

0.96

0.97

0.98

0.99

R
(
G
)

Dgiven(G)

(c)

Fig. 9. The reliability of FFT parallel application. (a) varying t; (b) varying ρ; (c)varying Dgiven(G)

TABLE 18
Scheduling results of FFT application by varying Egiven(G)

Egiven(G)
HEFT ISAECC FFSV2 MRDECC

SL(G) E(G) R(G) SL(G) E(G) R(G) SL(G) E(G) R(G) SL(G) E(G) R(G)
1485.53 776 4951.77 0.9759 945.50 1485.49 0.9395 1147 4117.16 0.9950 1119.79 1485.52 0.9704
1980.71 776 4951.77 0.9759 867.35 1980.68 0.9511 1147 4117.16 0.9950 994.41 1980.69 0.9842
2475.88 776 4951.77 0.9759 843.25 2475.02 0.9642 1147 4117.16 0.9950 985.98 2475.84 0.9903
2971.06 776 4951.77 0.9759 864.14 2963.95 0.9635 1147 4117.16 0.9950 995.76 2963.41 0.9929
3466.24 776 4951.77 0.9759 848.98 3445.85 0.9710 1147 4117.16 0.9950 1087.13 3460.65 0.9940

43.3%∼123.2%. Also, we observe that the reliability are
relatively stable when Egiven(G) varies, as shown in Fig.
6(a). These results essentially demonstrate the superiority of
our approach.

Exp-6. In this experiment, we compare E(G) and R(G) of
the FFT application using different scales. We fix α to 6 (i.e.,
Egiven(G) = (Emin(G) + Emax(G))/6), then vary ρ from
32 (i.e., |N | = 223, small scale) to 512 (i.e.,|N | = 5631, large
scale). Table 15 shows the scheduling results. We can see
that all these methods can satisfy the energy consumption
constraints, while our proposed method, ISAECC*, obtains
the highest reliability, compared against the competitors.
Fig. 6(b) plots the variation tendency of the reliability values
when we vary ρ. The results show also that ISAECC* out-
performs RMEC and MSLECC∗ in terms of the reliability.
Meanwhile, we can see that, when the scale increases, the
reliability values obtained by RMEC and MSLECC∗ turn
smaller drastically. This is mainly because (i) |N | (in Eq.
21) increases, and (ii) the reliability values of many tasks
are not very close to 1. As a result, the final reliability
value is relatively small. On the contrary, our proposed
method, ISAECC*, performs stable and can consistently
maintain a relatively high reliability, further demonstrating
its superiorities.

Exp-7. This experiment compares E(G) and R(G) of the
GE application under different Egiven(G). The application
size is limited to ρ = 31 (i.e., |N |=495), which is roughly
equal to that in Exp-5. We vary Egiven(G) from (Emin(G)+
Emax(G))/6 to (Emin(G) + Emax(G))/10. Table 16 shows
the scheduling results. From the table, it can be seen that
all these three methods can satisfy energy consumption
constraints. Nevertheless, our method achieves the best per-
formance and it significantly outperforms the competitors.
In addition, one can see from from Fig. 8(a) that, our method
still performs pretty stable and obtains a high reliability,
when we vary Egiven(G). Combining the results in Exp-5,
this indicates that our algorithm, ISAECC*, can also work

effectively for different parallel applications.
Exp-8. This experiment compares E(G) and R(G) of the
GE application under different scales. The energy consumption
constraint is fixed to (Emin(G)+Emax(G))/6, and we vary
ρ from 21 (i.e., |N |=230) to 106 (i.e., |N |=5670), which is
roughly equal to that in Exp-6. Table 17 shows the sched-
ule results, and Fig. 8(b) plots the variation tendency of
reliability values when varying ρ. Generally, these results
are similar to that in Exp-6. That is, our algorithm can
satisfy energy consumption constraints for all these cases,
and can produce the higher reliability even if the scale is
large. On the other hand, the reliability values obtained
by the competitors turn smaller drastically, when the scale
increases. This further demonstrates the competitiveness of
our approach.

6.4 Experimental Results for Maximizing Reliability
with Deadline and Energy Consumption Constraints
Exp-9.This experiment is to compare R(G), SL(G), E(G)
of the FFT application under different Egiven(G). The ap-
plication size is set to ρ = 32 (i.e., |N | = 223), the
deadline constraint Dgiven(G) is set to 1200, Egiven(G)
is set to Eheft(G) × t, where t varies from 0.3 to 0.7,
and Eheft(G) is the energy consumption generated by the
HEFT algorithm [38]. Table 18 shows the schedule length,
energy consumption and reliability results. Meanwhile, Fig.
9(a) plots the variation tendency of reliability values when
changing Egiven(G).

One can see from Fig. 9(a) and Table 18 that, the re-
liability values generated by FFSV2 and HEFT are fixed,
and FFSV2 achieves the best reliability, which is even bet-
ter than our proposed method. Nevertheless, FFSV2 can-
not satisfy the energy consumption constraint, which can
be understood from Table 18. In contrast, our suggested
method MRDECC can achieve the higher reliability, while
both SL(G) and E(G) can satisfy the constraints, as shown
in Table 18 . On the other hand, one can observe that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 19
Scheduling results of FFT application with different scales

ρ Dgiven(G) Egiven(G)
HEFT ISAECC FFSV2 MRDECC

SL(G) E(G) R(G) SL(G) E(G) R(G) SL(G) E(G) R(G) SL(G) E(G) R(G)
8 739.5 517.96 435 1035.92 0.9942 493.57 497.62 0.9909 548 589.29 0.9987 546.51 517.88 0.9985

16 912.9 1040.76 537 2081.55 0.9896 608.39 1039.54 0.9837 692 1535.06 0.9969 668.73 1040.75 0.9951
32 1125.4 2416.10 662 4832.19 0.9767 749.82 2413.77 0.9646 1096 3550.20 0.9929 887.91 2415.93 0.9877
64 1523.2 5597.35 896 11194.69 0.9440 1008.66 5597.16 0.8889 1512.99 9558.59 0.9749 1242.19 5597.32 0.9710
128 1844.5 11688.97 1085 23377.94 0.8830 1229.41 11688.85 0.7814 1844.12 20739.06 0.9362 1761.41 11688.90 0.9237

TABLE 20
Scheduling results of FFT application by varying Dgiven(G)

Dgiven(G)
HEFT ISAECC FFSV2 MRDECC

SL(G) E(G) R(G) SL(G) E(G) R(G) SL(G) E(G) R(G) SL(G) E(G) R(G)
800 795 5175.67 0.9675 795 3104.60 0.9573 800 4443.26 0.9865 799.95 3105.17 0.9804
900 795 5175.67 0.9675 795 3104.60 0.9573 900 4432.42 0.9876 896.64 3105.37 0.9880
1000 795 5175.67 0.9675 795 3104.60 0.9573 1000 4274.50 0.9914 963.74 3100.19 0.9917
1100 795 5175.67 0.9675 795 3104.60 0.9573 1095 4312.91 0.9923 963.74 3100.19 0.9917
1200 795 5175.67 0.9675 795 3104.60 0.9573 1192 4257.67 0.9926 963.74 3100.19 0.9917

both MRDECC and ISAECC can satisfy two constraints,
while ISAECC is dominated by the suggested method
MRDECC. Particularly, when Egiven increases, the reliabil-
ity of MRDECC increases and it gradually approaches that
of FFSV2, while it can still satisfy the constraints.

Exp-10. This experiment is to compare R(G), SL(G) and
E(G) of FFT application by varying the application size ρ.
The energy consumptionEgiven is set toEheft(G)×0.5, and
the deadline constraint Dgiven(G) is set to SLheft(G)× 1.7,
where Eheft(G) and SLheft(G) are generated by HEFT
algorithm. We vary ρ from 8 (i.e., |N | = 39) to 128 (i.e.,
|N | = 1151). Table 19 shows the schedule length, energy
consumption and reliability results. Meanwhile, Fig. 9(b)
plots the variation tendency of reliability values when vary-
ing ρ.

One can see from Fig. 9(b) and Table 19 that, the reliabil-
ity values decrease for all these methods when ρ increases.
This is mainly because N in Eq. 21 increases. In addition,
FFSV2 still achieves the best reliability (cf., Fig. 9(b)), yet it
does not satisfy energy constraint (cf., Table 19). In contrast,
our suggested method MRDECC can satisfy both deadline
and energy consumption constraints (cf., Table 19). In this
regard, it is the same to ISAECC. Yet, MRDECC is signifi-
cantly better than ISAECC, especially when ρ is large (e.g.,
when p=128, our suggested method outperforms ISAECC
by about 18.2%).

Exp-11. This experiment is to compare R(G), SL(G) and
E(G) of FFT application by varying Dgiven(G). The appli-
cation size ρ is set to 32 (i.e., |N | = 223), and the energy con-
sumption constraint Egiven(G) is fixed to Eheft(G)× 0.6 =
3105.40. We vary Dgiven(G) form 800 to 1200. Table 20
shows the scheduling results. Fig. 9(c) plots the variation
tendency of reliability values when varying Dgiven(G).

As we expected, all these methods can satisfy the dead-
line constraint (cf., Table 20). In addition, one can see from
Fig. 9(c) and Table 20 that, FFSV2 and our suggested method
MRDECC have larger reliability values, compared against
other two methods. Particularly, the curve of MRDECC is
closely near to that of FFSV2, and even exceeds that of
FFSV2 (when Dgiven(G) ranges from 900 to 1000). Note

that, when Dgiven(G) > 1000, the reliability is no longer in-
creasing. This is mainly because another constraint, i.e., en-
ergy consumption constraint, also affects the performance.
Additionally, we can see from Table 20 that FFSV2 cannot
satisfy energy consumption constraint for all cases (recall
that Egiven(G) = 3105.40). On a whole, all these evidences
indicate that our suggested method performs well for the
MRDECC problem.

7 CONCLUSION

In this paper, we proposed a new algorithm to minimize
the schedule length for energy consumption constrained
parallel applications on heterogeneous computing systems.
The basic idea of our algorithm is decompose the problem
into two-subproblems and then use a weight-based mech-
anism to preassign the energy consumption for unassigned
tasks. Furthermore, we also extended our idea to two other
interesting problems, i.e., MRECC and MRDECC problems.
Extensive experiments on real applications demonstrated
that our algorithms are effective and competitive, compared
against state-of-the-art algorithms. In the future, we would
like to leverage other factors (e.g., latency) to develop more
efficient solutions. Another interesting topic is to adapt our
techniques to solve online scheduling problems in data
center network.

ACKNOWLEDGEMENT

We thank the editors and anonymous reviewers very much
for their constructive comments. This work was supported
in part by the National Key R&D Program of China
(2018YFB0204100, 2018YFB1004400), the National Natural
Science Foundation of China (61472124, 61472453, 61602166,
61702320, U1401256, U1501252, U1611264, U1711261,
U1711262, U61811264).

REFERENCES
[1] T. Ye, Z.-J. Wang, Z. Quan, S. Guo, K. Li, and K. Li, “Isaecc:

An improved scheduling approach for energy consump-
tion constrained parallel applications on heterogeneous

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

distributed systems,” in the 24th IEEE Intl. Conf. on Parallel
and Distributed Processing, 2018, pp. 1–8.

[2] M. Weiser, B. B. Welch, A. J. Demers, and S. Shenker,
“Scheduling for reduced CPU energy,” in OSDI, 1994, pp.
13–23.

[3] K. Li, “Scheduling precedence constrained tasks with re-
duced processor energy on multiprocessor computers,”
IEEE Trans. Computers, vol. 61, no. 12, pp. 1668–1681, 2012.

[4] G. Xie, G. Zeng, R. Li, and K. Li, “Energy-aware processor
merging algorithms for deadline constrained parallel ap-
plications in heterogeneous cloud computing,” IEEE Trans.
Sust. Comput., vol. 2, no. 2, pp. 62–75, 2017.

[5] M. A. Islam, S. Ren, A. H. Mahmud, and G. Quan, “Online
energy budgeting for cost minimization in virtualized data
center,” IEEE Trans. Serv. Comput., vol. 9, no. 3, pp. 421–432,
2016.

[6] J. Zhang, Z. Wang, Z. Quan, J. Yin, Y. Chen, and M. Guo,
“Optimizing power consumption of mobile devices for
video streaming over 4g LTE networks,” Peer-to-Peer Net-
working and Applications, vol. 11, no. 5, pp. 1101–1114, 2018.

[7] R. Ranjan, L. Wang, A. Y. Zomaya, and D. Georgakopou-
los, “Recent advances in autonomic provisioning of big
data applications on clouds,” IEEE Trans. Cloud Computing,
vol. 3, no. 2, pp. 101–104, 2015.

[8] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo,
“Making big data open in edges: A resource-efficient
blockchain-based approach,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 4, pp. 870–882, 2019.

[9] J. Zhang, Z. Wang, S. Guo, D. Yang, G. Fang, C. Peng, and
M. Guo, “Power consumption analysis of video streaming
in 4g LTE networks,” Wireless Networks, vol. 24, no. 8, pp.
3083–3098, 2018.

[10] C. Xu, K. Wang, and M. Guo, “Intelligent resource manage-
ment in blockchain-based cloud datacenters,” IEEE Cloud
Computing, vol. 4, no. 6, pp. 50–59, 2017.

[11] L. Zhao, Y. Ren, and K. Sakurai, “A resource minimizing
scheduling algorithm with ensuring the deadline and reli-
ability in heterogeneous systems,” in 25th IEEE Interna-
tional Conference on Advanced Information Networking and
Applications, AINA 2011, Biopolis, Singapore, March 22-25,
2011, 2011, pp. 275–282.

[12] G. Xie, Z. Gang, L. Yan, Z. Jia, R. Li, and K. Li, “Fast
functional safety verification for distributed automotive
applications during early design phase,” IEEE Transactions
on Industrial Electronics, vol. PP, no. 99, pp. 1–1, 2017.

[13] M. R. Stan and K. Skadron, “Guest editors’ introduction:
Power-aware computing,” IEEE Computer, vol. 36, no. 12,
pp. 35–38, 2003.

[14] K. Gharehbaghi, F. Kocer, and H. Kulah, “Optimization of
power conversion efficiency in threshold self-compensated
UHF rectifiers with charge conservation principle,” IEEE
Trans. Circuits and Systems, vol. 64-I, no. 9, pp. 2380–2387,
2017.

[15] F. Sandoval, G. Poitau, and F. Gagnon, “Hybrid peak-to-
average power ratio reduction techniques: Review and
performance comparison,” IEEE Access, vol. 5, pp. 27 145–
27 161, 2017.

[16] F. F. Yao, A. J. Demers, and S. Shenker, “A scheduling
model for reduced CPU energy,” in FOCS, 1995, pp. 374–
382.

[17] W. Kwon and T. Kim, “Optimal voltage allocation tech-
niques for dynamically variable voltage processors,” ACM
Trans. Embedded Comput. Syst., vol. 4, no. 1, pp. 211–230,
2005.

[18] J. R. Lorch and A. J. Smith, “PACE: A new approach to
dynamic voltage scaling,” IEEE Trans. Computers, vol. 53,
no. 7, pp. 856–869, 2004.

[19] M. Li and F. F. Yao, “An efficient algorithm for comput-
ing optimal discrete voltage schedules,” SIAM J. Comput.,
vol. 35, no. 3, pp. 658–671, 2005.

[20] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling
with dynamic voltage and frequency scaling for energy
minimization in the mobile cloud computing environ-
ment,” IEEE Trans. Serv. Comput., vol. 8, no. 2, pp. 175–186,
2015.

[21] G. Xie, Y. Chen, Y. Liu, Y. Wei, R. Li, and K. Li, “Resource
consumption cost minimization of reliable parallel appli-
cations on heterogeneous embedded systems,” IEEE Trans.
Indust. Inform., vol. PP, no. 99, pp. 1–1, 2016.

[22] S. Cho and R. G. Melhem, “On the interplay of paralleliza-
tion, program performance, and energy consumption,”
IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 3, pp. 342–
353, 2010.

[23] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling
for distributed computing systems under different operat-
ing conditions,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 8, pp. 1374–1381, 2011.

[24] S. U. Khan and I. Ahmad, “A cooperative game theoretical
technique for joint optimization of energy consumption
and response time in computational grids,” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 3, pp. 346–360, 2009.

[25] K. Li, “Power and performance management for parallel
computations in clouds and data centers,” J. Comput. Syst.
Sci., vol. 82, no. 2, pp. 174–190, 2016.

[26] X. Xiao, G. Xie, R. Li, and K. Li, “Minimizing schedule
length of energy consumption constrained parallel appli-
cations on heterogeneous distributed systems,” in ISPA
(best paper award), 2016, pp. 1471–1476.

[27] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Max-
imizing reliability with energy conservation for parallel
task scheduling in a heterogeneous cluster,” Information
Sciences, vol. 319, no. C, pp. 113–131, 2015.

[28] M. Lin, Y. Pan, L. T. Yang, M. Guo, and N. Zheng,
“Scheduling co-design for reliability and energy in cyber-
physical systems,” IEEE Trans. Emerging Topics in Comput-
ing, vol. 1, no. 2, pp. 353–365, 2017.

[29] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability
of real-time embedded applications under hard energy
constraint,” IEEE Trans. Indust. Inform., vol. 6, no. 3, pp.
316–328, 2010.

[30] K. Li, “Performance analysis of power-aware task schedul-
ing algorithms on multiprocessor computers with dy-
namic voltage and speed,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 11, pp. 1484–1497, 2008.

[31] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task
scheduling on heterogeneous computing systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2867–2876,
2014.

[32] C. Rusu, R. Melhem, and D. Moss, “Maximizing rewards
for real-time applications,” ACM Trans. Embedded Comput.
Syst., vol. 2, no. 4, pp. 537–559, 2003.

[33] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster frame-
works for efficient scheduling and resource allocation in
data center networks: A survey,” IEEE Communications
Surveys and Tutorials, vol. 20, no. 4, pp. 3560–3580, 2018.

[34] J. J. Chen and T. W. Kuo, “Multiprocessor energy-efficient
scheduling for real-time tasks with different power char-
acteristics,” in ICPP, 2005, pp. 13–20.

[35] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An
energy-efficient task scheduling algorithm in dvfs-enabled
cloud environment,” J. Grid Comput., vol. 14, no. 1, pp. 55–
74, 2016.

[36] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang,
“Enhanced energy-efficient scheduling for parallel appli-
cations in cloud,” in CCGRID, 2012, pp. 781–786.

[37] M. A. Khan, “Scheduling for heterogeneous systems using
constrained critical paths,” Parallel Computing, vol. 38, no.
4-5, pp. 175–193, 2012.

[38] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-
effective and low-complexity task scheduling for heteroge-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

neous computing,” IEEE Trans. Parallel and Distrib. Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[39] S. M. Shatz and J.-P. Wang, “Models and algo-
rithms for reliability-oriented task-allocation in redun-
dant distributed-computer systems,” IEEE Trans. Reliabil-
ity, vol. 38, no. 1, pp. 16–27, 1989.

[40] S. Aminzadeh and A. Ejlali, “A comparative study
of system-level energy management methods for fault-
tolerant hard real-time systems,” IEEE Trans. Computers,
vol. 60, no. 9, pp. 1288–1299, 2011.

[41] A. Benoit, F. Dufoss, A. Girault, and Y. Robert, “Reliability
and performance optimization of pipelined real-time sys-
tems ,” J. Parallel Distributed Computing, vol. 73, no. 6, pp.
851–865, 2013.

[42] G. Xie, H. Peng, Z. Li, J. Song, Y. Xie, R. Li, and K. Li,
“Reliability enhancement towards functional safety goal
assurance in energy-aware automotive cyber-physical sys-
tems,” IEEE Trans. Indust. Inform., vol. PP, pp. 1–14, Jul.
2018.

[43] C.-Y. Chen, “Task scheduling for maximizing performance
and reliability considering fault recovery in heterogeneous
distributed systems,” IEEE Trans. Parallel Distrib. Syst,
vol. 27, no. 2, pp. 521–532, 2016.

[44] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. Chang,
M. Lyu, and R. Buyya, “Cloud service reliability enhance-
ment via virtual machine placement optimization,” IEEE
Trans. Serv. Comput., vol. PP, no. 99, pp. 1–1, 2017.

[45] A. Girault, rik Saule, and D. Trystram, “Reliability versus
performance for critical applications,” J. Parallel Distrib.
Comput., vol. 69, no. 3, pp. 326–336, 2009.

[46] X. Tang, K. Li, M. Qiu, and H. M. Sha, “A hierarchical
reliability-driven scheduling algorithm in grid systems,”
J. Parallel and Distrib. Comput., vol. 72, no. 4, pp. 525–535,
2012.

[47] D. Zhu and H. Aydin, “Reliability-aware energy manage-
ment for periodic real-time tasks,” IEEE Trans. Computers,
vol. 58, no. 10, pp. 1382–1397, 2009.

[48] L. Zhang, K. Li, C. Li, and K. Li, “Bi-objective workflow
scheduling of the energy consumption and reliability in
heterogeneous computing systems,” Information Sciences,
vol. 379, 2016.

[49] A. Dogan and F. Özgüner, “Matching and scheduling
algorithms for minimizing execution timeand failure prob-
ability of applications in heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst, vol. 13, no. 13, pp. 308–323,
2002.

[50] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability
of real-time embedded applications under hard energy
constraint,” IEEE Trans. Indust. Inform., vol. 6, no. 3, pp.
316–328, 2010.

[51] G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimization
energy consumption of real-time parallel applications us-
ing downward and upward approaches on heterogeneous
systems,” IEEE Trans. Indust. Inform., vol. PP, no. 99, pp.
1–1, 2017.

[52] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for
energy efficiency and reliability enhancements in real-time
applications with precedence constraints,” ACM Trans.
Design Autom. Electr. Syst., vol. 18, no. 2, pp. 23:1–23:21,
2013.

[53] A. Benoit, L. C. Canon, E. Jeannot, and Y. Robert, “Relia-
bility of task graph schedules with transient and fail-stop
failures: complexity and algorithms,” J. Scheduling, vol. 15,
no. 5, pp. 615–627, 2012.

Zhe Quan received the PhD degree in computer
science from the University de Picardie Jules
Verne, France. He is currently an associate pro-
fessor at the College of Computer Science and
Technology, Hunan University (HNU), Chang-
sha, China. Before joining HNU, he worked at
the National University of Defense Technology,
Changsha, China. His main research interests
include parallel and high-performance comput-
ing, machine learning, etc.

Zhi-Jie Wang received the PhD degree in com-
puter science from the Shanghai Jiao Tong Uni-
versity, Shanghai, China. He is currently a re-
search associate professor at the Sun Yat-Sen
University (SYSU), Guangzhou, China. Before
joining SYSU, he was a postdoctoral research
fellow at the Hong Kong Polytechnic University,
Kowloon, Hong Kong. His current research inter-
ests include but not limited to algorithm design &
analysis, distributed computing, databases, etc.
He is a member of CCF, IEEE and ACM.

Ting Ye received the Master degree in computer
science from the Hunan University, Changsha,
China. She is currently a software engineer at
the Citibank, Shanghai, China. Her research in-
terests include parallel and distributed systems,
natural language processing, algorithm design
and analysis, etc.

Song Guo received the Ph.D. degree in com-
puter science from the University of Ottawa,
Canada. He is currently a full professor at The
Hong Kong Polytechnic University (PolyU). Prior
to joining PolyU, he was a full professor with the
University of Aizu, Japan. His research interests
are mainly in the areas of cloud and green com-
puting, big data, wireless networks, and cyber-
physical systems. He has published over 300
conference and journal papers in these areas
and received multiple best paper awards from

IEEE/ACM conferences. His research has been sponsored by JSPS,
JST, MIC, NSF, NSFC, and industrial companies. Dr. Guo has served as
an editor of several journals, including IEEE TPDS, IEEE TCC, IEEE
TETC, IEEE TGCN, IEEE Communications Magazine, and Wireless
Networks. He has been actively participating in conference organiza-
tions serving as general chair and TPC chair. He is a senior member of
IEEE, a senior member of ACM, and an IEEE Communications Society
Distinguished Lecturer.

